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Abstract: Rota–Baxter operators (RBOs) play a substantial role in many subfields of mathematics,
especially in mathematical physics. In the article, RBOs on Zinbiel algebras (ZAs) and their sub-
adjacent algebras are first investigated. Moreover, all the RBOs on two and three-dimensional ZAs are
presented. Finally, ZAs are also realized in low dimensions of the RBOs of commutative associative
algebras. It was found that not all ZAs can be attained in this way.

Keywords: Zinbiel algebra; commutative associative algebra; Rota–Baxter operator; deviation

MSC: 17A30; 17A32

1. Introduction

Zinbiel algebras (ZAs) were defined in [1] and are dual to Leibniz algebras in the
Koszul sense. A ZA is a commutative Dendriform algebra [2]. It is well known that any
ZA in terms of the anti-commutator defined as a ∗ b = ab + ba is called a commutative
associative algebra (CAA). Some interesting properties of ZAs were presented in [3–7].
In particular, the nilpotent property of an arbitrary finite-dimensional complex ZA was
proved in [6]. Thus, the classification of complex ZAs up to the third dimension can be
attained [6,8].

The Rota–Baxter operators (RBOs) were originally proposed to resolve an analytic
problem [9]. Later, they were researched in several areas of mathematics [10–15]. In
particular, some studies investigated RBOs on different algebras [16–18]. In the article,
the RBOs on ZAs are focused on. First, the relationship between the RBO on ZA and the
ones on its sub-adjacent CAA will be explored. Then, the RBOs on ZAs up to the third
dimension based on the classification of ZAs will be determined [6]. Finally, the mutual
realization of ZAs and the sub-adjacent CAAs with RBOs up to the third dimension will
be investigated based on the derived result of the RBOs on the CAA [19]. Throughout the
manuscript, all vector spaces and algebras are composed of finite dimensions over C unless
stated otherwise.

2. Preliminary

Definition 1. A ZA is a vector space A with a bilinear map (x, y) → xy satisfying the associative
property,

(xy)z = x(yz) + x(zy), ∀x, y ∈ A.

A with xy = 0, ∀x, y ∈ A is a ZA, which is called a trivial ZA, otherwise, a nontrivial ZA.
For a ZA A, the anti-commutator is defined by

x ∗ y = xy + yx, ∀x, y ∈ A,
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and it satisfies the associative property,

(x ∗ y) ∗ z = (xy + yx) ∗ z = (xy + yx)z + z(xy + yx)
= (xy)z + (yx)z + (zy)x
= x(yz) + x(zy) + (yz)x + (zy)x
= x ∗ (yz + zy)
= x ∗ (y ∗ z).

So, the new product defines a CAA denoted by B = B(A), which is called the
sub-adjacent algebra (SAA) of A.

Definition 2. Let A be an algebra not necessarily associative. A linear operator R : A → A is
called an RBO on A if R satisfies Equation (1).

R(x)R(y) = R(R(x)y + xR(y)), ∀x, y ∈ A. (1)

We denote the set of RBOs on an algebra A by RB(A). The relationship between the
two sets, RB(A) and RB(B(A)), can be obtained as follows:

Proposition 1. Let R be an RBO on a ZA A. Then, R is an RBO on its SAA B(A). It is implied
that RB(A) ⊆ RB(B(A)).

Proof. For x, y ∈ B(A), and R ∈ RB(A), the subsequent equality is presented.

R(R(x)) ∗ y + x ∗ R(y)) = R(R(x)y + yR(x) + xR(y) + R(y)x)
= R(R(x)y + yR(x)) + R(xR(y) + R(y)x)
= R(x)R(y) + R(y)R(x)
= R(x) ∗ R(y).

□

Next, new RBOs will be constructed from several aspects. Note that a derivation on a
ZA A is a linear operator D : A → A satisfying

D(xy) = D(x)y + xD(y), ∀x, y ∈ A.

Proposition 2. Suppose that A is a ZA and R : A → A is an invertible operator. Then, R is an
RBO on A if and only if R−1 is a derivation of A.

Alternatively, any derivation D of a ZA A is also a derivation of its SAA B(A), that is,
D satisfies

D(x ∗ y) = D(x) ∗ y + x ∗ D(y), ∀x, y ∈ A.

Furthermore, invertible derivations or RBOs are simply constructed. Let A be a ZA. A
is called graded if A = ⊕λ∈Γ Aλ as a direct summation of vector spaces, where Aλ ̸= 0 and
Aα Aβ ⊆ Aα+β.

Proposition 3. Let A = ⊕λ∈Γ Aλ be a graded ZA. If 0 /∈ Γ, then A has an invertible derivation.

Proof. Suppose that D : A → A is a linear map defined by D(x) = λx for each x ∈ Aλ.
Then, D is a derivation of A. Furthermore, the invertibility of D is realized since 0 /∈ Γ. □

Proposition 4. Let A = A1 ⊕ A2 be a direct sum of two ideals of a ZAA. For any RBORi on
Ai, (i = 1, 2), the linear map R : A → A is given by

R(x1, x2) = (R1(x1), R2(x2))
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(for any x1 ∈ A1, x2 ∈ A2) that defines an RBO on A.

Finally, how CAAs as well as ZAs generate new ZAs through their RBOs will be
discussed. Firstly, a result is extracted from [20,21].

Lemma 1. Suppose that (B, ·) is a CAA and R is an RBO [20,21]. Then, the following product

x ∗ y = x · R(y), ∀x, y ∈ B (2)

defines a ZA.

Proposition 5. Let (B, ·) be a CAA. If D is an invertible derivation on B, then there exist two
isomorphic ZAs given by

x ∗ y = x · D−1(y), ∀x, y ∈ B, (3)

x ◦ y = D−1(D(x) · y), ∀x, y ∈ B. (4)

Proof. For each x, y, z ∈ B, by Propositions 2 and Lemma 1, (B, ∗) is a ZA led by the
subsequent equality.

x ∗ (y ∗ z + z ∗ y) = xD−1(yD−1(z) + zD−1(y)
)

= xD−1(y)D−1(z) =
(
xD−1y

)
D−1(z)

= (x ∗ y) ∗ D−1(z) = (x ∗ y) ∗ z.

(B, ·) is a ZA led by the subsequent equality.

x · (y · z + z · y) = D−1(D(x)(y · z)) + D−1(D(x)(z · y))
= D−1(D(x)D−1(D(y)z)

)
+ D−1(D(x)D−1(D(z)y)

)
= D−1(D(x) ∗ (D(y)z)) + D−1(D(x) ∗ (D(z)y))
= D−1(D(x) ∗ (D(y) ∗ D(z))) + D−1(D(x) ∗ (D(z) ∗ D(y)))
= D−1((D(x) ∗ D(y)) ∗ D(z)) = D−1(D(x) ∗ (D(y)) · z
= D−1(D(x)y) · z = (x · y) · z.

Alternatively, (B, 0) is a ZA whose product is induced by (B, ∗) through the algebraic
isomorphism D defined by

x ◦ y = D−1(D(x) ∗ D(y)) = D−1(D(x) · y), ∀x, y ∈ B.

Thus, the conclusion holds. □

Corollary 1. Let (B, ·) be a CAA and R be an RBO. Then, R is an RBO on the ZA generated by
Equation (2).

Proof. For each x, y ∈ B, the equality is satisfied as follows:

R(x) ∗ R(y) = R(x) · R2(y) = R
(

R(x) · R(y) + x · R2(y)
)
= R(R(x) ∗ y + x ∗ R(y)).

Thus, the R becomes an RBO on (B, ∗). □

Corollary 2. Suppose that (B, ·) is ZA and R is an RBO. Then, the product is given by

x ∗ y = x · R(y) + R(y) · x, ∀x, y ∈ B,

which defines a new ZA. Furthermore, R is still an RBO on (B, ∗).
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Proof. The first and second statements are followed by Propositions 1 and Lemma 1 and
Corollary 1, respectively.

The ZA (B, ∗) given above is the (1-st) double of (B, ·) associated with the RB R.
Additionally, for any ZA(B, ·) with an RBO R, a series of ZAs(B, ∗i) can be defined as
follows: (B, ∗0) = (B, ·) and a product on (B, ∗i)(i ≥ 1) is given by

x ∗i y = x ∗i−1 R(y) + R(y) ∗i−1 x, ∀x, y ∈ B.

(B, ·) is called the i-th double of (B, ·). It is the (1-st) double of (B, ∗i−1) associated
with R. □

Proposition 6. Suppose that (B, ·) is a ZA and R is an RBO. Then, for any i ≥ 0, Equation (5) is
attained.

x ∗i+1 y =
i

∑
k=0

Ck
i

{
Rk(x), Ri+1−k(y)

}
, ∀x, y ∈ B, (5)

where a · b + b · a is denoted by {a, b} for any a, b ∈ B.

Proof. The conclusion is proved by induction on i.
Equation (5) holds for i = 1.
Now, suppose that it holds for a generic i, i.e.,

x ∗i+1 y =
i

∑
k=0

Ck
i

{
Rk(x), Ri+1−k(y)

}
(6)

Then, Equation (6) leads to

x ∗i+2 y = x ∗i+1 R(y) + R(y) ∗i+1 x

=
i

∑
k=0

Ck
i

{
Rk(x), Ri+2−k(y)

}
+

i
∑

k=0
Ck

i

{
Rk+1(y), Ri+1−k(x)

}
=

i
∑

k=0
Ck

i

{
Rk(x), Ri+2−k(y)

}
+

i
∑

k=0
Ck

i

{
Ri+1−k(x), Rk+1(y)

}
=

i
∑

k=0
Ck

i

{
Rk(x), Ri+2−k(y)

}
+

i+1
∑

t=0
Ci+1−t

i
{

Rt(x), Ri+2−t(y)
}

= C0
i
{

x, Ri+2(y)
}
+

i
∑

k=1
Ck

i

{
Rk(x), Ri+2−k(y)

}
+Ci+1−i−1

i
{

Ri+1(x), R(y)
}
+

i
∑

t=1
Ci+1−t

i
{

Rt(x), Ri+2−t(y)
}

= C0
i
{

x, Ri+2(y)
}
+ C0

i
{

Ri+1(x), R(y)
}
+

i
∑

k=1

(
Ck

i + Ci+1−k
i

){
Rk(x), Ri+2−k(y)

}
=

{
x, Ri+2(y)

}
+

{
Ri+1(x) + R(y)

}
+

i
∑

k=1
Ck

i+1

{
Rk(x), Ri+2−k(y)

}
i+1
∑

k=0
Ck

i+1

{
Rk(x), Ri+2−k(y)

}
.

So, Equation (5) holds for any i. □

Corollary 3. Suppose that (B, ·) is a ZA and R is an RBO. If R is nilpotent, then there exists a
positive integer N such that (B, ∗n) are trivial for n > N.

Proof. Set Rm = 0. For any n ≥ 2m − 1 and k ≤ n, either k ≥ m or n − k ≤ m holds. Hence,
by Equation (5), x ∗n y = 0 for any x, y ∈ B. □
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3. RBOs of Low-Dimensional ZAs

All the RBOs on two- and three-dimensional ZAs will be presented. Suppose that
the set {e1, e2, . . . , en} is a basis of ZA A. eiej = ∑n

k=1 ck
ijek is set. Any RBO R could then be

characterized by a matrix
(
rij
)
.R(ei) = ∑n

j=1 rjiej and r′ij satisfies Equation (7).

n

∑
k,l,m

(
cm

klrikrjl − cl
kjrikrlm − ck

ilrjlrkm

)
= 0, i, j = 1, 2, . . . , n. (7)

Next, the classification results of ZAs up to the third dimension in the literature
are presented.

Lemma 2. Let A be a ZA with up to the third dimension; then, it must be isomorphic to one of the
following cases (just list the nonzero product for nontrivial cases) [6,8].

dim A = 1. e1e1 = 0;

dim A = 2. T1 : eiej = 0 and T2 : e1e1 = e2;

dim A = 3. A1 : eiej = 0; A2 : e1e1 = e3; A3 : e1e1 = e3, e2e2 = e3; A4 : e1e2 =
1
2

e3, e2e1 = −1
2

e3;

A5 : e2e1 = −e3; A6 : e1e1 = e3, e1e2 = e3, e2e2 = λe3, λ ̸= 0; A7 : e1e1 = e2, e1e2 =
1
2

e3, e2e1 = e3.

In the first dimension, there is only the trivial ZA (the products being zero). In this
case, any linear transformation is an RBO. In the second dimension, there are two ZAs: one
is the trivial ZA T1 whose RBOs are all linear transformations and another T2 is given by
the nonzero products.

e1e1 = e2.

By Equation (7), the subsequent equations are attained.
r2

12 − 2r11r22 = 0
2r11r12 = 0
r12(r11 − r22) = 0
r2

12 = 0

So, the subsequent results are attained.

1. r12 = 0, r11 ̸= 0, r11 = 2r22.
2. r12 = 0, r11 = 0, r22 ∈ C.

The new ZAs pertinent to the RBO R can be attained as follows:

For case 1, R =

(
2r22 0
r21 r22

)
(r22 ̸= 0). Then,

e1 ∗ e1 = e1R(e1) + R(e1)e1
= e1(2r22e1 + r21e2) + (2r22e1 + r21e2)e1
= 4r22e2

Similarly, e1 ∗ e2 = 0, e2 ∗ e1 = 0, e2 ∗ e2 = 0 are attaiened. When 4r22e2 is taken as e2,
e1 ∗ e1 = e2 becomes a nonzero product. As discussed above, e1 ∗k e1 = e2, k ∈ N is attained.

For case 2, R =

(
0 0

r21 r22

)
. ei ∗ ej = 0, i, j = 1, 2 is attained. So ei ∗ ej = 0 and

ei ∗k ej = 0, where i, j = 1, 2, k ∈ N.
Based on the above arguments, Theorem 1 is stated.
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Theorem 1. Let A be the nontrivial two-dimensional ZAT2 with an RBO R. If =
(

2r22 0
r21 r22

)
(r22 ̸= 0), for each i ≥ 1, the i-th double pertinent to R has an isomorphism to A. If

R =

(
0 0

r21 r22

)
, the i-th double is related to R that becomes trivial for each i ≥ 1.

By Equation (7), for three-dimensional ZA algebras, calculations are performed one at
a time, and 103 of them are obtained by the subsequent steps.

1. For A2, the nonzero products are

e1e1 = e3.

A set of equations is attained as follows:
r11r23 = 0
r2

11 − 2r11r33 = 0
r12 = r13 = 0

Then, the subsequent results are attained.

(1) r12 = r13 = r11 = 0, rij ∈ C, i = 2, 3; j = 1, 2, 3.
(2) r12 = r13 = 0, r11 ̸= 0, rij ∈ C, i = 2, 3; j = 1, 2, 3.

2. For A3, the nonzero products are

e1e1 = e3, e2e2 = e3.

A set of equations is attained as follows:
r13 = r23 = 0,
2r11r33 = r2

11 + r2
21,

2r11r33 = r2
12 + r2

22,
(r12 + r21)r33 = r12r11 + r22r21.

Then, the subsequent results are attained.

(1) r13 = r23 = 0, r11 = r22, r12 = ∓α, r21 = ±α, α =
√
−r22(r22 − 2r33), r22,

r3j ∈ C, j = 1, 2, 3.
(2) r13 = r23 = 0, r11 = −r22 + 2r33, r12 = ±α, r21 = ±α, α =

√
−r22(r22 − 2r33),

r22, r3j ∈ C, j = 1, 2, 3.

3. For A4, the nonzero products are

e1e2 =
1
2

e3, e2e1 = −1
2

e3.

A set of equations is attained as follows:{
r13 = r23 = 0,
(r11 + r22r33 = r11r22 − r21r12

Then, the subsequent outcomes are attained.

(1) r22 ̸= r33, r13 = r23 = 0, r11 = r12r21+r22r33
r22−r33

, r21, r22, r3j ∈ C, j = 1, 2, 3.
(2) r22 = r33, r13 = r23 = r21 = 0, r11, r12, r21, r22, r3j ∈ C, j = 1, 2.

(3) r22 = r33, r13 = r23 = 0, r12 = − r2
22

r21
, r11, r21, r22, r3j ∈ C, j = 1, 2.

4. For A5, the nonzero products are

e2e1 = −e3.
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A set of equations is attained as follows:
r13 = r23 = 0
r21r12 = 0
r12r33 = r12r22
r21r33 = r21r11
( r11 + r22)r33 = r11r22

Then the subsequent results are obtained.

(1) r11 = r12 = r13 = r23 = r33 = 0, r21, r22, r3j ∈ C, j = 1, 2.
(2) r21 = r22 = r13 = r23 = r33 = 0, r11, r12, r31 = 0, r32 ∈ C.
(3) r22 ̸= r33, r11 = r22r33

r22−r33
, r12 = r13 = r21 = r23 = 0, r22, r3j ∈ C, j = 1, 2, 3.

5. For A6, the nonzero products are

e1e1 = e3, e1e2 = e3, e2e2 = λe3, λ ̸= 0.

A set of equations is attained as follows:
r13 = r23 = 0
(2r11 + r21)r33 = r2

11 + r11r21 + λr2
21

(r12 + r11 + r22 + λr21)r33 = r11r12 + r11r22 + λr21r22
(r12 + λr21)r33 = r12r11 + r12r21 + λr22r21
(r12 + 2λr22)r33 = r2

12 + r12r22 + λr2
22

Then, the following solutions are reached:

r13 = r23 = 0, r11 =
1r33 − r21

2
± α, r12

r33 − r22

2
+±β, r21, r22, r3j ∈ C, j = 1, 2, 3,

for α =

√
−4λr2

21+r2
21+4r2

33
2 , β =

√
−4λr2

22+8λr22r33+r2
22−2r22r33+r2

33
2

6. For A7, the nonzero products are

e1e1 = e2, e1e2 =
1
2

e3, e2e1 = e3.

A set of equations is attained as follows:
r12 = r13 = r23 = 0,
2r11r22 = r2

11,
2r11r32 +

3
2 r21r33 = 3

2 r11r21,
(r22 + r11)r33 = r22r11.

Then, the following outcomes are reached:

(1) rij = 0, r3k ∈ C, i = 1, 2; j, k = 1, 2, 3.
(2) r1j = 0, r23 = r33 = 0, r11, r21, r22, r31, r32 ∈ C.
(3) r11 = 3r33, r21 = 2r32, r22 = 3

2 r33, r3j ∈ C, j = 1, 2, 3.

The arguments presented above lead to Theorem 2.

Theorem 2. The subsequent mathematical expressions depict the RBOs of the ZAs with three
dimensions in Table 1.
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Table 1. ZAA and RBOs with three dimensions.

ZAA RBOs

(A1)eiej = 0

 r11 r12 r13
r21 r22 r21
r31 r32 r33


(A2)e1e1 = e3

 0 0 0
r21 r22 r23
r31 r32 r33

,

r11 0 0
r21 r22 r23
r31 r32

1
2 r11

(r11 ̸= 0)

(A3)

{
e1e1 = e3
e2e2 = e3

 −r22 + r33 α 0
α r22 0
r31 r32 r33

,

 −r22 + r33 −α 0
−α r22 0
r31 r32 r33


 r22 α 0

−α r22 0
r31 r32 r33

,

 r22 −α 0
α r22 0
r31 r32 r33

(
α =

√
−r22(r22 − r33)

)

(A4)

{
e1e2 = 1

2 e3
e2e1 = − 1

2 e3

 r11 r12 0
0 r22 0
r31 r32 r33

,

 r11
−r2

22
r21

0
r21 r22 0
r31 r32 r22


 r12r21+r22r33

r22−r33
r12 0

r21 r22 0
r31 r32 r33

(r22 ̸= r33)

(A5)e2e1 = −e3

r11 r12 0
0 0 0

r31 r32 0

,

 0 0 0
r21 r22 0
r31 r32 0

,

 r22r33
r22−r33

0 0
0 r22 0

r31 r32 r33

(r22 ̸= r33)

(A6)


e1e1 = e3
e1e2 = e3

e2e2 = λe3, λ ̸= 0

 2r33−r21
2 ± α r33−r22

2 + β 0
r21 r22 0
r31 r32 r33

,

 2r33−r21
2 ± α r33−r22

2 − β 0
r21 r22 0
r31 r32 r33


α = 1

2

√
−4λr2

21 + r2
21 + 4r2

33

β = 1
2

√
−4λr2

22 + 8λr22r33 + r2
22 − 2r22r33 + r2

33

(A7)


e1e1 = e2

e1e2 = 1
2 e3

e2e1 = e3

 0 0 0
r21 r22 0
r31 r32 0

,

 0 0 0
0 0 0

r31 r32 r33

,

3r33 0 0
2r32

3
2 r33 0

r31 r32 r33



With the notations presented above, the straightforward conclusion is reached as follows.

Corollary 4. Let A be a three-dimensional ZA.

1. If A is of type A1 or A4, then its i-th double associated to any RBOsR is trivial, for each
i ≥ 1;

2. If A is one of the types A2, A3, A5, A6, and A7, then there are nonzero RBO s R such that the
associated i-th doubles are trivial, for each i ≥ 1:

A2 :

 0 0 0
r21 r22 r21
r31 r32 r33

; A3 :

 0 0 0
0 0 0

r31 r32 0

; A5 :

 0 0 0
0 0 0

r31 r32 0

;

A6 :

 0 0 0
0 0 0

r31 r32 r33

; A7 :

 0 0
0 0 0

r31 r32 0

.

Proof. Based on the above results of RBOs and Corollary 2, the new ZAs are calculated.

(1) A1 : e2e1 = −e3.
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If R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

, the subsequent equality is easily attained.

ei ∗1 ej = eiR
(
ej
)
+ R

(
ej
)
ei = 0

Then, ei ∗k ej = 0, where i, j = 1, 2, 3, and k ∈ N.

(2) A2 : e1e1 = e3.

If R =

 0 0 0
r21 r22 r23
r31 r32 r33

, the new product appears as zero, so (A, ∗1) and (A, ∗k),

k ∈ N, are of type A1.

If R =

r11 0 0
r21 r22 r23
r31 r32

1
2 r11

(r11 ̸= 0), the following nonzero product is attained:

e1 ∗1 e1 = e1R(e1) + R(e1)e1
= e1(r11e1 + r21e2 + r31e3) + (r11e1 + r21e2 + r31e3)e1
= 2r11e3.

Then, the new (A, ∗1) is of type A2.

(3) A3 : e1e1 = e3, e2e2 = e3.

If R =

−r22 + r33 ∓α 0
±α r22 0
r31 r32 r33

 or R =

−r22 + r33 ∓α 0
±α r22 0
r31 r32 r33

, where

α =
√
−r22(r22 − r33), the subsequent equality is attained.

e1 ∗1 e1 = 2r11e3, e1 ∗1 e2 = 2r12e3, e2 ∗1 e1 = 2r21e3, e2 ∗1 e2 = 2r22e3.

If r22 = 0, namely, R =

 0 0 0
0 0 0

r31 r32 0

, it is obtained that (A, ∗k), k ∈ N, are of type

A1 by the equations above.

(4) A4 : e1e2 = 1
2 e3, e2e1 = − 1

2 e3.

It is known that R has the following three cases:r11 r12 0
0 r22 0

r31 r32 r33

,

r11
−r2

22
r21

0
r21 r22 0
r31 r32 r22

,

 r12r21+r22r33
r22−r33

r12 0
r21 r22 0
r31 r32 r33

(r22 ̸= r33)

No matter which situation R takes, ei ∗1 ej = 0, i, j = 1, 2, 3 is obtained. Then, by
induction, (A, ∗k), k ∈ N, are of type A1.

(5) A5 : e2e1 = −e3.

If R =

r11 r12 0
0 0 0

r31 r32 0

, then the nonzero product is attained as follows:

e1 ∗1 e1 = −r21e3, e1 ∗1 e2 = −r22e3.

If R =

 0 0 0
r21 r22 0
r31 r32 0

, the following nonzero product is attained:

e2 ∗1 e1 = −r11e3, 21 ∗1 e2 = −r12e3
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If R =

 r22r33
r22−r33

0 0
0 r22 0

r31 r32 r33

(r22 ̸= r33), the following nonzero product is attained:

e1 ∗1 e2 = −r22e3, e2 ∗1 e1 = −r11e3

In summary, if (A, ∗k), k ∈ N are of type A1, R =

 0 0 0
0 0 0

r31 r32 0

 must be taken.

(6) A6 : e1e1 = e3, e1e2 = e3, e2e2 = λe3, λ ̸= 0.

If R =

 2r33−r21
2 ± α r33−r22

2 + β 0
r21 r22 0
r31 r32 r33

 or R =

 2r33−r21
2 ± α r33−r22

2 − β 0
r21 r22 0
r31 r32 r33

,

where α = 1
2

√
−4λr2

21 + r2
21 + 4r2

33,

β =
1
2

√
−4λr2

22 + 8λr22r33 + r2
22 − 2r22r33 + r2

33.

The nonzero product is attained.

e1 ∗1 e1 = (2r11 + r21)e3, e1 ∗1 e2 = (2r12 + r22)e3,

e1 ∗1 e1 = (2λr21 + r11)e3, e2 ∗1 e2 = (2λr22 + r12)e3

Let r11 and r12 be the corresponding numbers in the matrix.
If r11 = r12 = r21 = r22 = 0, (A, ∗k), k ∈ N are of type A1. Then, R can only have the

following form: R =

 0 0 0
0 0 0

r31 r32 r33

.

(7) A7 : e1e1 = e2, e1e2 = 1
2 e3, e2e1 = e3.

If R =

 0 0 0
0 0 0

r31 r32 r33

, ei ∗1 ej = 0, i, j = 1, 2, 3 is attained. Then, (A, ∗k), k ∈ N, are

of type A1.

If R =

 0 0 0
r21 r22 0
r31 r32 0

, the following nonzero product is attained:

e1 ∗1 e1 =
3
2

r21e3, e1 ∗1 e2 =
3
2

r22e3

If R =

3r33 0 0
2r32

3
2 r33 0

r31 r32 r33

, the following nonzero product is attained:

e1 ∗1 e1 = 6r33e2 + 3r32e3, e1 ∗1 e2 =
1
2

r22e2 + r22e3, e2 ∗1 e1 =
3
2

r11e3.

When three cases are considered and if R =

 0 0 0
0 0 0

r31 r32 0

, ei ∗1 ej = 0, i, j = 1, 2, 3 is

attained. Then, (A, ∗k), k ∈ N, are of type A1. □
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4. From CAAs to ZAs

The categorization of both the two- and three-dimensional complex CAAs and their
RBOs is known [19]. Then, by Lemma 1 the corresponding ZAs are attained. In the
following tables, the CAAs and their RBOs are listed in the first and second columns,
respectively, and the corresponding ZAs in the sense of an isomorphism are presented in
the third column. Moreover, these RBOs from [19] are sets denoted by R(ei) = ∑n

j=1 rijej.

Theorem 3. The corresponding ZAs (in the sense of an isomorphism) are obtained from the RBOs
on two-dimensional CAAs through Equation (2) in following Table 2.

Table 2. CAA B, RBOs R, Type of ZA(B,∗).

CAAB RBOs R Type of ZA(B,∗)

(B1)

{
e1e1 = e2
e2e2 = e2

(
0 0
0 0

)
T1

(B2)

{
e1e2 = e2e1 = e1

e2e2 = e2

(
0 0

r21 0

) r21 = 0, T1
r21 ̸= 0, T2

(B3)e1e1 = e1

(
0 r12
0 r21

)
T1

(B4)eiej = 0
(

r11 r12
r21 r22

)
T1

(B5)e1e1 = e2

(
0 r12
0 r22

)
T1(

2r22 r12
0 r22

)(
r22 ̸= 1

2

) r22 = 0, T1
r22 ̸= 0, T2

Proof. For B2, by Equation (2), the subsequent equality is attained.

e2 ∗ e2 = e2R(e2) = e2(r21e1) = r21e1

and others are zero. Then (B, ∗) is of type T1 if r21 = 0.
If r21 ̸= 0, a new e1 is taken as r21e1, and (B, ∗) is of type T2.
For the other cases, they all can be attained similarly. □

Remark 1. All the two-dimensional ZAs can be obtained from two-dimensional CAAs and their
RBOs through Equation (2).

The corresponding ZAs (in the sense of an isomorphism) obtained from the RBOs on
three-dimensional CAAs through Equation (2) are summarized in Table 3.

Table 3. CAA B, RBOs R, Type of ZA (B,∗).

CAA B RBOs R Type of ZA (B,∗)

(B1)eiej = 0

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 A1

(B2)e3e3 = e1

 r11 r12 0
r21 r22 0
r31 r32 0

 A1

r31 0 0
r21 r22 0
r31 r32 r11

(r11 ̸= 0) A2
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Table 3. Cont.

CAA B RBOs R Type of ZA (B,∗)

(B3)

{
e2e2 = e1
e3e3 = e1

 0 0 0
r21 r22 ±

√
−1r22

r31 ∓
√
−1r33 r33


r22 = r33 = 0, A1

r22r33 ̸= 0, A5
r22 = 0, r33 ̸= 0, A5
r22 ̸= 0, r33 = 0, A5r11 0 0

r21 r±22 r23
r31 r23 r±33

(r11 ̸= 0)

r±22 = r±33 = r11 ±
(
r2

11 − r2
23
) 1

2

r±22 +
±r33 = r23 = 0, A1

r±22 + r±33 = 2r23, r±22 + r±33 ̸= −2r23, A2
r±22 + r±33 ̸= 2r23, r±22 + r±33 = −2r23, A2
r±22 + r±33 ̸= 2r23, r±22 + r±33 ̸= −2r23, A3r11 0 0

r21 r±22 r23
r31 r23 r∓33

(r11 ̸= 0)

r±22 = r±33 = r11 ±
(
r2

11 − r2
23
) 1

2

r±22 +
∓r33 = r23 = 0, A1

r±22 + r∓33 = 2r23, r±22 + r∓33 ̸= −2r23, A2
r±22 + r∓33 ̸= 2r23, r±22 + r∓33 = −2r23, A2
r±22 + r∓33 ̸= 2r23, r±22 + r∓33 ̸= −2r23, A3

(B4)

{
e2e3 = e3e2 = e1

e3e3 = e2

 0 0 0
r21 r22 0
r31 r32 0


r22 = r33 = 0, A1

r22r33 ̸= 0, A2
r22 = 0, r32 ̸= 0, A2
r22 ̸= 0, r32 = 0, A5 r11 0 0

r21 0 0
r31 0 0

(r11 ̸= 0) A1

 2
3 r22 0 0
2
3 r32 r22 0
r31 r32 2r22

(r22 ̸= 0) A7

(B5)


e1e1 = e1
e2e2 = e2
e3e3 = e3

 0 0 0
0 0 0
0 0 0

 A1

(B6)

{
e2e2 = e2
e3e3 = e3

 r11 0 0
r21 0 0
r31 0 0

 A1

(B7)


e1e3 = e3e1 = e1

e2e2 = e2
e3e3 = e3

 0 0 0
r21 0 0
r31 0 0

 r21 = r31 = 0, A1
r21r31 ̸= 0, A5

r21 = 0, r31 ̸= 0, A2
r21 ̸= 0, r31 = 0, A5

(B8)e3e3 = e3

 r11 r12 0
r21 r22 0
r31 r32 0

 A1

(B9)

{
e1e3 = e3e1 = e1

e3e3 = e3

 0 0 0
r21 r22 0
r31 r32 0

 the same as B7

 0 r12 0
0 r22 0
0 r32 0

(r12 ̸= 0) A1

(B10)


e1e3 = e3e1 = e1
e2e3 = e3e2 = e2

e3e3 = e3

 0 0 0
r21 0 0
r31 0 0

 the same as B7

 0 0 0
0 0 0

r31 r32 0

(r32 ̸= 0) A2

 r11 r12 0
−r2

11
r12

−r11 0
r32r11

r12
r32 0

(r12 ̸= 0) A5



Axioms 2024, 13, 314 13 of 15

Table 3. Cont.

CAA B RBOs R Type of ZA (B,∗)

(B11)

{
e1e1 = e2
e3e3 = e3

r11 r12 0
0 0 0
0 r32 0

 r11 = 0, A1
r11 ̸= 0, A2r11 r12 0

0 2r11 0
r31 r32 0

(r11 ̸= 0) r31 = 0, A1
r31 ̸= 0, A5

(B12)


e1e1 = e2

e1e3 = e3e1 = e1
e2e3 = e3e2 = e2

e3e3 = e3

0 r12 0
0 0 0
0 r32 0

 r12 ̸= 0, A5
r12 = 0, r32 ̸= 0, A2
r12 = 0, r32 = 0, A1 0 r12 0

0 0 0
2r12 r32 0

(r12 ̸= 0) A7

Proof. B3, e2e2 = e1, e3e3 = e1 and R =

 0 0 0
r21 r22 ±

√
−1r22

r31 ∓
√
−1r33 r33

 are proved

as follows.

1. If r22r33 ̸= 0, ZA(B, ∗), the nonzero product, is attained.

e2 ∗ e2 = e2R(e2) = e2(r21e1 + r22e2 + r23e3) = r22e1,
e2 ∗ e3 = e2R(e3) = e2(r31e1 + r32e2 + r33e3) = r32e1 = ∓r33e1,
e3 ∗ e2 = e3R(e2) = e3(r21e1 + r22e2 + r23e3) = r23e1 = ±r22e1,
e3 ∗ e3 = e3R(e3) = e3(r31e1 + r32e2 + r33e3) = r33e1.

Let e′3 = e2 ±
√
−1e3. Then, for e1, e2, e′3, the subsequent results are attained.

e′3 ∗ e′3 =
(
e2 ±

√
−1e3

)
∗
(
e2 ±

√
−1e3

)
= r22e1 + r33e1 − r22e1 − r33e1
= 0

e′3 ∗ e2 =
(
e2 ±

√
−1e3

)
∗ e2

= r22e1 − r22e1
= 0.

Then the nonzero product is as follows:

e2 ∗ e2 = r22e1, e2 ∗ e′3 = 2r22e1.

Let e′2 = 1√
r22

e2 and e′′3 = 1
2
√

r22
e′3. Then the nonzero product is as follows:

e′2 ∗ e′2 = e1, e′2 ∗ e′′3 = e1.

When e′′2 = e′2 − e′′3 is taken, then the subsequent result is attained.

e′′2 ∗ e′′2 =
(
e′2 − e′′3

)
∗
(
e′2 − e′′3

)
= e1 − e1 = 0,

e′′2 ∗ e′′′3 =
(
e′2 − e′′3

)
∗ e′′′3 = e1,

e′′3 ∗ e′′2 = e′′′3 ∗
(
e′2 − e′′3

)
= 0.

Namely, (B, ∗) with the nonzero product is e2 ∗ e3 = e1. By changing e3 to −e3 and
swapping −e3 and e1, e2 ∗ e1 = −e3 is attained, which means (B, ∗) is of type A5.

2. r22 = 0, r33 ̸= 0. The following nonzero product is attained:

e2 ∗ e3 = ∓
√
−1e1, e3 ∗ e3 = r33e1.
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Let e′1 = r33e1. Then,

e2 ∗ e3 = ∓
√
−1e′1, e3 ∗ e3 = r33e′1.

where e′3 = e3 ∓
√
−1e2. It follows that

e2 ∗ e′3 = ∓
√
−1e′1

e′3 ∗ e′3 = 0,
e′3 ∗ e2 = 0.

Then, (B, ∗) is of type A5 by simply reordering and tuning coefficients.
The cases r22 ̸= 0, r33 = 0 and r22 = 0, r33 ̸= 0 are symmetric. So, if r22 ̸= 0, r33 = 0,

(B, ∗) is of type A5. If r22 = r33 = 0, (B, ∗) is of type A1.

For B3, e2e2 = e1, e3e3 = e1 and =

r11 0 0
r21 r±22 r23
r31 r23 r±33

(
orr∓33

)
 (r11 ̸= 0), where

r±22 = r±33 = r11 ±
(
r2

11 − r2
23
) 1

2 .
For r±33, the subsequent equality is attained.

e2 ∗ e2 = r±22e1, e2 ∗ e3 = r23e1, e3 ∗ e2 = r23e1, e3 ∗ e3 = r±33e1

The others are zero. Let e′2 = e2 − e3, e′3 = e2 + e3. Then,

e′2 ∗ e′3 = e′3 ∗ e′2 = 0,
e′2 ∗ e′2 =

(
r±22 + r±33 − 2r23

)
e1,

e′3 ∗ e′3 =
(
r±22 + r±33 + 2r23

)
e1

The others are zero.
The following cases are observable:

(1) r22 + r33 = r23 = 0. So, (B, ∗) is obviously of type A1.
(2) r±22 + r±33 = 2r23, r±22 + r±33 ̸= −2r23. So, (B, ∗) is of type A2.
(3) r±22 + r±33 ̸= 2r23, r±22 + r±33 = −2r23. So, (B, ∗) is of type A2.
(4) ±r22 +

±r33 ̸= 2r23, r±22 + r±33 ̸= −2r23. In this case, (B, ∗) is of type A3.

If the same argument is applied to r∓33, similar outcomes are attained as above, so r±33 is
replaced by r∓33.

For the other CAAs, Bi, the results can be similarly attained. □

Remark 2. The ZAs of the types A4 and A6 cannot be attained from three-dimensional CAAs and
their RBOs through Equation (2).

5. Conclusions

In summary, we have obtained the RBO on a ZA that must be the one on its sub-
adjacent algebra. We provide all the RBOs on two- and three-dimensional ZAs. Finally,
ZAs are also realized in low dimensions of the RBOs of commutative associative algebras,
and not all ZAs can be obtained in this way.
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