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1. Introduction

Before recalling the definition of the Terracini loci of the embedded variety X ⊂ Pr

[1–7], we recall its main motivation, which comes from the Terracini Lemma [8], in one
of the scenarios in which it has real-world applications (tensor decomposition and low-
rank approximation of tensors). It also finds a huge number of applications in signal
processing [9,10].

Consider the vector space V of all complex tensors of format (n1 + 1)× · · · × (nk + 1),
k ≥ 2. Consider the projective space Pr := P(V∨), where r = −1+(n1 + 1)× · · · × (nk + 1).
Fix a positive integer x. There is an (n1 + · · ·+ nk)-dimensional variety X ⊂ Pr, known
as the Segre embedding of the multiprojective space Pn1 × · · · × Pnk . Take T ∈ V \ {0}.
There is a bijection, up to a scalar, between rank 1 decompositions of T with x addenda
and sets S ⊂ X such that #S = x and the equivalence class of T is in the linear span of
S. There is a variety W (the abstract x-secant variety of the embedded variety X), a map
π : W → Pr, and oT ∈ W associated with S. If the differential of π at oT is injective, then
the rank 1 decomposition of T corresponding to S is locally unique (up to the scalars and
the permutation of the addenda), and the rank 1 decomposition is even stable under small
perturbations of T and the addenda. The dimension of the kernel of the differential of π at
oT is the defect δ(2S) of S. If S is general, then δ(2S) is the defect of the #S-secant variety.
Thus, if δ(2S) > 0 and S is general, then the set of all tensors with tensor rank at most x
forms a variety of dimension less than the expected one. The same setup works for rank 1
decompositions of forms and partially symmetric tensors [9,10].

For a partial history of the notion of Terracini loci and the main references not used
or quoted in our paper, see the introduction in [7]. We point out that the Terracini loci are
entangled not only with the secant varieties but also with the uniqueness problem of the
rank 1 decomposition (for Grassmannians, see [6]; for spinor varieties, see [5]). In the case
of Veronese varieties (case of cubic forms), L. Chiantini and F. Gesmundo worked in the
opposite direction: a uniqueness or non-uniqueness result [4] (Th. 1.1) helped them prove a
result on the concise part of the Terracini set [4] (Th. 5.1). In [11], N. Vannieuwenhoven used
a Jacobian matrix (the one whose rank says if a set is Terracini or not) for the uniqueness of
the tensor decomposition. Terracini loci appeared in [12], which considered the numerical
sensitivity of join decompositions to perturbation, namely the condition number for general
join decompositions (the distance to a set of ill-posed points in a supplementary product of
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Grassmannians) with many examples coming from tensor decompositions. These papers
show that in many important cases, to test if a finite set is Terracini is a linear algebra
problem for which there are fast algorithms.

Now, we can define the Terracini loci and their defects.
Let X ⊂ Pr be an integral and non-degenerate n-dimensional variety defined over

an algebraically closed field K with characteristic 0. Let Xreg denote the set of all smooth
points of X. The set Xreg is a non-empty open and dense subset of X for the Zariski
topology of X (even for the Euclidean topology of X(C) if K = C). For each infinite
set W and each x ∈ N let S(W, x), denote the set of all S ⊂ W such that #S = x. For
each p ∈ Xreg, let (2p, X) (or just 2p) denote the closed subscheme of X, with (Ip)2

as its ideal sheaf. We have deg(2p) = n + 1 and ⟨2p⟩ = TpX, where ⟨ ⟩ denotes the
linear span and TpX is the embedded tangent space of X at p. Fix S ∈ S(Xreg, x). Set
(2S, X) := ∪p∈S(2p, X). We say that S is Terracini and write S ∈ T(X; x) if ⟨(2S, X)⟩ ̸= Pr

and dim⟨(2S, X)⟩ < x(n + 1)− 1. Note that (2S, X) is a zero-dimensional scheme of degree
x(n+ 1) and hence dim⟨(2S, X)⟩ < x(n+ 1)− 1 if and only if the scheme (2S, X) is linearly
dependent. We have ⟨(2S, X)⟩ = ⟨∪p∈STpX⟩. We write 2S instead of (2S, X) when there
is no danger of misunderstandings. We say that S is minimally Terracini and write
S ∈ T(X; x)

′
if S ∈ T(X; x) and S

′
/∈ T(X; #S

′
) for all S

′ ⊊ S.

1.1. Minimality and the Defect

Minimality is a key property of Terracini sets. Its formal introduction [1,3] was
prompted by a detailed study of two-point and three-point Terracini loci for the Segre
embedding of a multiprojective space, i.e., the setup on tensors just described [2]. In [2]
(§6), there is a classification of all Terracini sets S with “maximal” defect δ(2S) (maximal
with respect to all multiprojective spaces with the same dimension).

The following definition of weak minimality seems to capture the importance of the
defect δ(2S).

Definition 1. Let X ⊂ Pr be an integral and non-degenerate variety. An element S ∈ T(X; x) is
said to be weakly minimal (resp. semi-minimal, resp. almost minimal) if δ(2S

′
) < δ(2S)

for all S
′ ⊊ S (resp. δ(2S

′
) < δ(2S) and r − dim⟨(2S

′′
, X)⟩ > r − dim⟨(2S, X)⟩ for all S

′ ⊊ S
and for all S

′′ ⊂ S such that #S
′′ ≤ x − 2, resp. δ(2S

′
) < δ(2S) and r − dim⟨(2S

′
, X)⟩ >

r − dim⟨(2S, X)⟩ for all S
′ ⊊ S).

Note that if δ(2S) = 1, then weak minimality is equivalent to minimality. We construct
Terracini sets S with a prescribed defect δ(2S) (Theorems 3–5).

1.2. Linear Projections

Many examples, e.g., Veronese varieties, Segre varieties, and Segre–Veronese varieties,
are studied for certain linearly normal embeddings because these linearly normal examples
are the ones that are interesting for applications in additive decompositions of forms,
tensors, and partially symmetric tensors, respectively. However, sometimes we have
less data, e.g., a smaller linear space of forms or a subspace of the set of all tensors. Of
course, all these cases fit in the general set-up of a projective non-degenerate variety
X ⊂ Pr, but if we do not add the information coming from the linearly normal embedding
uniquely determined by the original embedding, the results one would obtain would
be very weak. We prove several results related to linear projections of the Veronese
embeddings (Propositions 2 and 3) and curves (Theorems 6–8). One of the key points of
this paper is to distinguish between very different types of linear projections. We provide
the details in Section 2 and only state here the main different cases (outer projections and
inner projections). For outer projections, we give a further condition that allows us to
define a more restrictive class of Terracini loci. These Terracini loci deserve a notation, T̄.
We can easily use cohomological tools to handle them. We hope that they will be used by
other mathematicians.
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1.3. Outline of this Paper

In Section 2, we give our preferred setup for linear projections and discuss a particular
class of outer projections, which we hope will become a standard cohomological tool.

In Section 3, we consider linearly normal embeddings of Segre–Veronese varieties
and outer projections of Veronese varieties. In some papers on Veronese varieties or
Segre–Veronese varieties, there is an assumption of concision for Terracini loci [2,3]. With
this assumption, the minimal non-empty Terracini set is often different (higher) from the
non-concise one (see [3] (Th. 1.1(iii), Th. 1.5) for Veronese varieties and [7] (Prop. 7.4
and Th. 7.10) for Segre–Veronese varieties). In Section 3, we translate the two different
definitions and use [7] (Prop. 7.4) to obtain the first non-empty Terracini set with the
concision requirement. Then, we consider outer linear projections of Veronese varieties and
show that for this type of outer projection, our cohomology tools work very well. We leave
to the interested reader the extension of this part to other homogeneous varieties. Then, we
consider the question of whether a single minimal Terracini set uniquely determines the
embedding, as was the case with the Veronese embeddings [3] (Th. 3.1(i)).

Section 4 contains several results on linear projections and the existence of Terracini
sets with a fixed defect (Theorems 2–5).

In Section 5, we study outer linear projections of curves (see Section 2 for the notations
used here; even without them, the reader can see the type of results we are able to prove).
Fix the degree d of a non-degenerate curve X ⊂ Pr. We prove that T(X; x) = ∅ for all
x > ⌊d/2⌋, while there are some smooth X with T(X, ⌊d/2⌋) ̸= ∅ (Proposition 7). To
prove the existence of X with T(X, ⌊d/2⌋) ̸= ∅, we use outer linear projections of rational
normal curves. In Theorems 6–8, we give criteria for the non-emptiness of Terracini loci.
For instance, Theorem 8 gives (under certain assumptions in terms of the degree of the
curve and its genus) the first integer x such that T(X,L, V; x) ̸= ∅. In this case, every
element of T(X,L, V; x) is minimal.

In Section 6, we consider the Terracini loci for Hirzebruch surfaces. For these surfaces,
we describe when the Terracini loci for 2 points are non-empty (Proposition 8), and in many
cases, we describe the maximal minimal Terracini locus (Theorem 9) and hence the defect
of its elements.

In Section 8, we raise and discuss five open questions.
Many thanks to the referees who improved the presentation of this paper.

2. A Preferred Setup for Linear Projections

Recall that we work over an algebraically closed field K of characteristic 0.
For an integer N ≥ k ≥ 0, let G(k + 1, N + 1) denote the set of all k-dimensional

linear subspaces of KN+1. The variety G(k + 1, N + 1) (called a Grassmannian) is a smooth
and connected projective variety. Moreover, G(k + 1, N + 1) ∼= G(N − k, N + 1) and
dim G(k + 1, N + 1) = (k + 1)(N − k).

Let Y be an integral and non-degenerate n-dimensional variety and L be a very ample
line bundle in Y. The complete linear system |L| induces an embedding j : Y ↪→ PN ,
N := h0(Y,L)− 1. Fix a linear subspace V ⊆ H0(Y,L) such that dim V ≥ 2. Fix a positive
integer x and S ∈ S(Yreg, x). We say that S ∈ T(Y,L, V; x) is Terracini for (L, V) and
write S ∈ T(Y,L, V; x) if V ∩ H0(Y, I(2S,Y) ⊗L) ̸= 0 and dim(V ∩ H0(Y, I(2S,Y) ⊗L)) >
dim V − x(n + 1). We say that S ∈ S(Yreg, x) is minimal and write S ∈ T(Y,L, V; x)

′
if

S ∈ T(Y,L, V; x) and S
′

/∈ T(Y,L, V; #S
′
) for all S

′ ⊊ S. Of course, if S ∈ T(Y,L, V; x) and
x is the minimal integer such that T(Y,L, V; x) ̸= ∅, then S is minimal. In a similar way,
we define when S ∈ S(Yreg, x) is weakly minimal for (L, V). Sometimes, T(Y,L, V; 1) ̸= ∅
(Example 3). Sometimes, T(Y,L, V; 1) = Yreg (Example 2). However, in most cases, the
Terracini sets for (L, V) are computable (for low x), and they are rather tame.

The pair (L, V) induces a rational map u : Y 99K Pr, where r := dim(V)− 1. There
is a non-empty open set U of Y such that U is a morphism on U, and the closure X

′ ⊂
Pr of u(U) is a non-degenerate variety uniquely determined by the pair (L, V). The
variety X

′
is also obtained from j(Y) ⊂ PN by the linear projection from a subspace



Axioms 2024, 13, 271 4 of 15

W ⊂ PN with dim W = N − r − 1. The projective linear subspace W corresponds to a
linear subspace W1 ⊂ H0(Y,L)∨ with dim W1 = N − r, and V is obtained from W1 (resp.
W1 is obtained from V) by taking the left (resp. right) kernel for the non-degenerate pairing
H0(Y,L)× H0(Y,L)∨ → K. However, X

′
may be bad if u is not an embedding (sometimes,

even of lower dimension). Since V is uniquely determined by W and vice versa, there is a
bijection between the linear projections of the embedded variety u(Y) and the elements
W ∈ G(N − r, N + 1). Since G(N − r, N + 1) is an irreducible variety, we can speak about
the general linear projection of j(Y) ⊂ PN into Pr (Theorems 2, 6, 7, and 8).

The first distinction is between outer linear projections and inner linear projections.
However, this is not a dichotomy if N ≥ r + 2. If N = r + 1, a linear projection is either
inner or outer, but if N ≥ r + 2, a linear projection may be neither inner nor outer.

First, assume r = N − 1, i.e., that W is a point. The linear projection ℓW is said to be
outer (resp. inner) if W /∈ j(Y) (resp. W ∈ j(Y)).

Now, we make no assumption on r. The linear projection ℓW is said to be an outer
projection if W ∩ j(Y) = ∅. Assume that W is an outer projection. Since W ∩ j(Y) = ∅, the
restriction ℓW|j(Y) of ℓW to j(Y) is a morphism µ : j(Y) → Pr. By the definition of linear
projection, the assumption W ∩ j(Y) = ∅, and the projectivity of j(Y) implies that µ is a
finite morphism, i.e., it maps closed sets to closed sets and its fibers are finite. In particular,
dim µ(j(Y)) = n. A point p ∈ Yreg is an element of T(Y,L, V; 1) if and only if µ ramifies
at µ(p).

Now, we consider again the case r = N − 1, but we assume W ∈ j(Y), say W =
j(q), for some q ∈ Y. Let x > 0 and S ∈ S(Yreg, x). If q ∈ Yreg and q ∈ S, then
dim(V ∩ H0(Y, I(2S,Y) ⊗L)) > dim V − x(n + 1), and so S is Terracini if and only if V ∩
H0(Y, I(2S,Y)⊗ L) ̸= 0. If q /∈ S, we have V ∩ H0(Y, I(2S,Y) ⊗ L)) = H0(Y, I{q}∪(2S,Y) ⊗
L)). To obtain this, we do not need to assume q ∈ Yreg. We generalize this case in the
following way (and call them inner projections). Fix a closed subscheme A ⊊ Y. Take
V := H0(Y, IA ⊗L). Note that V ∩ H0(Y, I(2S,Y) ⊗L) = H0(Y, IA∪(2S,Y) ⊗L). Thus, for
inner projections, we can use cohomological tools in the other sections of our paper. For
inner projections, we write T̄(Y,L, A; x) if we also impose that S ∩ A = ∅.

If n ≤ r + 1, a general linear projection of j(Y) ⊂ PN is an outer projection. If n ≥ r, a
general linear projection of j(Y) ⊂ PN is neither an outer projection nor an inner projection,
but this case is not interesting because X

′
= Pr if n ≥ r.

In general, among the inner projections (for fixed (Y,L) and a fixed r), the notion
of general inner projections is not well defined. Consider the set of all inner projections
coming from a zero-dimensional scheme A ⊂ Yreg. We fix the integer a := deg(A). If n ≤ 2,
the set Z(Yreg, a) of all degree a zero-dimensional subschemes of Yreg is an irreducible
variety [13,14], and hence we are allowed to consider its general element. For n > 2, this
is not true unless a is very low [13], and hence we make a further assumption about the
zero-dimensional scheme A: that it is smoothable, i.e., that it is a flat limit of a family of
elements of S(Yreg, a). For arbitrary n, let Z(Yreg, a) denote the set of all degree a smoothable
subschemes of Yreg. The set Z(Yreg, a) is an irreducible variety of dimension an. Since
Z(Yreg, a) ⊇ S(Yreg, a), a general degree a smoothable zero-dimensional scheme is just a
general subset of Yreg with cardinality a.

As in the case of any X ⊂ Pr, we often use the notion of the critical schemes of
S ∈ S(Yreg, x) [3] (Def. 2.9). In the case of inner projections, we state it in the following way.

Remark 1. Take V := H0(Y,IA ⊗ L). Choose any S ∈ S(Yreg, x) and assume dim(V ∩
H0(Y,I(2S,Y) ⊗L)) > dim V − x(n + 1). A critical scheme Z of S is a zero-dimensional scheme
such that Z ⊂ (2S, Y), each connected component of Z has degree at most 2, dim(V ∩ H0(Y, IZ ⊗
L)) > dim V − deg(Z), and dim(V ∩ H0(Y, IZ′ ⊗ L)) = dim V − deg(Z

′
) for all Z

′ ⊊ Z.
Such schemes exist because for each p ∈ Yreg, the scheme (2p, Y) is a union of degree 2 schemes
with p as their reduction, and if (2p, Y) does not impose dim Y + 1 independent conditions to a
subspace V1 of H0(Y,L), then there is such a scheme v, which imposes at most 1 condition to V1.
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Remark 2. Take V := H0(Y, IA ⊗L) and S ∈ S(Yreg, x) such that 2S ⊆ A. Then, ∅ is a critical
scheme of S.

3. Segre–Veronese Embeddings and Inner Projections of Veronese Varieties

In the last part of this section, we consider whether a single minimal Terracini set
describes the embedding, as was the case with the Veronese embeddings [3] (Th. 3.1(i)).

In some papers (e.g., [1–3]), there is an assumption of concision in the definition
of T. Without this assumption, we obtain many more Terracini loci, and in particular,
usually the minimal non-empty Terracini locus is formed by sets that are not concise. By
adding suitable points to these non-concise sets, we can easily obtain concise sets of a
larger cardinality. We explain this easy trick with the following example for Segre–Veronese
embeddings, in which this simple procedure gives the minimal concise Terracini set.

3.1. Segre–Veronese Embeddings

We give the following translation and adaptation of [7] (Prop. 7.4 and Th. 7.10). In
this case, from [7] (Prop. 7.4), we also obtain a description of the geometry of T(X; x). For
the Segre–Veronese embedding X ⊂ Pr of multidegree (d1, . . . , dk) of Pn1 × · · · × Pr, let
T(n1, . . . , nk; d1, . . . , dk; x) denote the set of all concise S ∈ T(X; x).

Proposition 1. Fix the positive integers k ≥ 2, ni, di, x, 1 ≤ i ≤ k, and let X be the Segre–
Veronese embedding of multidegree (d1, . . . , dk). Set δ := min{d1, . . . , dk}. Let α be the subset of
{1, . . . , k} formed by all i such that di = δ. Set τ := ∑i∈α 2ni. Take i0 ∈ {1, . . . , k} such that ni0
is maximal. If either i0 /∈ α or there are at least 2 integers i with ni = ni0 , then set ϵ := ni0 + 1.
Otherwise, set ϵ := ni0 . From these settings, we derive the following points:

(a) Assume either k ≥ 3 or k = 2 and di ≥ 2 for some i. We have T(X; x) ̸= ∅ if and
only if x ≥ 1 + ⌈δ/2⌉. If x ≥ 1 + ⌈δ/2⌉, then the set of all S ∈ T(X; x) such that
δ(2S) ≥ 2x − 1 − δ has dimension ≥ xτ .

(b) Assume k ≥ 2 and d1 + · · ·+ dk ≥ 5. If x ≥ ϵ+ 1+ ⌈δ/2⌉, thenT(n1, . . . , nk; d1, . . . , dk; x)
̸= ∅ and dimT(n1, . . . , nk; d1, . . . , dk; x) ≥ (x − ϵ)τ.

Proof. Let E be the set of lines contained in one of the α factors on Y with δ as its associated
degree. The set E is the disjoint union of α Grassmannians, the one corresponding to Pni

with dimension 2ni. Fix L ∈ G and take any S ∈ S(L, x). We have T(X; x) = ∅ if 2x ≤ δ+ 1,
and the elements of T(X; 1 + ⌈δ/2⌉) are the sets S ∈ S(L, 1 + ⌈δ/2⌉). Thus, dimT(X; 1 +
δ/2⌉) = (1 + ⌈δ/2⌉)τ. Fix an integer x ≥ 2 + ⌈δ/2⌉, L ∈ G, and A ∈ S(L, x). Since
OL(d1, . . . , dk) has degree δ and deg(2S ∩ L) = 2x, we have h1(L, I2S∩L,L(d1, . . . , dk)) =
2x − δ − 1. Since the restriction map H0(OY(d1, . . . , ds)) → H0(L,OL(d1, . . . , dk)) is surjec-
tive, we obtain h1(I2S∩L(d1, . . . , dk)) = 2x − δ − 1. Thus, h1(I2S(d1, . . . , dk)) ≥ 2x − δ − 1.
For any I ∈ {1, . . . , k}, let ϵi be the element (a1, . . . , ak) ∈ Nk such that ai = 1 and aj = 0 for
all j ̸= i.

Claim 1: h0(I2S(d1, . . . , dk)) > 0.
Proof of Claim 1: Without loss of generality, we can assume d1 ∈ α and L of

multidegree ϵ1. If k ≥ 3, take H ∈ |IL(ϵ2)|, H
′ ∈ |IL(ϵ3)|, and set M := H ∪ H

′
. If k = 2

and hence d2 ≥ 2, take H ∈ |IL(ϵ2)| and set M := 2H. In both cases, S ⊂ Sing(M), and
hence h0(I2S(d1, . . . , dk)) > 0.

Now, we prove part (b). Without loss of generality, we can assume d1 = δ. Take
x1 := x − ϵ and take any L ∈ E. Take S ∈ S(L, x1). Take M = H ∪ H

′
or M = 2H as in

the proof of Claim 1. We can find a union J of 3 divisors such that B ∈ Sing(M + J) and
h0(OY(d1, . . . , dk)(−M − J)) ̸= 0.

3.2. Inner Projections of Veronese Varieties

Take Y := Pn, n ≥ 2, and L := OPn(d), d ≥ 2. We take as A a zero-dimensional
scheme such that A ̸= ∅ and h1(IA(d)) = 0. The proof of Theorem 1 below gives the
following result.
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Proposition 2. Assume A is zero-dimensional, h1(IA(d)) = 0, and V := H0(IA(d)). Take a
minimal S such that S ∩ A = ∅. Then, h1(IA∪2S(d + 1)) = 0.

Recall that for inner projections associated with a zero-dimensional scheme A, the set
T̄(Pn,L, A; x) is the set of all S ∈ T(Pn,L, A; x) such that S ∩ A = ∅. To study this set T̄,
we can use many cohomological tools.

As an example, we give the following result.

Proposition 3. Take V := H0(IA(d)), n ≥ 2, d ≥ 2, with a A ∈ Z(Pn, a) and 0 < a < 2d. Fix
a positive integer x. From these settings, we derive the following points:

(a) If a + 2x ≤ d + 1, then T̄(Pn,L, A; x) = ∅.
(b) Assume a + 2x ≤ 2d + 1 and take S ∈ T̄(Pn,L, A; x). Then, there is a line L ⊂ Pn, a

scheme A
′ ⊆ A ∩ L, and S

′ ⊆ S ∩ L such that A
′ ∩ S

′
= ∅ and deg(A

′
) + 2#S

′
= d + 2.

(c) If a = 1, then ⌈d/2⌉ + 1 is the first integer such that T̄(Pn,L, A; x) ̸= ∅, and all S ∈
T̄(Pn,L, A; x) are given by ⌈d/2⌉+ 1 points ̸= A on one of the lines through A or, for odd
d, a line even not containing A.

(d) Assume a ≥ 2, that A is a reduced set, and that no 3 of the points of A are collinear. Then,
⌈d/2⌉ is the minimal integer x such that T̄(Pn,L, A; x) ̸= ∅. If S ∈ T̄(Pn,L, A; ⌈d/2⌉),
then S is contained in a line L intersecting A. If d is even, then L is one of the (a

2) lines
spanned by 2 points of A and S ∩ A = ∅.

Proof. The proposition follows from the existence of a critical scheme Z of any S ∈
T(Pn,L, A; x) with deg(Z) ≤ 2x and [15] (Lemma 34).

We leave as an exercise (or a project) for the interested reader the following result,
which gives a strong restriction on the Hilbert function of the scheme A ∪ Z.

Proposition 4. In the case where n = 2, A is zero-dimensional, and h1(IA(d)) = 0, consider
a minimal Terracini set S such that S ∩ A = ∅, and take a critical scheme Z for S. Then, the
numerical character of A ∪ Z is connected.

Then, the project would require the interested reader to extend Proposition 3 for (a, x)
such that a + 2x < 3d.

3.3. Does a Single Minimal Terracini Set Describe the Embedding?

Suppose S is Terracini for some linearly normal embedding. Is S also Terracini for
“more positive” linearly normal embeddings? Often, yes for non-minimal Terracini sets,
but even in that case, not for arbitrarily positive embeddings (if we fix the number x := #S).
We expect no or almost never for minimally Terracini sets, but the problem is in precisely
defining “more positive”. The case of Veronese embeddings of Pn was addressed in [3] (Th.
3.1(i)). The following result is a far-reaching generalization of [3] (Th. 3.1(i)), which, for
instance, may be applied to all linearly normal embeddings of all multiprojective spaces,
i.e., to partially symmetric tensors.

Theorem 1. Fix an integral projective variety X and 2 very ample line bundles L and R on X.
Let u be the embedding induced by the complete linear system |L|. If u(S) ∈ T(u(S); x)

′
for some

S ∈ S(Xreg, x) and h0(X, IS ⊗R) ≤ h0(X,R)− 3, then h1(X, I(2S,X) ⊗L⊗R) = 0.

Proof. Since h1(X, I(2S,X) ⊗L) > 0, there is a zero-dimensional scheme Z ⊂ (2S, X) such
that each connected component of Z has degree at most 2. Assume h1(X, I(2S,X)⊗L⊗R) >

0. There is a zero-dimensional scheme Z ⊂ (2S, X) such that h1(X, IZ ⊗ L ⊗ R) > 0,
h1(IZ′ ⊗ L⊗R) = 0 for all Z

′ ⊊ Z, and each connected component of Z has degree at
most 2. Fix a connected component v of Z and set {p} := vred and S

′
:= S \ {p}. Since R



Axioms 2024, 13, 271 7 of 15

is very ample, |Iv ⊗R| ̸= ∅. Take a general H ∈ |Iv ⊗R|. Consider the residual exact
sequence of H:

0 → IResH(Z) ⊗L → IZ ⊗L⊗R → IZ∩H,H ⊗ (L⊗R)|H → 0 (1)

Since v ⊂ H, we have ResH(Z) ⊆ Z \ v ⊆ (2S
′
, X). Since S is minimal, we have

h1(X, IResH(Z) ⊗ L) = 0. Thus, the long cohomology exact sequence of (1) gives that
h1(H, IZ∩H,H ⊗ (L⊗R)|H) > 0. The restriction map H0(X,L⊗R) → H0(H, (L⊗R)|H)

gives h1(H, IZ∩H ⊗ (L ⊗ R)|H) > 0. Since R is base-point-free and Z ∩ H is zero-
dimensional, we have h1(X, IZ∩H ⊗L) > 0. Since S is minimal and Z ∩ H ⊆ (2S, X), we
have S ⊆ Z ∩ H. Since H is a general element of |Iv ⊗R|, we have |Iv∪S ⊗R| = |Iv ⊗R|.
Since deg(v) ≤ 2, we have h0(X, IS ⊗R) ≥ h0(X,R) − 2, contradicting one of our as-
sumptions.

4. Linear Projection and the Existence of Terracini Sets with a Fixed Defect

Let X ⊂ Pr be an integral and non-degenerate variety. The tangential variety τ(X) ⊆
Pr is the closure in Pr of the union of all lines L ⊂ Pn that are tangent to X at at least at one
smooth point of X, i.e., it is the closure in Pr of the union of all linear spaces TpX, p ∈ Xreg.
The set τ(X) is an irreducible variety containing X and dim τ(X) ≤ min{2 dim X, r}. For
any integral and non-degenerate variety W ⊂ Pr and any positive integer s, the s-secant
variety of W is the closure of the union of all ⟨S⟩, S ∈ S(W, s). In Section 5, we use
σx(τ(j(Y))) to prove the emptiness of T(Y,L, V; x) for some pair (Y,L) when V is general.

Example 1. Fix integers d > r ≥ 3. There is a smooth, rational, and non-degenerate degree d
curve X ⊂ Pr and a set S ⊂ X such that #S = 3 and 2S is contained in a line. Note that S is
weakly minimal, it is neither minimal nor almost minimal.

Example 2. We have T(Y,L, V; 1) = Yreg if and only dim X
′
< dim Y, where X

′ ⊂ Pr is the
variety obtained in the definition of linear projection. This is never the case if V comes from an
outer projection. Now, assume r = N − 1. We have T(Y,L, V; 1) = Yreg if and only if j(Y) is a
cone and the inner projection is a projection from the vertex of the cone. This is never the case if Y
is smooth and r = N − 1. For r ≤ N − 2, the equality T(Y,L, V; 1) = Yreg may hold also for a
smooth Y. Take Y = F1 (one of the Hirzebruch surfaces described in Section 6), embedded in P4 by
the linear system |OF1(h + 2 f )|. The curve j(h) is a line, and projecting from it, i.e., with r = 2,
the variety X

′
is a smooth conic.

Remark 3. Take a smooth Y and a very ample line bundle L. Let j : Y → PN be the embedding
associated with |L|. The tangential variety τ(j(Y)) ⊆ PN is the union of all lines tangent to at
least one point of j(Y). Take r = N − 1 and consider the outer linear projection for the space V
associated with some p ∈ PN \ u(Y). We have T(Y,L, V; 1) ̸= ∅ if and only if p ∈ τ(j(Y)).

Remark 4. Take any linear projection and call V ⊆ H0(Y,L) the linear subspace associated
with the projection. Fix S ∈ S(Yreg, x). Since V ⊆ H0(Y,L), we have dim V − dim(V ∩
H0(Y, I(2S,Y) ⊗L) ≥ h0(Y,L)− h0(Y, I(2S,Y) ⊗L).

Remark 5. Take V := H0(Y, IA ⊗ L). Take any S ∈ S(Yreg, x). If S ∩ A ̸= ∅, then
dim(V ∩ H0(Y, I(2S,Y)⊗L)) > dim V − x(n + 1). Now, assume that A contains a non-empty
Cartier divisor D. We have V = H0(Y, IResD(A) ⊗ L(−D)). For any S ∈ S(Yreg, x), we have
H0(Y, IA∪(2S,Y) ⊗L) ∼= H0(Y, IResD(A∪(2S,Y)) ⊗L(−D)). Note that h0(Y, IResD(A∪(2S,Y)) ⊗
L(−D)) > dim V − x(dim Y + 1) if S ∩ D ̸= ∅.

Proposition 5. Assume S ∈ T(Y,L, V)
′

with V := H0(Y, IA ⊗L), A is zero-dimensional, and
deg(A) = h0(Y,L)− dim V. Let Z be a critical scheme of S. Then, the following points hold:



Axioms 2024, 13, 271 8 of 15

(a) Either S = {p} ⊆ A or S ∩ A = ∅.
(b) Zred = S.

Proof. Assume the existence of p ∈ S ∩ A. Since V ⊆ H0(Y, Ip ⊗ L), we have dim V −
dim(V ∩ H0(Y, I(2p,Y) ⊗L)) ≥ dim V − n. The minimality of S gives S = {p}, concluding
the proof of part (a). The proof of part (b) is similar to the one for A = ∅ given in [3]
(Lemma 2.11).

Easy examples show that the “worst” outer projections have T(Y,L, V; x) ̸= ∅, even
for low x and with V of low codimension in H0(Y,L). The following general result shows
that general outer projections are well behaved. This result can even be stated in the
scenario of a general integral and non-degenerate variety X ⊂ PN , without requiring that
X is linearly normal.

Theorem 2. Fix an integer x > 0. Let X ⊂ PN be an integral and projective variety. Set
n := dim X and let γ be the maximum of all dimensions of the Zariski tangent spaces TpX of points
p ∈ X. Set α := dim σx(τ(X)). Assume N − 2 ≥ max{α, 2n + 1, γ} and dim⟨(2S, X)⟩ =
x(n + 1)− 1 for all S ∈ S(Xreg, x). Fix an integer r ≥ max{2n + 1, γ, α + 1}. Let W ⊂ PN

be a general linear subspace of dimension N − r − 1. Let ℓW : PN \ W → Pr denote the linear
projection from W. Then, X ∩ W = ∅, µ := ℓW|X is an embedding, and T(µ(X); y) = ∅ for all
y ≤ x.

Proof. Since α ≥ n and W is general, W ∩ X = ∅. Since r ≥ max{2n + 1, n + γ}
and W is general, µ is an embedding. Fix a positive integer y ≤ x and S ∈ S(Xreg, y).
From the definitions of linear projections and Terracini loci, it is sufficient to prove that
dim⟨(2S, X)⟩ = (n + 1)y − 1 and W ∩ ⟨(2S, X)⟩ = ∅. Since r ≥ α + 1, we have dim W =
N − 1 − r ≤ N − 2 − α. Thus, W ∩ σx(τ(X)) = ∅, and hence W ∩ σy(τ(X)) = ∅. Hence,
W ∩ ⟨(2S, X)⟩ = ∅ for all S ∈ S(Xreg, y).

If we fix positive integers n and r (and, perhaps, also an integral and non-degenerate
n-dimensional variety X ⊂ Pr) for any positive integer x and any S ∈ S(Xreg, x), we have

h0(I(2S,X)(1))− h1(I(2S,X)(1)) = r + 1 − (n + 1)x (2)

For fixed n and r, by (2), any two of the integers h0(I(2S,X)(1)), h1(I(2S,X)(1), and x
determine the third one. If we impose that S ∈ T(X; x), then h0(I(2S,X)(1)) > 0 and
h1(I(2S,X)(1)) > 0. Now, we fix n, r, and the integer h0(I(2S,X)(1)) and study the set of
pairs (x, δ) for which there are X and S ∈ S(Xreg, x) such that h1(I(2S,X)(1)) = δ. The
same question can be studied for a fixed X or a fixed class of pairs (X, r), e.g., all Veronese
embeddings of Pn. Another invariant not linked to (2) is the positive integer h0(IS(1)).

Proposition 6. Fix the integers r ≥ 3, 1 ≤ e ≤ f < r, x ≥ e + 1, 0 ≤ c ≤ x, f ≤ e + c, and
linear spaces E ⊆ F ⊂ Pr such that dim F = f and dim E = e. Then, there is a smooth and
non-degenerate rational curve X ⊂ Pr and S ∈ S(X, x) such that E = ⟨S⟩, F = ⟨(2S, X)⟩, and
deg(2S, X) ∩ E = 2x − c.

Proof. Fix an integer d ≥ 4xr. Let Y ⊂ Pd be a degree d rational normal curve. Fix
A ∈ S(Y, x) and A

′ ⊆ A such that #A
′
= x − c. Set Z := (2A

′
, Y) ∪ (A \ A

′
), W := (2S, Y),

E
′

:= ⟨Z⟩, and F
′

:= ⟨W⟩. We have dim E
′
= deg(Z)− 1 = 2x − c − 1 and dim F

′
= 2x − 1.

Take a general linear space E1 ⊂ E
′

such that dim E1 = dim E
′ − dim E − 1 and a general

linear subspace F1 ⊂ F
′

such that F1 ⊇ E1 and dim F1 = dim F
′ − dim F − 1. Take a general

linear space V ⊂ Pd such that V ⊃ F1 and dim V = d − r − 1. Let ℓV : Pd \ V → Pr denote
the linear projection from V. As shown in the proof of Theorem 5 (see below), it follows
that V ∩ Y = ∅, ℓV|Y : Y → Pr is an embedding, and X := ℓV(Y) satisfies the conditions of
Proposition 6.
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The following result is a huge generalization of a single example (for each n) given
in [1] (Example 1).

Theorem 3. Fix integers n, r, and m such that n ≥ 1, r ≥ 2n + 1, and 1 ≤ m ≤ n. Let Y be
any smooth n-dimensional variety. Then there is a non-degenerate embedding j : Y ↪→ Pr and
B ∈ T(j(Y); 2) such that h1(I(2B,j(Y))(1)) = m.

Proof. Fix a very ample line bundle OY(1) on Y and any integer d ≥ 4r. Let u : Y → PN

denote the embedding by the complete linear system |OY(d)|. Set X := u(Y). For any p ∈ X
and any positive integer a, let ap denote the closed subscheme of X with (Ip)a as its ideal
sheaf. The scheme ap is a zero-dimensional subscheme of X with {p} as its reduction and
deg(ap) = (n+a−1

n ). Since d ≥ 4 and OY(1) is very ample, for each p, q ∈ X such that p ̸= q,
we have dim⟨3p ∪ 3q⟩ = 2(n+3

n )− 1. Since d ≥ 4r, for each 2r distinct points p1, . . . , p2r of
X, we have dim⟨2p1 ∪ · · · ∪ 2p2r⟩ = (n + 1)2r − 1, and in particular, N > 2r. Fix p, q ∈ X
such that p ̸= q and a degree m zero-dimensional subscheme Zm of 2q. Set E := ⟨2p ∪ Zm⟩.
Since dim⟨2p ∪ 2q⟩ = 2n + 1, we have dim E = n + m. Fix a general linear subspace L ⊂ E
such that dim L = m − 1. Let ℓL : PN \ L → PN−m denote the linear projection from L.
Since L is general and L has codimension at least 2 in E, then L ∩ ⟨{p, q}⟩ = ∅, and hence
ℓL(p) and ℓL(q) are well defined, and ℓL(p) ̸= ℓL(q). Since dim⟨3p ∪ 3q⟩ = 2(n+3

n )− 1, 2p
(resp. Zm) is the connected component of the scheme-theoretical intersection of E ∩ X with
p (resp. q) as its reduction. Since d ≥ 4 and OX(1) is very ample, we see that X ∩ L = ∅,
and ℓL|X is an embedding of X into PN−m. Since ℓL(E \ L) is an n-dimensional linear
subspace of PN−m and ℓL(⟨2p + 2q⟩ \ L) is a (2n + 1 − m)-dimensional linear subspace, we
have h1(I2ℓL(p)∪2ℓL(q)(1)) = m. Let V ⊂ PN−m be a general linear subspace of dimension
N − m − r − 1. Let v : PN−m \ V → Pr be the linear projection from V. Since r ≥ 2n + 1
and X is smooth, v induces an embedding of ℓL(X), and hence an embedding j of Y. Since
ℓL(⟨2p + 2q⟩ \ L) has dimension n + m and V is general, ℓL(⟨2p + 2q⟩ \ L) ∩ V = ∅, we
have h1(I2B,j(Y)(1)) = m with B := v(ℓL({p, q})). Since r ≥ 2n + 1 and m > 0, we have
h0(I(2B,j(Y)(1)) ̸= 0. Thus, B ∈ T(j(Y); 2).

With a few modifications of the proof of Theorem 3, we prove the following result, in
which, of course, for a > 0, we are forced to drop the minimality condition in the statement.

Theorem 4. Fix integers n ≥ 1, r ≥ 2n + 1, and δ > 0. Write δ = a(n + 1) + m with a ≥ 0 and
1 ≤ m ≤ n + 1. Let Y be an n-dimensional projective manifold. Then, there is a non-degenerate
embedding j : X → Pr and B ∈ T(j(Y), a + 1) such that h1(I(2B,j(Y))(1)) = δ.

Proof. Fix a very ample line bundle OY(1) on Y and any integer d ≥ 4(r + a). Let u : Y →
PN denote the embedding by the complete linear system |OY(d)|. For any p ∈ u(Y) and
a ∈ {2, 3}, we write ap instead of (ap, u(Y)). Since d ≥ 4 and OY(1) is very ample, for
each p, q ∈ X such that p ̸= q, we have dim⟨3p ∪ 3q⟩ = 2(n+3

n )− 1. Since d ≥ 4(r + a),
for each 2r + 2a distinct points p1, . . . , p2r+2a of X, we have dim⟨2p1 ∪ · · · ∪ 2p2r+2a⟩ =
(n + 1)2(r + a) − 1, and in particular, N > 2r. Set X := u(X). Fix S ⊂ X such that
#S = a + 2 and set E := ⟨2S⟩. Since d ≥ 4(r + a), dim E = (a + 2)(n + 1)− 1. Fix a general
linear subspace L ⊂ E such that dim L = dim E − n − 1. We first do the linear projection
from L and then a general linear projection in Pr.

Remark 6. Let X be an integral projective variety. Let γ be the maximal dimension of the Zariski
tangent spaces of the points of X. Thus, γ = n if and only if X is smooth. Theorems 3 and 4 can be
easily extended to the case of an arbitrary, even singular, variety X by replacing the assumption
r ≥ 2n + 1 with the assumption r ≥ max{2r + 1, r + γ}. If r ≥ max{2r + 1, r + γ}, then at the
end of the proofs of both theorems, the two linear projections, from L and from V, are embeddings.
This is the only modification needed. However, note that in our definition, a Terracini set must be
contained in the smooth locus of X.
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Remark 7. The proofs of Theorems 4 and 5, as well as Remark 6 (even prescribing X with some
restriction on r depending on the singularities of X, if any), show that everything allowed by (2) is
realized by some (non-linearly normal) embedding in the case h0(I(2S,X)(1)) = 1.

The following theorem shows that in many cases, T(X; x) ̸= ∅, generalizing the case
of Veronese embeddings ([3], Th. 1.1).

Theorem 5. Fix a positive integer n ≥ 2 and an integral n-dimensional projective variety Y. Let
γ denote the maximum dimension of the Zariski tangent space of a point of X. Fix an integer
r ≥ max{2n + 1, n + γ}. Then, there is an embedding j : Y → Pr such that T(X; x) ̸= ∅ for all
x ≥ ⌈(r + 1)/(n + 1)⌉.

Proof. Fix a very ample line bundle OY(1) on Y such that h0(OY(1)) > r and take a general
M ∈ |OY(1)|. By the generality of M, M is not contained in the singular locus of X, and
hence a general point of M is a smooth point of X. Set N := h0(Y,OY(2)) − 1 and let
u : Y → PN denote the embedding of Y induced by the complete linear system |OY(2)|.
Set X := u(Y). Note that 2M ∈ |OY(2)|, and hence there is a hyperplane H of PN such that
2M is the scheme-theoretical intersection of u(Y) and H. Let V ⊂ H be a general linear
subspace of dimension N − r − 1. Let ℓV : PN \ V → Pr denote the linear projection from
V.

Claim 1: X ∩ V = ∅ and µ := ℓV|X : X → Pr is an embedding.
Proof of Claim 1: Note that ℓV(H \ V) is a hyperplane, H

′
, of Pr. Since V ⊂ H, we

have V ∩ X = V ∩ (H ∩ X). Since M is a general element of the very ample linear system
|OY(1)|, and the set (X ∩ H)red is isomorphic to X ∩ M, the set (X ∩ H)red is an integral
(n − 1)-dimensional variety whose Zariski tangent spaces have dimension at most γ. Since
V is general in H and r − 1 ≥ max{2(n − 1), n − 1 + γ}, V ∩ (H ∩ X) = ∅ (and hence
V ∩ X = ∅), and ℓV|M : M → H

′
is an embedding. Since u(Y) ∩ V = ∅, µ is a morphism.

We first check that µ is injective. Let σ2(X)◦ ⊂ PN denote the union of the lines of PN

spanned by 2 points of X. The set σ2(X)◦ is an irreducible variety of dimension at most
2n + 1. Note that the map µ is injective if and only if σ2(X)◦ ∩ V = ∅. Obviously, σ2(X)◦ ∩
V = (σ2(X)◦ ∩ H) ∩ V). Since we took M to be general, we have (σ2(X)◦ ∩ H) ≤ 2n. Since
V has codimension N − r in H, V is general in H, r ≥ 2n + 1, and (σ2(X)◦ ∩ H) ≤ 2n,
V ∩ (σ2(X)◦ ∩ H) = ∅. Let Γ ⊂ PN be the union of all Zariski tangent spaces of X. If
X is singular, Γ may be reducible, but all its irreducible components have dimension
at most n + γ. Note that Γ ∩ V = ∅ if and only if µ is a local embedding. Obviously,
Γ ∩ V = (Γ ∩ H) ∩ V. Since M is general in |OY(1)|, every irreducible component of Γ ∩ H
has dimension at most n − 1 + γ. Since V is general in H, (Γ ∩ H) ∩ V = ∅. Thus, µ is an
injective local embedding, i.e., it is an embedding.

Set j := µ ◦ u. j : Y → Pr is an embedding. By the choice of V, there is a hyperplane
H

′
of Pr such that j(Y) ∩ H

′
is the double of the Cartier divisor M. Since M is general,

Xreg ∩ M is an open subset U of M. Fix any finite set S ⊂ U. Since the double of j(M) is
a hyperplane section of j(Y), h0(I(2S,j(Y))(1)) ̸= 0. Hence, if (n + 1)#S ≥ r + 1, we have
S ∈ T(j(Y), #S).

5. Outer Linear Projections of Curves

Remark 8. If X ⊂ Pr is an integral and non-degenerate curve and H is any hyperplane, then
deg(H ∩ X) = d, where H ∩ X denotes the scheme-theoretical intersection. Thus, T(X; x) = ∅ if
2x > deg(X).

Let X ⊂ Pr be an integral and non-degenerate curve. Then, d := deg(X) ≥ r and
deg(X) = r if and only if X is a rational normal curve. No rational normal curve has a
Terracini set ([3], Lemma 3.4). This is the explanation for the assumption d > r in the next
proposition.



Axioms 2024, 13, 271 11 of 15

Proposition 7. Fix integers d > r ≥ 3. If d is odd, assume d ≥ r + 2. We have T(X; x) = ∅
for all integral and non-degenerate curves X ⊂ Pr of degree d and all x > ⌊d/2⌋. There is a
non-degenerate degree d smooth rational curve X ⊂ Pr such that T(X; ⌊d/2⌋) ̸= ∅.

Proof. Remark 8 gives the first statement. Let C ⊂ Pd be a smooth rational normal curve.
We have deg(C) = d. Fix a set S ⊂ C such that #S = ⌊d/2⌋. Let Z ⊂ C be the degree
2⌊d/2⌋ zero-dimensional scheme such that Zred = S and each connected component of Z
has degree 2. If d is even, then ⟨Z⟩ is a hyperplane. Let V ⊂ Pd be a general linear subspace
of dimension d − r − 1. Let ℓV : Pd \ V → Pr denote the linear projection from V. With only
notational modifications, the proof of Theorem 5 gives V ∩ C = ∅, that ℓV(C) is a smooth
and rational degree d curve, and that ℓV(S) ∈ T(ℓV(S) ∈ T(ℓV(C); ⌊d/2⌋).

Remark 9. If 2x > d, then T(X; x) = ∅ for all non-degenerate integral curves X ⊂ Pr of degree
d. Fix an integer r ≥ 3. Among the non-degenerate degree 2r smooth curves X ⊂ Pr, there are
the canonical models of non-hyperelliptic curve of genus r + 1. We claim that there are canonically
embedded curves with T(X; g − 1)

′ ̸= ∅. Indeed, to prove this claim, it is sufficient to take a
genus r + 1 curve with a “general” theta-series, i.e., such that there is S ∈ S(X, r + 1) with
h0(OX(S)) = 2 and h0(OX(S

′
)) = 1 for all S

′ ⊊ S.

Lemma 1. Let X ⊂ Pr be an integral and non-degenerate curve. For any positive integer s, the
variety σs(τ(X)) has dimension min{r, 3s − 1}.

Proof. The variety τ(X) obviously has dimension 2 (if r > 1), but we can observe this
using the fact that the tangent space of τ(X) at its general point is the linear space ⟨3p⟩
for a general p ∈ Xreg and applying [16]. Fix a general S ∈ S(Xreg, s). By the Terracini
Lemma ([8], Cor. 1.10) and the previous observation, ⟨(3S, X)⟩ is the general tangent space
of σs(τ(X)). We have deg((3S, X)) = 3s. Since S is general, [16] gives dim⟨(3S, X)⟩ =
min{r, 3s − 1}.

Theorem 6. Fix integers x ≥ 2, N > r ≥ 3, and r ≥ N − 3x + 1. Let X ⊂ PN be an integral
and non-degenerate curve. Let γ be the maximal dimension of a Zariski tangent space of X and
assume r ≥ γ + 1. Assume dim⟨(2S, X)⟩ = 2x − 1 for all S ∈ S(Xreg, x). Take a general
W ∈ G(N − r − 1, N + 1) and let ℓW : PN \ W → Pr denote the linear projection from W. Then,
W ∩ X = ∅, µ := ℓW|X is an embedding, and T(µ(X); y) = ∅ for all y ≤ x.

Proof. By [16], we have dim⟨(3A, X)⟩ = 3x − 1 for a general A ∈ S(Xreg, x). Remark 6
gives that µ is an embedding. Hence, µ(Sing(X)) = Sing(µ(X)) and µ(X)reg = µ(Xreg),
two crucial equalities by our definition of Terracini loci. Fix any S ∈ S(Xreg, y). It is
sufficient to prove that dim⟨(2µ(S), µ(X))⟩ = 2y − 1. By assumption, dim⟨(2S, X)⟩ =
2y − 1. Thus, it is sufficient to prove that W ∩ ⟨(2S, X)⟩ = ∅. Since y ≤ x, this is true (for
all S) by Lemma 1 and the assumption N − r − 1 ≤ 3x − 2.

Theorem 7. Let X be a smooth curve of genus g. Fix integers x ≥ 2, d ≥ 2g + r + 2x, and r ≥ 3.
Assume d ≥ g + r + 3x. Take a degree d line bundle L on X. We have h0(X,L) = d + 1 − g,
L is very ample, and T(X,L, V; y) = ∅ for all y ≤ x for a general V ⊂ H0(X,L) such that
dim V = r + 1.

Proof. Since d ≥ 2g + 1, L is very ample. Since d ≥ 2g − 1, h1(X,L) = 0, and hence
h0(X,L) = d + 1 − g. Fix S ∈ S(X, x) and a general A ∈ S(X, x). Since d ≥ 2g − 1 + 2x,
we have h1(X,L(−2S)) = 0, and hence h0(X,L(−2S)) = d + 1 − g − 2x. By assumption,
d + 1 − g ≥ deg(3A, X). Since A is general in S(Xreg, y), [16] gives h0(X,L(−3A)) =
h0(L)− 3y. Apply Theorem 6.

Theorem 8. Fix integers g ≥ 0, x ≥ max{2, g + 1}, and set d := 3x + g + r − 1. Let X be a
smooth curve of genus g. Take a degree d line bundle L on X. We have h0(X,L) = d + 1 − g, L is
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very ample, T(X,L, V; y) = ∅ for all y < x, T(X,L, V; x) ̸= ∅, and T(X,L, V; x) is finite for a
general V ⊂ H0(X,L) such that dim V = r + 1. Moreover, T(X,L, V; x) = T(X,L, V)

′
.

Proof. Note that d ≥ 2g + r + 2x. Let j : X → PN , N := d − g denote the embedding
induced by |L|. Take a general V ⊂ H0(X,L) such that dim V = r + 1. Thus, V cor-
responds to a linear subspace W ⊂ PN with dim W = N − r − 1 = d − g − r − 1 =
N − 3x + 1. Theorem 7 applied to the integer x − 1 gives T(X,L, V; y) = ∅. By Lemma
1, the variety σx(τ(j(X))) has dimension 3x − 1. Since W is general and of codimension
3x − 1, W ∩ σx(τ(j(X))) ̸= ∅. The set W ∩ σx(τ(j(X))) ̸= ∅ is finite with cardinality
α := deg(σx(τ(j(X)))). The definition of σx(τ(j(X))) involves closure twice, first in the
definition of τ(j(X)) and then in the definition of the x-secant variety. However, the gen-
erality of W implies that each of these α points of intersection corresponds to an element
S ∈ S(X, x) with dim(V ∩ H0(I2S ⊗L)) = r + 1 − 2x + 1. We obtain α = #T(X,L, V; x).
Since T(X,L, V; y) = ∅ for all y < x, T(X,L, V; x) = T(X,L, V)

′
.

6. On the Hirzebruch Surfaces

For all integers e ≥ 0, let Fe denote the Hirzebruch surface with a section h of a ruling
with h2 = −e, where h2 denotes the self-intersection number of h. The Picard group Pic(Fe)
of Fe is isomorphic to Zh +Z f , where f is the class of a fiber of the ruling of Fe with h · f = 1
and f 2 = 0 ([17], Ch. V, §2). Note that for all (a, b) ∈ N2, we have

(ah + b f ) · (ah + b f ) = 2ab − ea2 (3)

(intersection number). The ruling of Fe is not unique in the case e = 0 because F0 ∼= P1 × P1,
and in this case, we take h and f as fibers of the two rulings of P1 × P1. The line bundle
OFe(ah + b f ) is very ample if and only if a > 0 and b > ea ([17], V.2.18). Note that very
ampleness and ampleness coincide ([17], V.2.18). By the theorem of Bertini, if a > 0 and
b > ae, a general C ∈ |OFe(ah + b f )| is smooth and irreducible. By the adjunction formula,
every element of |OFe(ah + b f )| has arithmetic genus 1 + ab − a − b − ea(a − 1)/2. For all
a > 0 and b ≥ ea, we have

h0(OFe(ah + b f )) = (a + 1)(b + 1 − ae/2) (4)

For all a > 0, b > ea, and x > 0, let T(e; a, b; x) (resp. T(e; a, b; x)
′
) denote the set T(X; x)

(resp. T(X; x)
′
), where X ⊂ Pr, r = (a+ 1)(b+ 1− ae/2)− 1, is the image of the embedding

of Fe induced by the complete linear system |OFe(ah + b f )|.
Obviously, T(0; a, b; x) ∼= T(0; b, a; x) and T(0; a, b; x)

′ ∼= T(0; b, a; x)
′
, in which the two

isomorphisms are induced by the exchange of the two factors of F0 = P1 × P1.

Proposition 8. Assume b > 2e. If e = 0, assume b ≥ 2. Then, the following statements hold:

(a) T(e; 2, b; x) ̸= ∅ if and only if x ≥ 2.
(b) T(e; 2, b; 2)

′ ̸= ∅ and dimT(e; 2, b)
′
= 3.

(c) Assume b is even. Then, T(e; 2, b; b + 1 − e)
′

contains a non-empty open subset of S(Fe, b +
1 − e), and T(e; 2, b; x)

′
= ∅ for all x ≥ b + 2 − e.

Proof. Fix F ∈ |OFe( f )|.
To prove part (a), just take any A ⊂ F with #A ≥ 2. Note that 2A ⊂ 2F, and

h0(OFe(2h + (b − 2) f )) ≥ h0(OFe(2h)) = 1, while h1(IF∩2A(2h + b f )) = 2#A − 1 > 0.
Now, we prove part (b). Take S ⊂ F such that #S = 2. We have h1(F, I2S,F(2h + b f )) =

h1(IF∩2A(2h + b f )) = 1. Since 2S ⊃ F ∩ 2S, we obtain h1(I2S(2h + b f )) > 0. We have
ResF(2S) = S and h0(IS(2h + (b − 1) f )) > 0. Recall that b ≥ 2 and S ⊈ h. Thus, the long
cohomology exact sequence of the residual exact sequence of F gives h0(I2S(2h + b f )) ≥
b + b − e − 2 > 0. Thus, S ∈ T(e; 2, b; 2). Since OFe(2h + b f ) is very ample, S is minimal,
proving part (b).
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Assume b is even. The s-secant variety of OFe(2h + b f ) is defective if and only if
s = b + 1 − e [18]. Thus, T(e; 2, b; b + 1 − e)

′
contains a non-empty open subset of S(Fe, b +

1 − e). The semicontinuity theorem for cohomology gives h1(I2S(2h + b f )) > 0 for all
S ∈ S(Fe, b + 1 − e). Thus, T(e; 2, b; x)

′
= ∅ for all x ≥ b + 2 − e.

Theorem 9. Fix integers e ≥ 0, a ≥ 3, and b > ea such that h0(OFe(ah + b f )) ≡ 0
(mod 3). If e = 0, assume b ≥ a. If e = 1, assume b ≥ 2a. Set ρ := h0(OFe(ah + b f ))/3.
Then, T(e; a, b; ρ)

′ ̸= ∅, T(e; a, b; ρ) has an irreducible component of dimension 2ρ − 1, and
T(e; a, b; x)

′
= 0 for all x > ρ.

Proof. By [1] (Prop. 1), we have T(e; a, b; x)
′
= 0 for all x > ρ.

Note that h0(I2A(ah + b f )) = h1(I2A(ah + b f )) for every A ∈ S(Fe, ρ). The very
ample line bundle OFe(ah + b f ) is not secant defective [18], i.e., hi(I2A(ah + b f )) = 0 for a
general A ∈ S(Fe, ρ).

Set pa := 1 + ab − a − b − ea(a − 1)/2. Recall that any C ∈ |OFe(ah + b f )| has
arithmetic genus pa. For any integer t such that 0 ≤ t ≤ pa, let V(t) denote the set of all
integral and nodal C ∈ |OFe(ah + b f )| with exactly t nodes. By [19,20], V(t) is an integral
and smooth quasi-projective variety of dimension dim |OFe(ah + b f )| − t = 3ρ − 1 − t.

(a) Fix a general A ∈ S(Fe, ρ − 1). Since OFe(ah + b f ) is not secant defective,
h0(I2A(ah + b f )) = 3 and h1(I2A(ah + b f )) = 0. Fix a general C ∈ |I2A(ah + b f )|. Since A
is general and C is general in |I2A(ah + b f )|, a dimensional count gives that C has exactly
ρ − 1 singular points and, by [21] (Prop. 4.4), it is nodal and irreducible (the irreducibility
would also follow from a few residual exact sequences). Thus, C is a general element of
V(ρ − 1).

Claim 1: There is T ∈ |I2A(ah + b f )| ∩ V(ρ).
Proof of Claim 1: Using several residual sequences and the generality of A, we have

that each element of |I2A(ah + b f )| is irreducible. By [21] and the irreducibility of each V(t)
[20], each integral curve T ⊂ Fe of geometric genus pg is contained in V(pa − pg). Since
each V(t) is irreducible, [19] implies that V(t + 1) ⊂ V(t) for all t < pa. Thus, it is sufficient
to find T ∈ |I2A(ah + b f )| with geometric genus pg ≤ pa − ρ. Let B denote the set-theoretic
base locus of |I2A(ah + b f )|. Assume for the moment B ̸= A and take p ∈ B \ A. Since
p ∈ B, we have h0(I2p∪2A(ah + b f )) ≥ h0(I2A(ah + b f ))− 2 > 0, and hence T exists. Now,
assume B = A. If there is a non-nodal T ∈ |I2A(ah + b f )|, then pg(T) ≤ pa − ρ, concluding
the proof in this case. Let π : Q → E be the blowing up of Fe at A. Since each element of
T ∈ |I2A(ah + b f )| is nodal with A as its singular locus, the strict transform of the elements
of |I2A(ah + b f )| form a two-dimensional linear system W of the smooth curve on Q. Since
each element of |I2A(ah + b f )| is nodal, the self-intersection of each element of W is the
integer (ah + b f ) · (ah + b f )− 4(ρ − 1). Let B1 ⊂ Q denote the scheme-theoretic base locus
of W. Since S(Fe, ρ − 1) is irreducible, B = A, and A is general, the connected components
of B1 contained in a multiple of any exceptional divisor of π are the same for all exceptional
divisors of π. Thus, deg(B1) ≡ 0 (mod ρ − 1). With a sequence of blowings-up of Q, we
obtain a smooth surface Q

′
and a two-dimensional base-point-free linear system W

′
on Q

′

such that all elements of W
′

are smooth curves of genus pa − ρ + 1. This base-point-free
linear system induces a morphism u : Q

′ → P2. Since Q
′

is not isomorphic to P2, u is not
an isomorphism. Since P2 is algebraically simply connected, there is p ∈ Q

′
and a degree 2

connected zero-dimensional scheme, such that vred = {p} and deg(v) = 1. The existence
of v implies the existence of an element of W

′
singular at p, which is a contradiction.

(b) Fix a general C ∈ V(ρ) and set S := Sing(C). We have #S = ρ. Since S ⊆ Sing(C),
we have h0(I2S(ah + b f )) > 0. Since 3#S = h0(OFe(ah + b f )), we have h1(I2S(ah + b f )) >
0. Thus, S ∈ T(e; a, b; ρ). Let Γ ⊂ S(Fe, ρ) denote the set of all Sing(D), D ∈ V(ρ). By
Claim 1 of step (a), dim Γ ≥ 2ρ − 2. Since V(ρ) is irreducible, Γ is irreducible. Set γ :=
h1(I2S(ah + b f )). Since C is general in V(ρ), dim Γ = 2ρ − γ. Hence, 1 ≤ γ ≤ 2. Assume
that S is not minimal and take S

′ ⊂ S such that #S
′
= ρ− 1 and γ1 := h1(I2S′ (ah+ b f )) > 0.
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Set S0 := S and S1 := S
′
. We assume to have defined the set Si, 0 ≤ i ≤ x < ρ with

#Si = ρ − i for all i and Si ⊂ Sy if i > y. We take any Sx+1 ⊂ Sx such that #Sx+1 = ρ − i − x.
Set γi := h1(I2Si (ah + b f )). We have γ0 = γ. Since Si+1 ⊂ Si, we have γi+1 ≤ γi for all i.
In the next step (b1), we prove that a certain permutation group G ⊆ Sρ is 2-transitive.

(b1) First, assume e > 0. Set c := ⌊b/a⌋, c
′

:= b − ac. By assumption, c ≥ e and
c
′
> e. Let T1, . . . , Ta−1 be general elements of |OFe(h + c f )| and Ta a general element of

|OFe(h + c
′
f )|. Set T := T1 ∪ · · · ∪ Ta. By [19] and the irreducibility of V(ρ), T ∈ V(ρ), and

(since T has a irreducible components), T may be partially smoothed to an element of V(ρ)
smoothing pa − ρ − a + 1 nodes of T, say E ⊂ Sing(T)), with the only restriction that T \ E
is connected (called unassigned nodes in [19]). With this connectedness assumption, we want
to prove that by moving T1, . . . , Ta and the set E of unassigned nodes, the monodromy
group G of the remaining ρ nodes is 2-transitive.

We first check that G is transitive. Fix nodes u, v ∈ Sing(T) \ E such that u ̸= v. First,
assume that they are both contained in the intersection of 2 elements of |OFe(h + c f )|, say
T1 and T2 (the same proof works if one of the components is Ta). We fix T \ T2 and move
T2. To exchange u and v, it is sufficient to have h0(OFe(h + c f )) ≥ 3, i.e., 2c − e ≥ 1. Now,
assume that u, v ∈ Ti for some i, but the second irreducible component containing u, say
T(u), is different from the second irreducible component of T(v) containing v. In this case,
we interchange u and v just by moving T(u) and T(v) so that at the end, v ∈ T(u) and
u ∈ T(v). If u and v are on four different irreducible components, we first perform the
construction just done to reduce this case to the case of three components. To prove the
2-transitivity of G, it is sufficient to have h0(OFe(h + c f )) ≥ 4, i.e., 2c − e ≥ 2. If e = 0, we
may use a similar construction because b ≥ a and h0(OF0(1, 1)) = 4.

(b2) By step (b1), the monodromy group G of the finite map Γ → V(ρ) is at least
2-transitive. Thus, h1(I2A(ah + b f )) = γ1 for all A ⊂ S such that #A = ρ − 1, and
h1(I2B(ah + b f )) = γ2 for all B ⊂ S such that #B = ρ − 2. Since G is 1-transitive, Claim 1
gives dim Γ = 2ρ − 1, and hence γ = 1. Let i0 be the minimal positive integer such that
γi0 = 0. Thus, γi = 1 for all 0 ≤ i < i0. Since γ1 > 0, we have i0 ≥ 2. By the definition of i0,
the point Si0+1 \ Si0 imposes only two independent conditions to |I(2Si0 )

(ah + b f )|. Since
G is 2-transitive, the union of the two double points of S \ S2 gives at most four conditions
to |I(2Si0 )

(ah + b f ))|. Thus γ ≥ 2, is a contradiction.

7. Methods

There are no experimental data and no part of a proof is completed numerically. All
results are given with full proofs.

8. Discussion

We continue the study of Terracini loci T(X; x) and T(X; x)
′ ⊆ T(X; x) (minimal

Terracini) contained in the set S(X, x) of x points of a variety X embedded in a projective
space of arbitrary dimension. We give a refined study of Terracini loci arising from linear
projections, with several results on the Veronese variety (related to the additive decomposi-
tion of forms). We compute the maximal x with a non-empty minimal Terracini T(X; x)

′

for Hirzebruch surfaces (often, T(X, x) ̸= ∅ for all x ≫ 0). In several cases, we compute
the maximal “weight” or “defect ” δ(2S) for some Terracini locus. For low x, we even
show which defects can occur. There are five key open problems concerning the minimal
Terracini set:

1. Finding the first x such that T(X; x) ̸= ∅. This is only known in a few cases, the
most important one being when X is a Segre–Veronese variety, i.e., in the scenario of
partially symmetric tensors [7].

2. Determining the maximal integer x such that T(X; x)
′ ̸= ∅.

3. Describing the gaps between two integers x1 < x2 such that T(X; xi)
′ ̸= ∅ for i = 1, 2,

while T(X; y)
′
= ∅ for all x1 < y < x2.
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4. Describing the geometry ofT(X; x) andT(X; x)
′
(there are examples in [3] for Veronese

varieties of Pn, n = 2, 3; very low x for the Segre embedding in [2]; Grassmannians in
[6]; Schur varieties in [5]; and del Pezzo surfaces in [7] (§5).

5. Extending the computation of the maximal x such that T(X; x)
′ ̸= ∅ to other surfaces,

e.g., K3 surfaces with a Picard group ZOX(1), where OX(1) is very ample, and
exploring other congruence classes for the dimension of the ambient projective space.
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