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Abstract: In this article, we consider the correction of metric matrices in quasi-Newton methods 
(QNM) from the perspective of machine learning theory. Based on training information for esti-
mating the matrix of the second derivatives of a function, we formulate a quality functional and 
minimize it by using gradient machine learning algorithms. We demonstrate that this approach 
leads us to the well-known ways of updating metric matrices used in QNM. The learning algo-
rithm for finding metric matrices performs minimization along a system of directions, the orthog-
onality of which determines the convergence rate of the learning process. The degree of learning 
vectors’ orthogonality can be increased both by choosing a QNM and by using additional orthog-
onalization methods. It has been shown theoretically that the orthogonality degree of learning vec-
tors in the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is higher than in the Davidon–
Fletcher–Powell (DFP) method, which determines the advantage of the BFGS method. In our pa-
per, we discuss some orthogonalization techniques. One of them is to include iterations with or-
thogonalization or an exact one-dimensional descent. As a result, it is theoretically possible to de-
tect the cumulative effect of reducing the optimization space on quadratic functions. Another way 
to increase the orthogonality degree of learning vectors at the initial stages of the QNM is a special 
choice of initial metric matrices. Our computational experiments on problems with a high degree 
of conditionality have confirmed the stated theoretical assumptions. 
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1. Introduction 
The problem of unconstrained minimization of smooth functions in a finite-

dimensional Euclidean space has received a lot of attention in the literature [1,2]. In un-
constrained optimization, in contrast to constrained optimization [3], the process of op-
timizing the objective function is carried out in the absence of restrictions on variables. 
Unconstrained problems arise also as reformulations of constrained optimization prob-
lems, in which the constraints are replaced by penalization terms in the objective func-
tion that have the effect of discouraging constraint violations [2]. 

Well-known methods [1,2] that enable us to solve such a problem include the gradi-
ent method, which is based on the idea of function local linear approximation, or New-
ton’s method, which uses its quadratic approximation. The Levenberg–Marquardt 
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method is a modification of Newton’s method, where the direction of descent differs 
from that specified by Newton’s method. The conjugate gradient method is a two-step 
method in which the parameters are found from the solution of a two-dimensional op-
timization problem. 

Quasi-Newton minimization methods are effective tools of solving smooth minimi-
zation problems when the function level curves have a high degree of elongation [4–7]. 
QNMs are commonly applied in a wide range of areas, such as biology [8], image pro-
cessing [9], technics [10–15], and deep learning [16–18]. 

The QNM is based on the idea of using a matrix of second derivatives reconstructed 
from the gradients of a function. The first QNM was proposed in [19] and improved in 
[20]. The generally accepted notation for the matrix updating formula in this method is 
DFP. Nowadays, there are a significant number of equations for updating matrices in the 
QNM [4–7,21–28], and it is generally accepted [4,5] that among a variety of QNMs, the 
best methods use the BFGS matrix updating equation [29–31]. However, it has been ex-
perimentally established, but not theoretically explained, why the BFGS generates the 
best results among the QNMs [5]. 

A sampled version of the BFGS method named limited-memory BFGS (L-BFGS) [32] 
was presented to handle high-dimensional problems. The algorithm stores only a few 
vectors that represent the approximation of the Hessian instead of the entire matrix. A 
version with bound constraints was proposed in [33]. 

The penalty method [2] was developed for solving constrained optimization prob-
lems. The unconstrained problems are formed by adding a term, called a penalty func-
tion, to the objective function. The penalty is zero for feasible points and non-zero for in-
feasible points. 

The development of QNMs occurred spontaneously through the search for matrix 
updating equations that satisfy certain properties of data approximation obtained in the 
problem solving process. In this paper, we consider a method for deriving matrix updat-
ing equations in QNMs by forming a quality functional based on learning relations for 
matrices, followed by obtaining matrix updating equations in the form of a step of the 
gradient method for minimizing the quality functional. This approach has shown high 
efficiency in organizing subgradient minimization methods [34,35]. 

In machine learning theory, the system in which the average risk (mathematical ex-
pectation of the total loss function) is minimal is considered optimal [36,37]. The goal of 
learning represents the state that has to be reached by the learning system in the process 
of learning. The selection of such a desired state is actually achieved by a proper choice 
of a certain functional that has an extremum which corresponds to the desired state [38]. 
Thus, in the matrix learning process, it is necessary to formulate a quality functional. 

In QNMs, for each of the matrix rows, there is a product of the vector which exists 
as a learning relation. Consequently, we have a linear model with the coefficients of the 
matrix row as its parameters. Thus, we may formulate a quadratic learning quality func-
tional for a linear model and obtain a gradient machine learning (ML) algorithm. This 
paper shows how one can obtain known methods for updating matrices in QNMs based 
on a gradient learning algorithm. Based on the general properties of convergence of gra-
dient learning algorithms, it seems relevant to study the origins of the effectiveness of 
metric updating equations in QNMs. 

In a gradient learning algorithm, the sequence of steps is represented as a method 
of minimization along a system of directions. The degree of orthogonality of these direc-
tions determines the convergence rate of the algorithm. The use of gradient learning al-
gorithms for deriving matrix updating equations in QNMs enables us to analyze the 
quality of matrix updating algorithms based on the convergence rate properties of the 
learning algorithms. This paper shows that the higher degree of orthogonality of learn-
ing vectors in the BFGS method determines its advantage compared to the DFP method. 

Studies on quadratic functions identify conditions under which the space dimen-
sion is reduced during the QNM iterations. The dimension of the minimization space is 
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reduced when the QNM includes iterations with an exact one-dimensional descent or an 
iteration with additional orthogonalization. It is possible to increase the orthogonality of 
the learning vectors and thereby increase the convergence rate of the method through 
special normalization of the initial matrix. 

The computational experiment was carried out on functions with a high degree of 
conditionality. Various ways of increasing the orthogonality of learning vectors were as-
sessed. The theoretically predicted effects of increasing the efficiency of QNMs con-
firmed their effectiveness in practice. It turned out that with an approximate one-
dimensional descent, additional orthogonalization in iterations of the algorithm signifi-
cantly increased the efficiency of the method. In addition, the efficiency of the method 
also increased significantly with the correct normalization of the initial matrix. 

The rest of this paper is organized as follows. In Section 2, we provide basic infor-
mation about matrix learning algorithms in QNMs. Section 3 contains an analysis of ma-
trix updating formulas in QNMs. A symmetric positive definite metric is considered in 
Section 4. Section 5 gives a qualitative analysis of the BFGS and DFP matrix updating 
equations. Methods for reducing the minimization space of QNMs on quadratic func-
tions are presented in Section 6. Methods for increasing the orthogonality of learning 
vectors in QNMs are considered in Section 7. In Section 8, we present a numerical study, 
and the last section summarizes the work. 

2. Matrix Learning Algorithms in Quasi-Newton Methods 
Consider the minimization problem 

f(x) → min, x ∈ Rn.
 

The QNM for this problem is iterated as follows: 𝑥 = 𝑥 + 𝛽 𝑠 ,    𝑠 = −𝐻  ∇𝑓 𝑥 , (1)

( )kk
k sxf ββ

β
+=

≥0
minarg , (2)

Δ𝑥 = 𝑥 − 𝑥 ,  𝑦 = ∇𝑓(𝑥 ) − ∇𝑓(𝑥 ), (3)𝐻 = 𝐻 𝐻 ,Δ𝑥 , 𝑦 . (4)

Here, ∇𝑓(𝑥) is the gradient of a function, sk is the search direction, and βk is chosen 
to satisfy the Wolfe conditions [2]. Further, nnk RH ×∈  is a symmetric matrix which is 
used as an approximation of the Hessian inverse. The operator 𝐻(𝐻,Δ𝑥, 𝑦) ∈ 𝑅 × ,  𝐻 ∈ 𝑅 × , Δ𝑥, 𝑦 ∈ 𝑅  (5)

specifies a certain equation for updating the initial matrix H. At the input of the algo-
rithm, the starting point x0 and the symmetric strictly positive definite matrix H0 must be 
specified. Such a matrix will be denoted as H0 > 0. 

Let us consider the relations for obtaining updating equations for Hk matrices on 
quadratic functions: 𝑓(𝑥) = ⟨𝑥 − 𝑥∗ , 𝐴(𝑥 − 𝑥∗ )⟩ + 𝑑,      𝐴 > 0, (6)

where x* is the minimum point. Here and below, the expression <·,·> means a scalar 
product of vectors. Without a loss of generality, we assume d = 0. The gradient of a quad-
ratic function f(x) is ∇f(x) = A(x − x*). For Δx ∈ Rn, the gradient difference y = ∇f(x + Δx) − 
∇f(x) satisfies the relation: 𝐴Δ𝑥 = 𝑦  or 𝐴 𝑦 = Δ𝑥. (7)
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The equalities in (7) are used to obtain various equations for updating matrices Hk, 
which are approximations for A−1, or matrices Bk = (Hk)−1, which are approximations for 
A. An arbitrary equation for updating matrices H or B, the result of which is a matrix sat-
isfying (7), will be denoted by H(H, Δx, y) or B(B, Δx, y), respectively. 

Denoting as Ai and Ai−1 rows of the corresponding matrices A and A-1 with i-th in-
dex, then, according to (7), we obtain equations for the learning relations necessary to 
formulate algorithms for matrix rows’ learning: 𝐴 Δ𝑥 = 𝑦 ,   𝐴 𝑦 = Δ𝑥 ,   𝑖 = 1,2, . . . , 𝑛, (8)

where yi and Δxi are the components of the vectors in (7). The relations in (8) make it 
possible to use machine learning algorithms of a linear model in the parameters to esti-
mate the rows of the corresponding matrices. 

Let us formulate the problem of estimating the parameters of a linear model from 
observational data. 

ML problem: find unknown parameters c* ∈ Rn of the linear model 𝑦 = ⟨𝑧, 𝑐⟩ , 𝑧, 𝑐 ∈ 𝑅  ,  𝑦 ∈ 𝑅  (9)

from observational data 𝑦 ∈ 𝑅  ,  z ∈ 𝑅  , 𝑘 = 0,1,2, . . ., (10)

where yk = <c*, zk>. We will use an indicator of training quality, 

2),(
2
1),( yczczQ −= , (11)

which is an estimate of the quality functional required to find c*. 
Function (11) is a loss function. Due to the large dimension of the problem of esti-

mating the elements of metric matrices, the use of the classical least squares method be-
comes difficult. We use the adaptive least squares method (recurrent least squares for-
mulas). 

The gradient learning algorithm based on (11) has the following form: 𝑐 = 𝑐 − ℎ ∇𝑄(𝑧 , 𝑐 ) = 𝑐 − ℎ ( 𝑧 , 𝑐 − 𝑦 )𝑧 . (12)

Due to the orthogonality of the training vectors, the stochastic gradient method in 
the form “receiving of an observation-training-forgetting the observation information” 
in quasi-Newton methods enables us to obtain good approximations of the inverse ma-
trices of second derivatives while maintaining their symmetry and positive definiteness. 

In this paper, the value of such consideration is that we are able to identify the ad-
vantages of the BFGS method and obtain a method with orthogonalization of learning 
vectors and prove these provisions through testing. 

The Kaczmarz algorithm [39] is a special case of (12) with the form 𝑐 = 𝑐 − ( , ), 𝑧 . (13)

Let us list some of the properties of process (13), which we use to justify the proper-
ties of matrix updating in QNMs. 

Property 1. Process (13) ensures the equality 𝑦 = 𝑧 , 𝑐 , (14)

and the solution is achieved under the condition of minimum changes in the parameters’ values ||𝑐 − 𝑐 ||. 
Property 2. If yk = <c*, zk> then the iteration of process (13) is equivalent to the step of minimiz-
ing the quadratic function 
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𝜙(𝑐) = ⟨𝑐 − 𝑐∗, 𝑐 − 𝑐∗⟩/2 (15)

from the point ck along the direction zk. 

Proof. Property 2 is justified by the direct implementation of the function in (15) which is 
the minimizing step along the direction zk, which is presented in Figure 1. Property 1 fol-
lows from the fact that movement to the point ck+1 is carried out along the normal to the 
hyperplane <zk, c> = yk, that is, along the shortest path (Figure 1). Movement to other 
points on the hyperplane, for example to point A, satisfy only the condition in (14). □ 

 
Figure 1. Step of process (13) on hyperplane <zk, c> = yk along the direction zk. 

Let us denote the residual as rk = ck − c*. By subtracting c* from both sides of (13) 
and making transformations, we obtain the following learning algorithm in the form of 
residuals: 𝑟 = 𝑊(𝑧 )𝑟 ,    𝑊(𝑧) = 𝐼 −    , (16)

where I is the identity matrix. The sequence of minimization steps can be represented in 
the form of the residual transformation, where m is the number of iterations: 𝑟 = 𝑊 (𝑧) 𝑟 ,   𝑊 (𝑧) = 𝑊 𝑧  𝑊(𝑧 ) ⋯ 𝑊(𝑧 ). (17)

The convergence rate of process (13) is significantly affected by the degree of or-
thogonality of the learning vectors z. The following property reflects the well-known fact 
of the minimization algorithm termination along orthogonal directions of the quadratic 
form of (15) with equal Hessian eigenvalues. 

Property 3. Let vectors zk, k = l, l + 1,…, l + n − 1 for a sequence of n iterations (13) be mutually 
orthogonal. Then, the solution c* minimizing the function (15) is obtained in no more than n 
steps of the process (13) for an arbitrary initial 𝑐 , wherein 𝑟 = 𝑊 (𝑧)𝑟 = 0,  𝑊 (𝑧) = 0. (18)

The following results are useful to estimate the convergence rate of the process in 
(13) as a method for minimizing the function in (15) without orthogonality of the descent 
vectors. 

Consider a cycle of iterations for minimizing a function θ(x), x ∈ Rn, along the col-
umn vectors zk, ||zk|| = 1, k = 1,…, n, of matrix Z ∈ Rn×n: 𝑥 = 𝑥 + 𝛽 𝑧 , ( )kkk zx βθβ

β
+=

≥0
minarg , nk ,,1= . (19)

kc  

 1+kc

kz  

*c  А   k
k ycz =,  
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Here and below, we will use the Euclidean vector norm ||x|| = <x, x>1/2. Let us present the 
result of the iterations in (19) in the form of the operator xn+1 = XP(x1, Z). Consider the 
process 𝑢 = 𝑋𝑃(𝑢 , 𝑍 ), 𝑞 = 0,1, . ..., (20)

where matrices Zq and the initial approximation u0 are given. To estimate the conver-
gence rate of the QNM and the convergence rate of the metric matrix approximation, we 
need the following assumption about the properties of the function. 

Assumption 1. Let the function be strongly convex, with a constant ρ > 0, and differentiable, 
and its gradient satisfy the Lipschitz condition with a constant L > 0. 

We assume that the function f(x), x ∈ Rn, is differentiable and strongly convex in Rn, 
i.e., there exists ρ > 0 such that for all x,y ∈ Rn and α ∈ [0, 1], the inequality holds, 

( )( )  ,2/)1()()1()(1 2yxyfxfyxf −−−−+≤−+ ραααααα  

and its gradient ∇f(x) satisfies the Lipschitz condition: 

.0,,            )()( >∈∀−≤∇−∇ LRyxyxLyfxf n  (21)

Let us denote the minimum point of the function θ(x) by x*. The following theorem 
[40] establishes the convergence rate of the iteration cycle (20). 

Theorem 1. Let the function θ(x), x∈Rn, satisfy Assumption 1; let matrices Zq of the process in 
(20) be such that minimum eigenvalues μ q of matrices (Zq)T Zq satisfy the constraint μ q ≥ μ0 > 0. 
Then, the following inequality estimates the convergence rate of the process in (20): 











−−≤− 32

2
0

2
0

2
exp*)]()([*)()(

nL
mxuxum μρθθθθ . (22)

Estimate (22) enables us to formulate the following property of the process in (13). 

Property 4. Let vectors zk, k = 1,…,n−1, be given in (13), the columns of the matrices Z be com-
posed of vectors zk/||zk||, and the minimum eigenvalue μ of the matrix ZT Z satisfy the constraint 
μ ≥ μ0 > 0. Then, the following inequality estimates the convergence rate: ||𝑐 − 𝑐∗|| ≤ ||𝑐 − 𝑐∗|| 𝑒𝑥𝑝 − . (23)

Proof. Let us apply the results of Theorem 1 to the process in (13). The strong convexity 
and Lipschitz constants for the gradient of the quadratic function in (15) are the same: ρ 
= L =1. Using Property 2 and the estimate in (22) for m = 1, we obtain (23). □ 

The property of operators 1−+nl
lW , when the conditions of Property 4 are met, is de-

termined by the estimate in (23), which can be represented in the following form: 











−≤= −

3

2
020201

0 2
exp||||||)(||

n
rrzWr nn μ  (24)

Thus, the Kaczmarz algorithm provides a solution to the equality in (14) for the last 
observation, while it implements a local learning strategy, i.e., a strategy for iteratively 
improving the approximation quality from a functional (15) point of view. If the learning 
vectors are orthogonal, the solution is found in no more than n iterations. When n learn-
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ing vectors are linearly independent, the convergence rate (23) is determined by the de-
gree of the learning vectors’ orthogonality. The degree of the vectors’ orthogonality will 
indicate the boundedness of the minimum eigenvalue μ ≥ μ0 > 0 of the matrix ZTZ de-
fined in Property 4. 

Using the learning relations in (8), we obtain machine learning algorithms for esti-
mating the rows of the corresponding matrices in the form of the process in (13). Conse-
quently, the question of analyzing the quality of algorithms for updating matrices in 
QNMs will consist of analyzing learning relations like (8) and the degree of orthogonali-
ty of the vectors involved in training. 

3. Gradient Learning Algorithms for Deriving and Analyzing Matrix Updating  
Equations in Quasi-Newton Methods 

Well-known equations for matrix updating in QNMs were found as equations that 
eliminate mismatch on a new portion of training information. In machine learning theo-
ry, a quality measure is formulated. A gradient minimization algorithm is used to mini-
mize this measure. Our goal is to give an account of QNMs from the standpoint of ma-
chine learning theory, i.e., to formulate quality measures of training and construct their 
minimization algorithms. This approach enables us to obtain a unified method for deriv-
ing matrix updating equations and extend the known facts and algorithms of learning 
theory to solve analysis of and achieve improvement in QNMs. 

Let us obtain formulas for updating matrices in QNMs using the quadratic model 
of the minimized function in (6) and learning relations in (7). For one of the learning re-
lations in (7), we present a complete study of Properties 1–4. 

Let the current approximation H of the matrix H* = A−1 be known. It is required to 
construct a new approximation using the learning relations in (7) for the rows of the ma-
trix in (8): 

xyH Δ=*   or  ii xyH Δ=* ,  ni ,...,2,1= . (25)

To evaluate each row of the matrix H* based on (25), we apply Algorithm (13). As a 
result, we obtain the following matrix updating equation: 𝐻 = 𝐻 (𝐻,Δ𝑥, 𝑦) = 𝐻 + (Δ ) , (26)

which is known as the 2nd Broyden method for estimating matrices when solving sys-
tems of non-linear equations [5,6]. 

Equation (26) determines the step of minimizing a type of functional of (15) for each 
of the rows Hi of matrix H along the direction y: 𝜙(𝐻 ) = ||𝐻 − 𝐻∗|| /2,  ni ,...,2,1= . (27)

The matrix residual is R = H − H*. Because of the iteration of (26), the residual is 
transformed according to the rule 𝑅 = 𝑅𝑊(𝑦). (28)

Let us denote the scalar product for matrices A,B ∈ 𝑅   as 


= ==

==
n

j

n

i
ijij

n

i
i

T
i BABABA

1 11

, . 

We use the Frobenius norm of matrices: 
2/1

1

2|||||||| 









= 

=

n

i
iHH . 

Let us define the function, 
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𝛷(𝐻) = ∑ ||𝐻 − 𝐻∗|| /2 = ||𝐻 − 𝐻∗ || /2,  (29)

and reformulate Properties 1–4 for the matrix updating process in (26). 

Theorem 2. Iteration (26) is equivalent to the minimization step Φ(H) from a point H along the 
direction ΔH: 𝛥𝐻 = (𝛥𝑥 − 𝐻𝑦)𝑦 /𝑦 𝑦, (30)

where 𝐻 𝑦 = 𝛥𝑥 (31)||𝐻 − 𝐻|| ≤ ||𝐻 − 𝐻|| (32)

for arbitrary matrices nnx RH ×Δ ∈  satisfying the condition in (31). 

Proof of Theorem 2. Let us show that the condition for the minimum of the function in 
(27) along the direction ΔH (30) is satisfied at the point 𝐻 : 

⟨Δ𝐻, ∇𝛷(𝐻 )⟩ = (Δ𝑥 − 𝐻𝑦) 𝑦 (𝐻 − 𝐻∗ ) 
                            = (Δ𝑥 − 𝐻𝑦) (𝐻 − 𝐻∗)𝑦 = (Δ𝑥 − 𝐻𝑦) (Δ𝑥 − Δ𝑥 ) = 0. (33)

□ 

Next, we prove (32) by showing that ΔH is the normal of the hyperplane of matrices 
satisfying the condition in (31). To do this, we prove orthogonality of the vector in (30) to 
an arbitrary vector of the hyperplane, formed as the difference of matrices belonging to 
the hyperplane V = H1 − H2: 

Δ𝐻, 𝐻 − 𝐻 ) = (Δ𝑥 − 𝐻𝑦) 𝑦 (𝐻 − 𝐻 ) 
                               = (Δ𝑥 − 𝐻𝑦) (𝐻 − 𝐻 )𝑦 = (Δ𝑥 − 𝐻𝑦) (Δ𝑥 − Δ𝑥 ) = 0. 
Let us prove an analogue of Property 3 for (26). 

Theorem 3. Let the vectors yk, k = l, l + 1, …, l + n – 1, for the sequence of n iterations in (26) be 
mutually orthogonal, then the solution H* to the minimization problem in (29) will be obtained 
in no more than n steps of the process in (26), 𝐻 = 𝐻 (𝐻 , 𝛥𝑥 , 𝑦 ), 𝑘 = 𝑙, 𝑙 + 1, . . . , 𝑙 + 𝑛 − 1, (34)

for an arbitrary matrix Hl, 𝑅 = 𝑅 [𝑊 (𝑦)] = 0. (35)

Proof of Theorem 3. From (28), the orthogonality of vectors yk and (18) follows (35). □ 

Theorem 4. Let vectors yk, k = 0, 1, …, n − 1, in (13) be given, vectors yk/||yk|| be columns of ma-
trix P, and the minimum eigenvalue μ of a matrix PTP satisfy the constraint μ ≥ μ0 > 0. Then, to 
estimate the convergence rate of the process in (34), the following inequality holds: ||𝐻 − 𝐻∗ || ≤ ||𝐻 − 𝐻∗ || 𝑒𝑥𝑝 − . (36)
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Proof of Theorem 4. According to Property 4 and conditions of the theorem, the rows of 
matrices will have the following estimates (23): ||𝐻 − 𝐻∗|| ≤ ||𝐻 − 𝐻∗|| 𝑒𝑥𝑝 − , 𝑖 = 0,1, . . . , 𝑛 − 1. 

A similar inequality will be true for the sums of the left and right sides. Considering the 
connection between the norms ||𝐻 − 𝐻∗ || = ∑ ||𝐻 − 𝐻∗|| , we obtain the estimate 
in (36). □ 

In the case when the matrix H is symmetric, two products of the matrix H* and the 
vector y are known: 𝐻∗ 𝑦 = Δ𝑥,  𝑦 𝐻∗ = Δ𝑥 . (37)

Applying the process in (28) twice for (37), we obtain a new process for updating 
the matrix residual: 𝑅 = 𝑊(𝑦)𝑅𝑊(𝑦). (38)

Expanding (38), we obtain the updating formula ),,( yxHHH G Δ=+  of J. Grinstadt 
[5,6], where 

( ) ( ) .
,,

,
),,( 2 yy

yxHyxHyy
yy

yyyxHy
HyxHH

TTT

G
Δ−+Δ−−

Δ−
+=Δ  (39)

Let us reformulate Properties 1–4 of the matrix updating process (26) for (39). 

Theorem 5. The iteration of (39) is equivalent to the minimization step Φ(H) from a point H 
along the 𝛥𝐻 direction: 𝛥𝐻 = 〈 , 〉 − ( ) − ( )  . (40)

At the same time, 𝐻 𝑦 = 𝛥𝑥,   𝑦 𝐻 = 𝛥𝑥 , (41)||𝐻 − 𝐻|| ≤ ||𝐻 − 𝐻|| (42)

for arbitrary matrices nnx RH ×Δ ∈ satisfying the condition in (41). 

Proof of Theorem 5. Let us show that at the point 𝐻 , the condition for the minimum of 
the function in (27) along the direction ΔH is satisfied: 

Δ𝐻, ∇𝛷(𝐻 ) = Δ𝐻, 𝐻 − 𝐻∗ = 0. (43)

In (43), let us consider the scalar product for each term of (40) separately. The third term 
of Expression (40) coincides with (30). The equality to zero of the scalar product for it 
was obtained in (33). For the first term, the calculations are similar to (33): 

Δ𝐻 , ∇𝛷(𝐻 ) = 〈𝐻𝑦 − Δ𝑥, 𝑦〉〈𝑦, 𝑦〉 𝑦 𝑦 (𝐻 − 𝐻∗ )                                            = 〈 Δ , 〉〈 , 〉 ∑ 𝑦 (𝐻 − 𝐻∗)𝑦 = 〈 Δ , 〉〈 , 〉 ∑ 𝑦 (Δ𝑥 − Δ𝑥 ) = 0. 
Let us carry out calculations for the second term using the symmetry of matrices: 

 〈𝑦, 𝑦〉 Δ𝐻 , ∇𝛷 𝐻 = ∑ ∑ 𝑦 (𝐻𝑦 − Δ𝑥) (𝐻 − 𝐻∗ )  
                           = ∑ (𝐻𝑦 − Δ𝑥) ∑ 𝑦 𝐻 − 𝐻∗ = ∑ (𝐻𝑦 − Δ𝑥) (𝐻 − 𝐻∗)𝑦                                                       = ∑ (𝐻𝑦 − Δ𝑥) (Δ𝑥 − Δ𝑥 ) = 0.  
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Proof (43) is complete. Next, we prove that ΔH is the normal of the hyperplane of matri-
ces satisfying the condition in (42). To do this, we prove that the vector ΔH is orthogonal 
to an arbitrary vector of the hyperplane, formed as the difference of matrices belonging 
to the hyperplane 𝑉 = 𝐻 − 𝐻 , that is, <ΔH, 𝐻 − 𝐻 > = 0. Since the matrices 𝐻  and 𝐻  
satisfy the condition in (42), the proof is identical to the justification of the equality in 
(43). □ 

The following theorem establishes the convergence rate for a series of successive 
updates (39). 

Theorem 6. Let vectors yk, k = l, l + 1, …, l + n − 1, for the sequence of n iterations of (39) be mu-
tually orthogonal. Then, the solution to the minimization problem in (29) can be obtained in no 
more than n steps of the process in (39), 

),,(1
kk

k
G

k yxHHH Δ=+ , 1...,,1, −++= nlllk , (44)

for an arbitrary symmetric matrix 𝐻 : 

0)]([)( 11 == −++−++ Tnl
l

nlnl
l

nl yWRyWR . (45)

Proof of Theorem 6. The update in (45) can be represented as two successive multiplica-
tions by )(1 yW nl

l
−+ , first from the left and then from the right. For each of the updates, 

the estimate in (35) is valid. □ 

Theorem 7. Let vectors yk, k = 0, 1, …, n − 1, be given, vectors yk/||yk|| be columns of matrix P, 
and the minimum eigenvalue μ of a matrix PTP satisfy the constraint μ ≥ μ0 > 0. Then, to esti-
mate the convergence rate of the process in (44), the following inequality holds: 











−−≤− 3

2
02*02* exp||||||||
n

HHHH n μ . (46)

Proof of Theorem 7. The matrix residual is updated according to the rule 
Tnl

l
nlnl

l
nl yWRyWR )]([)( 11 −++−++ = , 

which can be represented as two successive multiplications by )(1 yW nl
l

−+ , first from the 
left and then from the right. The estimate in (36) is valid for each of the updates, which 
proves (46). □ 

4. Symmetric Positive Definite Metric and Its Analysis 
Let Function (6) be quadratic. We use the coordinate transformation 𝑥 = 𝑉𝑥. (47)

Let the matrix V satisfy the relation 𝑉 𝑉 = ∇ 𝑓(𝑥) = 𝐴. (48)

In the new coordinate system, the minimized function takes the following form: 𝑓(𝑥) = 𝑓(𝑉  𝑥) = 𝑓(𝑥). (49)

Quadratic Function (6), considering (49), (47), and (48), takes the following form: 𝑓(𝑥) = (𝑥 − 𝑥∗) 𝑉 𝐴𝑉 (𝑥 − 𝑥∗) = 〈𝑥 − 𝑥∗, 𝑥 − 𝑥∗〉. (50)
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Here, x∗ is the minimum point of the function. According to (38) and (50), the ma-
trix of second derivatives is the identity matrix Ixf =∇ )ˆ(ˆ2 . Let us denote *ˆˆˆ xxr −= . The 
gradient is ∇𝑓(𝑥) = 𝑟(𝑥) = �̂� = 𝑥 − 𝑥∗. (51)

For the characteristics of functions )ˆ(ˆ xf and f(x), the following relationships are val-
id: 

)()ˆ(ˆ xfVxf T∇=∇ − ,   122 )()ˆ(ˆ −− ∇=∇ VxfVxf T , (52)

Δ𝑥 = 𝑥 − 𝑥 = 𝑉𝑥 − 𝑉𝑥 = 𝑉Δ𝑥, (53)𝑦 = ∇𝑓(𝑥 ) − ∇𝑓(𝑥) = 𝑉 𝑓(𝑥 ) − 𝑉 𝑓(𝑥) = 𝑉 𝑦 (54)

where notation 𝑉 = (𝑉 )  is used.  
From (53), (54), and the properties of matrices V (48), the following equality holds: 

zxy ≡Δ= ˆˆ  (55)

For the symmetric matrix 𝐻, two products of the matrix 𝐻∗ and the vector y are 
known: 

xyH ˆˆˆ * Δ= ,     TT xHy ˆˆˆ * Δ= . (56)

Applying the process in (28) twice to (56), we obtain a new process for updating the 
matrix residual IHR −= ˆˆ : 

)(ˆ)()ˆ(ˆ)ˆ(ˆ zWRzWyWRyWR ==+ . (57)

Taking into account (55), the update in (39) takes the form 

𝐻 = 𝐻 𝐻, Δ𝑥, 𝑦 = 𝐻 + 〈𝐻𝑧 − 𝑧, 𝑧〉𝑧𝑧〈𝑧, 𝑧〉 − 𝑧 𝐻𝑧 − 𝑧 + 𝐻𝑧 − 𝑧 𝑧〈𝑧, 𝑧〉 . (58)

Let us consider the methods in (1)-(4) in relation to the function )ˆ(ˆ xf in the new co-
ordinate system. 𝑥 = 𝑥 + 𝛽 �̂� ,    �̂� = −𝐻 ∇𝑓 𝑥 , (59)

( )
ˆ 0

ˆˆ ˆˆ ˆarg min k k
k f x s

β
β β

≥
= + , (60)

𝛥𝑥 = 𝑥 − 𝑥 = 𝑧 ,  𝑦 = ∇𝑓(𝑥 ) − ∇𝑓(𝑥 ) = 𝑧 , (61)

( )1ˆ ˆ ˆ ˆ, ,k k k kH H H x y+ = Δ . (62)

Parameter 𝛽  in (59) characterizes the accuracy of a one-dimensional descent. If the 
matrices are correlated by 𝐻 = 𝑉𝐻 𝑉 ,     𝐻 = 𝑉 𝐻 𝑉 , (63)

and the initial conditions are 𝑥 = 𝑉𝑥 ,    𝐻 = 𝑉𝐻 𝑉 , (64)

then these processes generate identical sequences )()ˆ(ˆ kk xfxf =  and characteristics con-

nected by the relations in (47) and (52)–(54). In this case, the equality kk ββ =ˆ
 holds. 
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Considering the equality xy ˆˆ Δ=  from (55), Equation (58) can be transformed. As a 
result, we obtain the BFGS equation: 𝐻 (𝐻, Δ𝑥, 𝑦) = 𝐻 − (Δ , )Δ  Δ〈 ,Δ 〉 + (Δ )Δ Δ (Δ )〈 ,Δ 〉 . (65)

Equation (65) satisfies the requirement of (63) and has the same form in various co-
ordinate systems. Similar properties have the matrix transformation equation HDFP, 
which can be represented as a transformed formula HBFGS [29–31]: 𝐻 (𝐻, Δ𝑥, 𝑦) = 𝐻 (𝐻, Δ𝑥, 𝑦) − 𝑣𝑣 ,  𝑣 = 〈�̑�, �̑��̑�〉 Δ ̑〈Δ ̑ , ̑ 〉 − ̑ ̑〈 ̑ , ̑ ̑ 〉 . 

(66)

Taking into account (55) and (58), we obtain the following expression in the new co-
ordinate system: 

T
BFGSDFP vvHH ˆˆˆˆ −= ,  𝑣 = 〈𝑧, 𝐻𝑧〉 〈 , 〉 − 〈 , 〉 . (67)

The form of the matrices in (65) and (66) does not change depending on the coordi-
nate system. Consequently, the form of the processes in (1)–(4) and (59)–(62) is complete-
ly identical in different coordinate systems when using Formulas (65) and (67). Thus, for 
further studies of the properties of QNMs on quadratic functions, we can use Equations 
(58) and (67) in the coordinate system specified by the transformation in (47). 

Within the iteration of the processes in (59)–(62) for a quadratic function with an 
identity matrix of second derivatives, the residual can be represented in the form of 
components 

k
z

k
z

kk rrxrr ⊥+=≡ ˆˆ)ˆ(ˆ , (68)

where k
zr̂  is a component along the vector zk (or, which is the same, along ˆ ks ), and k

zr⊥̂  
is a component orthogonal to zk. With an inexact one-dimensional descent in (59), the 
component k

zr̂  decreases but does not disappear completely. For the convenience of the-
oretical studies, the residual transformation in Equation (68) in this case can be repre-
sented by introducing parameter γk ∈ (0, 2) instead of 𝛽 , characterizing the degree of 
descent accuracy: �̂� = 𝑊(𝑧 , 𝛾 )�̂� = (1 − 𝛾 )�̂� + �̂� ,   𝑊(𝑧, 𝛾) = 𝐼 − 𝛾 ,  )2,0(∈kγ . (69)

Here, at arbitrary γk ∈ (0, 2), the objective function decreases. With an inexact one-
dimensional descent, a certain value γk ∈ (0, 2) will be attained, at which the new value 
of the function becomes smaller. 

The restriction on the one-dimensional search in (59), imposed on γk in (69), ensures 
a reduction in the objective function 𝑓(𝑥 ) = ||�̂� || /2 = ||𝑊(𝑧 , 𝛾 )�̂� || /2 

                             = (1 − 𝛾 ) ||�̂� || + ||�̂� || < ||�̂� || + ||�̂� || = 𝑓(𝑥 ). 

As a result of the iterations in (59)–(62) with (65) and according to (57), the matrix 
residual *ˆ ˆ ˆ ˆk k kR H H H I= − = −  is transformed according to the rule 𝑅 = 𝑊(𝑧 )𝑅 𝑊(𝑧 ). (70)

Therefore, one system of vectors zk is used in the new coordinate system of the 
QNM iteration with the aim of minimizing the function and residual functional for ma-
trices (29). With the orthogonality of vectors zk and an exact one-dimensional search, the 
solution ˆ 0kr = will be obtained in no more than n iterations. By virtue of the equality 
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〈𝑧 , 𝑧 〉 = 〈𝐴Δ𝑥 ,Δ𝑥 〉, the orthogonality of vectors zk in the chosen coordinate system is 
equivalent to the conjugacy of vectors Δxk. 

Due to the type of identity which defines the QNM iteration in different coordinate 
systems, we further denote the iteration of processes (59)–(62) and (1)–(4), considering 
the accuracy of one-dimensional descent (introduced in (69) by the parameter )2,0(∈kγ ) 
by the operator 𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ). (71)

To simplify the notation in further studies of quasi-Newton methods on quadratic 
functions, without a loss of generality, we use an iteration of the method in (71) adjusted 
to minimize the function 𝑓(𝑥) = 〈𝑥 − 𝑥∗, 𝑥 − 𝑥∗〉, (71a)

which allows us, without transforming the coordinate system (47), to use all associated 
relations for the processes in (59)–(62) with the function in (50) for studying the process 
in (71), omitting the hats above the variables in the notation. 

Let us note some of the properties of the QNM. 

Theorem 8. Let 𝐻  > 0 and the iteration of (71) be carried out with matrix transformation equa-
tions 𝐻  and 𝐻  (67). Then, the vector zk is an eigenvector of the matrices 𝐻 , 𝐻 , 𝑅 , and 𝑅 : 𝑅 𝑧 = 0,  𝐻 𝑧 = 𝑧 . (72)𝑅 𝑧 = 0,    𝐻 𝑧 = 𝑧 . (73)

Proof of Theorem 8. The first of the equalities in (72) follows from (70). The second of 
the equalities in (72) follows from this fact and the definition of the matrix residual. 

By direct verification, based on (67), we establish that the vectors zk and vk are or-
thogonal. Therefore, the additional term v vT in Equation (67) does not affect the multi-
plication of vector zk by a matrix, which together with (72) proves (73). □ 

As consequence of Theorem 8, the dimension of the space being minimized is re-
duced by one in the case of an exact one-dimensional descent, which will be shown be-
low. Section 5 justifies the advantages of the BFGS equation (65) over the DFP equation 
(66) for matrix transformation. 

5. Qualitative Analysis of the Advantages of the BFGS Equation over the DFP  
Equation 

The effectiveness of the learning algorithm is determined by the degree of orthogo-
nality of the learning vectors in the operator factors )( yW k

mk− . In the new coordinate sys-
tem, the transformation in (70) is determined by the factors )(zW k

mk−  in the residual ex-
pressions. Therefore, to analyze the orthogonality degree of the system of vectors z, it is 
necessary to involve the method of their formation. Let us show that the vectors zk in (69) 
and (70) generated by the BFGS equation have a higher degree of orthogonality com-
pared to those generated by DFP. To get rid of a large number of indices, consider the it-
eration of the QNM (71) in the form 𝑄𝑁(𝑓, 𝑥, 𝐻, 𝑥 , 𝐻 , 𝛾). (74)

Theorem 9. Let ˆ 0H >  and the iteration of (74) be carried out with the matrix updating equa-
tions ˆ

BFGSH  (58) and ˆ
DFPH  (67), and 
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||𝑣|| ≠ 0.  (75)

Then, the following statements are valid. 
1. The descent directions for the next iteration are of the form �̂� = 𝐻 �̂� = (1 − 𝛾 )�̂� + 〈𝑧, 𝐻𝑧〉 �̑�,  (76)

 �̂� = 𝐻 �̂� = (1 − 𝛾 )�̂� + 𝑞〈𝑧, 𝐻𝑧〉 �̑�, (77)

where 0 < 𝑞 = 〈  ̂ ,  ̂ 〉〈 ̂ ,  〉〈   ̂ ,  〉 < 1. (78)

2. With respect to the cosine of the angle between adjacent directions of the descent, we have the 
following estimate: 〈 ̂ , 〉〈 , 〉〈 ̂ , ̂ 〉 ≤ 〈 ̂ , 〉〈 , 〉〈 ̂ , ̂ 〉. (79)

3. In the subspace of vectors orthogonal to z, the trace of the matrix ˆ
BFGSH +  does not change, 𝑠𝑝 (𝐻 ) = 𝑠𝑝 (𝐻), (80)

and the trace of the matrix ˆ
DFPH +  decreases, 𝑠𝑝 (𝐻 ) = 𝑠𝑝 (𝐻) − 〈 , 〉〈 , 〉〈 , 〉 < 𝑠𝑝 (𝐻). (81)

Proof of Theorem 9. We represent the residual, similarly to (69), in the following form: �̂� = �̂� + �̂� ,      ||�̂� || ≠ 0. (82)

After performing the iteration of (74), the residual takes the form �̂� = 𝑊(𝑧, 𝛾)�̂� = (1 − 𝛾)�̂� + �̂� . (83)

According to (83), in �̂� , the component �̂�  does not depend on the accuracy of the 
one-dimensional search. Therefore, initially, we find new descent directions in (76) and 
(77) under the condition of an exact one-dimensional search, that is, with �̂� = �̂� . 

Considering the gradient expression in (51), the direction of minimization in the it-
eration of (74) is �̂� = −𝐻�̂� . Based on that result, considering (55) and the equality ⟨�̂� , 𝑧⟩ = 0, following from the condition of exact one-dimensional minimization (60), we 
obtain �̂� = 𝑊(𝑧)�̂� = �̂� + 𝑧 = �̂� − 𝐻�̂� ⟨ ̂ ,  ̂ ⟩⟨  ̂ ,  ̂ ⟩ . (84)

This implies 𝑧 = −𝐻�̂� ⟨ ̂ ,  ̂ ⟩⟨  ̂ ,  ⟩, (85)

𝐻�̂� = −𝑧 ⟨  ̂ ,  ̂ ⟩⟨ ̂ ,  ̂ ⟩ = −𝑧 ⟨  , ⟩⟨ ̂ , ⟩ . (86)

From (84), taking into account the orthogonality of the vectors �̂� , z, we obtain the 
equality ⟨�̂�, 𝑧⟩ = −⟨𝑧, 𝑧⟩. (87)

Let us find the expression ++rH ˆˆ necessary to form the descent direction +++ −= rHs ˆˆˆ  

in the next iteration. Considering the orthogonality of the vectors +r̂  and z, using the 
BFGS matrix transformation formula (58), we obtain 
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𝐻 �̂� = 𝐻 �̂� + 𝑧 𝑧 − 𝐻𝑧, �̂�⟨𝑧, 𝑧⟩ = 𝐻 �̂� − 𝑧 𝐻𝑧, �̂�⟨𝑧, 𝑧⟩              = 𝐻 𝑟 + 𝐻𝑧 − 𝑧 𝐻𝑧, �̂�⟨𝑧, 𝑧⟩  

                                        = 𝐻 𝑟 − 𝑧 ⟨ , ̂⟩⟨ , ⟩ + 𝐻𝑧 − 𝑧 ⟨ , ⟩⟨ , ⟩ . 

(88)

Transformation of the equality in (86) based on (87) leads to 𝐻�̂� = −𝑧 ⟨ ̂ , ⟩⟨ ̂ , ⟩ = 𝑧 ⟨ ̂ , ⟩⟨ , ⟩ = 𝑧 ⟨ , ̂⟩⟨ , ⟩ . (89)

Making the replacement (89) in the last expression from (88), we find 𝐻 �̂� = 𝐻𝑧 − 𝑧 ⟨ , ⟩⟨ , ⟩ . (90)

According to (90), the new descent vector can be represented using the expression 
for v̂  from (67) �̂� = −𝐻 �̂� = 𝑧 ⟨ , ⟩⟨ , ⟩ − 𝐻𝑧 = 𝐻𝑧, 𝑧 12𝑣. (91)

Since the component ˆ zr⊥  in (83) does not depend on the accuracy of the one-
dimensional search, Expression (91) determines its contribution to the direction of de-
scent in (76). Finally, the property of (72) together with the residual r̂  representation in 
(82) proves (76). 

The condition in (75) according to (91) prevents the completion of the minimization 
process. If ˆ 0v = , then as a result of exact one-dimensional minimization, we obtain �̂� = −𝐻 �̂� = 𝐻𝑧, 𝑧 . 𝑣 = 0, which, taking into account 𝐻 > 0, means ˆ 0r+ = . As be-
fore, using (67), we find a new descent direction for the DFP method, assuming that the 
one-dimensional search is exact: �̂� = −𝐻 �̂� = −𝐻 �̂� + 𝑣〈𝑣, �̂� 〉 = �̂� + 𝑣〈𝑣, �̂� 〉 . (92)

The last term in (92), taking into account (91) and the orthogonality of the vectors �̂� , 𝑧, can be represented in the form 𝑣〈𝑣, �̂� 〉 = 〈𝑧, 𝐻𝑧〉 〈 𝑧〈𝑧, 𝑧〉 − 𝐻𝑧〈𝑧, 𝐻𝑧〉 , �̂� 〉  𝑧〈𝑧, 𝑧〉 − 𝐻𝑧〈𝑧, 𝐻𝑧〉  = - 〈 𝐻𝑧〈𝑧, 𝐻𝑧〉 , �̂� 〉 �̂�                   = − 〈 𝐻𝑧〈𝑧, 𝐻𝑧〉 , �̂� + 𝑧〉 �̂� = − 〈𝐻𝑧, �̂�〉〈𝑧, 𝐻𝑧〉 − 1 �̂� . (93)

Let us transform the scalar value as follows: 𝑞 = − 〈 , ̂〉〈 , 〉 = − 〈   , ̂ 〉〈  ̂ , 〉 = 〈   ̂ , ̂ 〉〈   ̂ , ̂ 〉〈  ̂ , ̂ 〉. (94)

Based on (92), together with (93) and (94), we obtain the expression �̂� = −𝐻 �̂� = �̂� + (𝑞 − 1)�̂� = 𝑞�̂� . 

And finally, the last expression, using the property of (73) together with the repre-
sentation of the residual, considering the accuracy of the one-dimensional descent (82), 
proves (77). 

Since 𝐻 > 0, the left inequality in (78) will hold. We prove the right inequality by 
contradiction. Let us denote by 𝐻 > 0(𝐿 > 0) a matrix with eigenvectors of the matrix H 
and eigenvalues in the form of powers of the corresponding eigenvalues of the matrix H, 
given by 𝜆 = (𝜆 ) , 𝑖 = 1,2, . . . , 𝑛. Let 𝑢 = (𝐻) . �̂�. Then, 𝑞 = 〈𝐻𝑢, 𝑢〉 /〈𝐻𝑢, 𝐻𝑢〉〈𝑢, 𝑢〉. 
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Consequently, the equality 𝐻𝑢 = 𝜌𝑢 holds if q = 1. Therefore, u is an eigenvector of 
the matrix H, and therefore, all matrices 𝐻   also have such an eigenvector. Due to this 
fact and the equality 𝑢 = (𝐻) / �̂�, the vector �̂� is also an eigenvector, and 𝑢 = (𝐻) / �̂� =𝜌 / �̂�, where ρ is the eigenvalue of the matrix 𝐻. In this case, considering the representa-
tion in (85) of vector z, vector 𝑣, according to its representation in (67), is zero, which 
cannot be true according to the condition in (75). Therefore, the right inequality in (78) 
also holds. 

Due to the orthogonality of vectors 𝑣 and z and according to (76) and (77), the nu-
merators in (79) are the same, and for the denominators, taking into account (78), the in-
equality 〈�̂� , �̂� 〉 < 〈�̂� , �̂� 〉  holds, which proves (79). In an exact one-
dimensional search, the equality is satisfied in (79) since the numerators in (79) are zero. 

Let us justify point 3 of the theorem. In accordance with the notation of equations 𝐻  (58) and 𝐻  (67), we introduce an orthogonal coordinate system in which the 
first two orthonormal vectors are determined by the following equations: 𝑒 = 𝑧 ‖𝑧‖⁄  , 𝑒 = 𝑝 ‖𝑝‖⁄ , 𝑝 = 𝐻𝑧 − 𝑧 〈 , 〉〈 , 〉 ,  (95)

where vectors p and z are orthogonal and 𝑣 = −〈𝑧, 𝐻𝑧〉 / 𝑝. In such a coordinate system, 
these vectors are defined by 𝑧 = (||𝑧||,0, . . . ,0)  𝑝 = (0, ||𝑝||,0, . . . ,0). (96)

Let us consider the form of matrix Ĥ  in the selected coordinate system. Let us de-
termine the type of vector p based on its representation in (95). Taking into account 

1,1
ˆ,/ˆ, HzzzHz = , components of vector p have the form (𝐻𝑧) = ||𝑧|| 𝐻 , , 𝐻 , , 𝐻 , , . . . , 𝐻 , ,     𝑧 〈 , 〉〈 , 〉 = ||𝑧||(𝐻 , , 0, . . . ,0). 

Hence, 𝑝 = ||𝑧|| 0, 𝐻 , , 𝐻 , , . . . , 𝐻 , . Comparing the last expression with the ex-
pression in (96), we conclude that in the chosen coordinate system, the first column 1Ĥ
of matrix Ĥ has the following form:   𝐻 = 𝐻 , 𝐻 , 0, . . . ,0 . (97)

From (97) and (96), it follows that 𝑝 = ||𝑧|| 0, 𝐻 , , 0, . . . ,0 ,  𝑣 = −〈𝑧, 𝐻𝑧〉 / , 𝑝 = 0, 𝐻 , /𝐻 ,/ , 0, . . . ,0 , (98)

and the original matrix will have the form 

𝐻 = ⎝⎜⎜
⎛𝐻 𝐻 0         . . . 0𝐻 𝐻 𝐻      . . . 𝐻0 𝐻 𝐻      . . . 𝐻. . . . . .   . . .      . . . . . .  0         𝐻     𝐻    . . .    𝐻 ⎠⎟⎟

⎞
. (99)

When correcting matrices with formulas BFGS (58) and DFP (67), changes will oc-
cur only in the space of the first two variables, determined by the unit vectors in (95). As 
a result of the BFGS transformation in (58), we obtain the following two-dimensional 
matrix: 𝐻 × = 𝐻 𝐻𝐻 𝐻  + 𝐻 − 1 00 0  − 𝐻 − 1 𝐻0 0 − 𝐻 − 1 0𝐻 0  

= 1 00 𝐻 . (100)

Based on the relationship of matrices expressed in (67), using (98), we obtain the re-
sult of the transformation according to the DFP equation in (67): 
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𝐻 × _ = 𝐻 × _ − 𝑣𝑣 = 1 00 𝐻 − . (101)

Thus, the resulting two-dimensional matrices have the following form: 𝐻 × _ = 1 00 𝐻 .  𝐻 × _ = 1 00 𝐻 − . (102)

The corresponding complete matrices are presented below: 

𝐻 = ⎝⎜
⎛ 1 0 0         . . . 00 𝐻 𝐻      . . . 𝐻0 𝐻 𝐻      . . . 𝐻. . . . . . . . .          . . . . . .  0      𝐻     𝐻       …     𝐻 ⎠⎟

⎞
, (103)

𝐻 =
⎝⎜⎜
⎛ 1 0 0         . . . 00 𝐻 − 𝐻      . . . 𝐻0 𝐻 𝐻      . . . 𝐻. . . . . .  . . .         . . . . . .  0          𝐻            𝐻       …     𝐻 ⎠⎟⎟

⎞
. (104)

Due to the condition in (75) from Expression (98) for v̂ , it follows that 𝐻 , ≠ 0. 
Consequently, the trace of matrix 𝐻 , according to (102) and (104), will decrease by 𝐻 /𝐻 . The last expression can be transformed considering the definition of the coor-
dinate system in (96). As a result, we obtain (81). From (103), we obtain (80). □ 

Regarding the results of Theorem 9, we can draw the following conclusions. 
1. With an inexact one-dimensional descent in the DFP method, the successive descent 

directions are less orthogonal than in the BFGS method (79). 
2. The trace of matrix 𝐻 in the DFP method in the unexplored space decreases (81). 

This makes it difficult to enter a new subspace during subsequent minimization. 
Moreover, in the case of an exact one-dimensional descent, in the next step, this de-
crease is restored; however, a new one appears. 

3. Theorem 9 also shows that in the case of an exact one-dimensional search, the min-
imization space on quadratic functions is reduced by one. 
Due to the limited computational accuracy on ill-conditioned problems (i.e., prob-

lems with a high condition number), the noted effects can significantly worsen the con-
vergence of the DFP method. 

In conjugate gradient methods [39], if the accuracy of the one-dimensional descent 
is violated, the sequence of vectors ceases to be conjugated. In QNMs, due to the reduc-
tion in the minimization subspace by one during exact one-dimensional descent, the ef-
fect of reducing the minimization space accumulates. In Section 6, we look at methods 
for replenishing the space excluded from the minimization process. 

6. Methods for Reducing the Minimization Space of Quasi-Newton Methods on 
Quadratic Functions 

We will assume that the quadratic function has the form expressed in (71a): 𝑓(𝑥) = 〈𝑥 − 𝑥∗, 𝑥 − 𝑥∗〉. 
For matrices 𝐻  and 𝑅  obtained using the iteration of (71), 𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ), the relations in (72) and (73) hold: 𝑅 𝑧 = 0,   𝐻 𝑧 = 𝑧 . (105)
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Vector zk is an eigenvector for matrices 𝐻  and 𝑅  with one and zero eigenval-
ues, respectively. Let us consider ways to increase the dimension of the quasi-Newton re-
lations’ execution subspace. 

Let us denote by H ∈ Im a matrix H > 0 that has m eigenvectors with unit eigenval-
ues, and the corresponding matrix R = H − I with the corresponding eigenvectors and ze-
ro eigenvalues we will denote by R ∈ Om. Let us denote by Qm a subspace of dimension 
m spanned by a system of eigenvectors with unit eigenvalues of the matrix H ∈ Im, and 
its complement by 𝐷 = 𝑅 \𝑄 . 

An arbitrary orthonormal system of m vectors e1, …, em, of subspace Qm is a system 
of eigenvectors of matrices H ∈ Im and R ∈ Om: 𝐻 𝑒 = 𝑒   , 𝑅𝑒 = 0  ,   𝑖 = 1, . . . , 𝑚. (106)

It follows that an arbitrary vector, which is a linear combination of vectors ei, will 
satisfy the quasi-Newton relations. 

Lemma 1. Consider the matrix H ∈ Im and the vectors 𝑟 = 𝑟 + 𝑟 , 𝑟 ∈ 𝑄 , 𝑟 ∈ 𝐷 . (107)

Then, 𝐻𝑟 = 𝐻𝑟 + 𝐻𝑟 , 𝐻𝑟 = 𝑟 ∈ 𝑄 , 𝐻𝑟 ∈ 𝐷 . (108)

Proof of Lemma 1. The system of m eigenvectors of matrix H ∈ Im is contained in the set 
Qm. Due to the orthogonality of the eigenvectors, the remaining part of the matrix H ∈ Im 
is contained in the set Dm. Therefore, the operation of multiplying the vectors in (107) by 
the matrix in (108) does not take them beyond their subspace. In this case, for the vector 
rQ, the equality HrQ = rQ ∈ Qm holds, which follows from the definition of the subspace 
Qm. □ 

Lemma 2. Let Hk > 0, Hk ∈ Im, m < n, 𝑟 = 0, 0k
Dr ≠ , and iteration 𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ) 

be completed. Then, 

if 𝛾 = 1, then 𝐻 ∈ 𝐼  and  𝑟 = 0; (109)

if 𝛾 ≠ 1, then 𝐻 ∈ 𝐼  and  𝑟 ≠ 0. (110)

Proof of Lemma 2. The descent direction, taking into account (51), has the form 𝑠 =−𝐻 𝛻𝑓 𝑥 = −𝐻 𝑟 = −𝐻 𝑟 . Based on Lemma 1, it follows that 𝐻 𝑟 ∈ 𝐷 . As fol-
lows from Theorem 8, a new eigenvector expressed in (72) and (73) with a unit eigenval-
ue appears in the subspace Dm, regardless of the accuracy of the one-dimensional de-
scent, which proves (109), taking into account the accuracy of the one-dimensional 
search. With an inexact descent, part of the residual remains along the vector zk, which 
proves (110). □ 

Lemma 3. Let Hk > 0, Hk ∈ Im, m ≤ n, 𝑟 ≠ 0, 𝑟 ≠ 0, and iteration 𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ) 
be completed. Then, it follows that 

if 𝛾 = 1, then 𝐻 ∈ 𝐼  and  𝑟 = 0; (111)

if 𝛾 ≠ 1, then 𝐻 ∈ 𝐼  and  𝑟 ≠ 0. (112)

Proof of Lemma 3. Since 𝑟 ≠ 0, we take a system, where one of the eigenvectors is the 
vector 𝑟 , as an orthogonal system of eigenvectors in Qm. From the remaining eigenvec-
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tors, we form a subspace Qm−1 in which there is no residual. Applying to Qm−1 the results 
of Lemma 2 under the condition Hk ∈ Im−1, we obtain (111) and (112). □ 

By alternating operations with an exact and inexact one-dimensional descent, it is 
possible to obtain finite convergence on quadratic functions of QNMs. 

Theorem 10. Let Hk > 0, Hk ∈ Im, 0k
Qr ≠ , m < n − 1, and the iterations be completed as follows: 𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ), 𝛾 = 1 , (113)𝑄𝑁(𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 ), 𝛾  ≠ 1. (114)

Then, 𝐻 ∈ 𝐼 ,  𝑟 ≠ 0. (115)

Proof of Theorem 10. For the iteration of (113), we apply the result of Lemma 3 (111), 
and for the iteration of (114), we apply the result of Lemma 2 (110). As a result, we ob-
tain (115). □ 

Theorem 10 says that individual iterations with an exact one-dimensional descent 
make it possible to increase by one the dimension of the space where the quasi-Newton 
relation is satisfied. This means that after a finite number of such iterations, the matrix 
Hk = I will be obtained. 

Let us consider another way of increasing the dimension of the quasi-Newton rela-
tion. It consists of using, after iterations of QNMs, an additional iteration of descent 
along the orthogonal vector vk defined in (67), and according to (91), with an exact one-
dimensional descent coinciding, up to a scalar factor, with the descent direction 𝑠 =𝐻 𝑧 , 𝑧 / 𝑣   of the BFGS method: 𝑄𝑁 𝑥 , 𝐻 , 𝑥 / , 𝐻 / , 𝛾 , 𝛾 ∈ (0,2) , (116)𝑥 = 𝑥 / + 𝛽 / 𝑣 ,   𝛾 ∈ (0,2), (117)

          𝑣 = 〈𝑧 , 𝐻 𝑧 〉 〈 , 〉 − 〈 , 〉 , (118)

𝐻 = 𝐻 𝐻 / ,Δ𝑥 / , 𝑦 / . (119)

Let us denote the iterations in (116)–(119) by 𝑉𝑄𝑁 𝑥 , 𝐻 , 𝑥 , 𝐻 , 𝛾 , 𝛾 /  , 𝛾 ∈ (0,2) , 𝛾 / ∈ (0,2).  (120)

Lemma 4. Let Hk > 0, Hk ∈ Im, 𝑟 ≠ 0, 𝑟 ≠ 0, m ≤ n − 1, and the iteration of (120) be complet-
ed. Then, 𝐻 ∈ 𝐼 ,  𝑟 ≠ 0. (121)

Proof of Lemma 4. For the iteration of (116), as in the proof of Lemma 3, since 𝑟 ≠ 0, we 
take this as an orthogonal system of eigenvectors in Qm, where one of the eigenvectors is 
the vector 𝑟 . From the remaining eigenvectors, we form a subspace Qm−1 in which there 
is no residual, and for this subspace, Hk ∈ Im−1 holds. As a result of (116), according to the 
results of Theorem 8, an eigenvector zk ∉ Qm−1 is formed. It is a derivative of vector 𝑠 =−𝐻 𝑟 ∉ 𝑄 , which, due to multiplication by a matrix Hk ∈ Im−1 with residual 𝑟 ∉𝑄 , according to the results of Lemma 1, does not belong to the subspace Qm−1. For this 
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reason, the vector vk ∉ Qm−1 obtained by Formula (118), orthogonal to zk, because of 
(117)–(119), becomes an eigenvector of the matrix Hk+1. Thus, the subspace Qm−1 is replen-
ished with two eigenvectors of the matrix Hk+1, resulting in (121). □ 

Theorem 11. To obtain Hk ∈ In, it is necessary to perform the iteration of (120) (n − 1) times. 

Proof of Theorem 11. In the first iteration of (120), we obtain Hk+1 ∈ I2. In the next (n − 2) 
iterations of (120), according to the results of Lemma 4, we obtain Hk+n−1 ∈ In. □ 

The results of Theorem 11 and Lemma 5 indicate the possibility of using techniques 
for increasing the dimension of the subspace of quasi-Newton relations’ execution at ar-
bitrary moments, which enables us, as will be shown below, to develop QNMs that are 
resistant to the inaccuracies of a one-dimensional search. 

In summary, the following conclusions can be drawn about properties of QNMs on 
quadratic functions without the condition of an exact one-dimensional descent. 
1. The dimension of the minimization subspace decreases as the dimension of the sub-

space of fulfillment of the quasi-Newton relation increases (Lemma 2). 
2. The dimension of the subspace of fulfillment of the quasi-Newton relation does not 

decrease during the execution of the QNM (Lemmas 2–5). 
3. Individual iterations with an exact one-dimensional descent increase the dimension 

of the subspace of the quasi-Newton relation (Lemma 4). 
4. Separate inclusions of iterations with the transformation of matrices for pairs of 

conjugate vectors increase the dimension of the subspace of the quasi-Newton rela-
tion (Lemma 5). 

5. It is sufficient to perform at most the (n − 1) inclusion of an exact one-dimensional 
descent (113) in arbitrary iterations to solve the problem of minimizing a quadratic 
function in a finite number of steps in the QNM (Lemma 4 and Theorem 10). 

6. To solve the problem of minimizing a quadratic function in a finite number of steps 
in the QNM, it is sufficient to perform in arbitrary iterations no more than (n − 1) 
inclusions of matrix transformations for pairs of descent vectors obtained as a result 
of the transformations in (118) and (119) (Lemma 5 and Theorem 11). 

7. Methods for Increasing the Orthogonality of Learning Vectors in Quasi-Newton 
Methods 

The term “degree of orthogonality” refers to the type of function (71a). For the type 
of function (6), this term means the degree of conjugacy of the vectors. Several conclu-
sions can be drawn from our considerations. 

Firstly, it is preferable to use the BFGS method. With imprecise one-dimensional de-
scent in the DFP method, successive descent directions are less orthogonal than in the 
BFGS method (79). 

Secondly, it makes sense to increase the degree of accuracy of the one-dimensional 
search, since individual iterations with an exact one-dimensional descent increase the 
dimension of the subspace of the quasi-Newton relation (Theorem 10), which reduces 
the dimension of the minimum search region. 

Thirdly, separate inclusions of iterations with matrix transformation for pairs of 
conjugate vectors increase the dimension of the subspace of the quasi-Newton relation 
(Lemma 4). This requires applying a sequence of descent iterations for pairs of conjugate 
vectors (120). 

On the other hand, it is important to correctly select the scaling factor ω of the initial 
matrix H0 = ωI from (1) in the QNM. Let us consider an example of a function of the form 
expressed in (6): 
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The eigenvalues of the matrix of second derivatives A and its inverse 𝐴  are 𝜆 = 𝑎𝑛𝑑 𝜆 = 𝑖, respectively. The gradient of the quadratic function in (122) is 𝛻𝑓(𝑥) =∑ 𝑖 𝑥 . In the first stages of the search for 𝐻 = 𝐼, in the gradients )()( *xxAxf −=∇  and 
gradient differences, components of eigenvectors with large eigenvalues of matrix A 
and, accordingly, small eigenvalues of the matrix A−1 = H prevail. Let us calculate an ap-
proximation of the eigenvalues for scaling the initial matrix using data from (3) of the 
first iteration of the methods in (1)–(4): 𝜆 ≤  𝜔 = 〈 , 〉〈 , 〉 = 〈 , 〉〈 , 〉 ≤ 𝜆 , (123)

where min max,H Hλ λ  are the minimum and maximum eigenvalues of the matrix A−1 = H, re-
spectively. To scale the initial matrix H0, consider the following: 𝐻 = 𝐾𝜔𝐼 = 𝐾 〈Δx , Δx 〉〈𝑦 , Δx 〉 𝐼, 𝐾 ≥ 1. (124)

Let us qualitatively investigate the operation of the quasi-Newton BFGS method 
(71). Taking into account the predominance of eigenvectors with large eigenvalues of the 
matrix A and, accordingly, small eigenvalues of the matrix A−1 = H, it is possible to quali-
tatively display the picture of the reconstruction of the matrix A−1 eigenvectors for differ-
ent values of K, making a rough assumption that small eigenvalues are sequentially re-
stored. A rough diagram of the process of reconstructing the spectrum of matrix eigen-
values is shown in Figure 2. 

 
Figure 2. Qualitative behavior of the spectrum of matrix Hk eigenvalues for cases of scaling (124) 
for various values of K. 

One of the components of increasing the degree of orthogonality of learning vectors 
in QNMs is the normalization of the initial metric matrix (124). In Section 8, we will con-
sider the impact of the methods noted in this section on increasing the efficiency of 
QNMs. 

λH 

minλ  

Hλ  k 1 

K=1 

K>1 
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8. Numerical Study of Ways to Increase the Orthogonality of Learning Vectors in  
Quasi-Newton Methods 

We implemented and compared quasi-Newtonian BFGS and DFP methods. A one-
dimensional search procedure with cubic interpolation [41] (exact one-dimensional de-
scent) and a one-dimensional minimization procedure [34] (inexact one-dimensional de-
scent) were used. We used both the classical QNM with the iterations of (1)–(4) (denoted 
as BFGS and DFP) and the QNM including iterations with additional orthogonalization 
(116)–(119) in the form of a sequence of iterations (120) (denoted as BFGS_V and 
DFP_V). The experiments were carried out by varying the coefficients of the initial nor-
malization of the matrices of the QNM metric. 

Since the use of quasi-Newtonian methods is justified primarily based on functions 
with a high degree of conditionality where conjugate gradient methods do not work ef-
ficiently, the test functions were selected based on this principle. Since the QNM is based 
on a quadratic model of a function, its local convergence rate in a certain neighborhood 
of the current minimum is largely determined by the efficiency of minimizing the ill-
conditioned quadratic functions. The test functions are as follows: 

(1) 𝑓 (𝑥) = ∑ 𝑥 𝑖 , 𝑥 = (10/1,10/2, . . . ,10/𝑛).  
The optimal value and minimum point are 𝑓∗ = 0 𝑎𝑛𝑑 𝑥∗ = (0,0, … ,0). The condi-

tion number of the matrix of second derivatives for some n is 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) =𝜆 /𝜆 = 𝑛 . When n=1000, the condition number will be 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) = 1000 =10 . 

(2) 𝑓 (𝑥) = ∑ 𝑥 , 𝑥 = (10,10, . . . ,10). 
The optimal value and minimum point are 𝑓∗ = 0 𝑎𝑛𝑑 𝑥∗ = (0,0, … ,0). The condi-

tion number of the matrix of second derivatives for some n is 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) =𝜆 /𝜆 = 𝑛 . When n = 1000, the condition number will be 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) = 1000 =10 . 
(3) 𝑓 (𝑥) = (∑ 𝑥 𝑖) , 𝑥 = (1,1, … ,1), 𝑟 = 2. 
The optimal value and minimum point are 𝑓∗ = 0 𝑎𝑛𝑑 𝑥∗ = (0,0, … ,0). The function 

f3 is based on a quadratic function with the condition number of the matrix of second de-
rivatives for some n 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) = 𝜆 /𝜆 = 𝑛. When n = 1000, the condition num-
ber will be 𝑐𝑜𝑛𝑑 ∇ 𝑓 (𝑥) = 1000. The topology of the level surfaces of the function f3 is 
identical to the topology of the level surfaces of the basic quadratic function. The matrix 
of second derivatives of a function tends to zero as it approaches the minimum. Conse-
quently, the inverse matrix tends to infinity. The approximation pattern for the matrix of 
second derivatives in the QNM will correspond to K = 1 in Figure 2. This case makes it 
difficult to enter a new subspace due to the significant predominance of eigenvalues in 
the metric matrix in the already surveyed part of the subspace compared to the eigen-
values of the metric matrix in the unsurveyed area. 

(4) 𝑓 (𝑥) = ∑ [10 ∙ (𝑥 − 𝑥 ) + (𝑥 − 1) ]/ , 𝑥 = (1.2,1, −1.2,1, … , −1.2,1). 
The optimal value and minimum point of rescaled multidimensional Rosenbrock 

function [42] are 𝑓∗ = 0 𝑎𝑛𝑑 𝑥∗ = (1,1, … ,1). This function has a curved ravine with small 
values of the second derivative in the direction of the bottom of the ravine and large val-
ues of the second derivative in the direction of the normal to the bottom of the ravine. 
The ratio of second derivatives along such directions is approximately 108. 

The stopping criterion is 𝑓(𝑥 ) − 𝑓∗ ≤ 𝜀 = 10 . 

The results of minimizing the presented functions are given in Tables 1 and 2 for n = 
1000. The problem was considered solved if the method, within the allotted number of 
iterations and calculations of the function and gradient, reached a function value that 
satisfied the stopping criterion. The cell indicates the number of iterations (one-
dimensional searches along a direction), and below is the number of calls to the function 
procedure, where the function and gradient are calculated simultaneously. The number 
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of iterations in all tests were limited to 40,000. If the costs of the method exceeded the 
specified number of iterations, the method was stopped. It was believed that no solution 
had been found by this method. The dash sign indicates options where a solution could 
not be obtained. In cases where there was no solution, looping of methods occurred due 
to the smallness of the minimization steps and, as a consequence, large errors in the gra-
dient differences used in the transformation operations of metric matrices. 

Let us consider the effects of reducing the convergence rate of the method. For ex-
ample, for the function f3, the matrix of second derivatives tends to zero as it approaches 
the minimum. Consequently, the inverse matrix tends to infinity. The approximation pat-
tern for the matrix of second derivatives in the QNM will correspond to K = 1 in Figure 
2. In the explored part of the subspace, the matrix of the QNM grows. Therefore, the 
slight presence of residuals in this part of the subspace is greatly amplified. In the unex-
plored part of the space, the eigenvalues are fixed. This case makes it difficult to enter a 
new subspace due to the significant predominance of eigenvalues in the metric matrix in 
the explored part of the subspace compared to the eigenvalues of the metric matrix in 
the unexplored area. In order to enter the unexplored part of the subspace, it is neces-
sary to eliminate the discrepancy in the explored part of the space. As a consequence, 
when minimizing functions with a high degree of conditionality, the search steps be-
come smaller, the errors in the gradient differences increase, and the minimization 
method becomes loopy. 

Table 1. Results of minimization with normalization of matrix (124) at K = 1 and n = 1000. 

 
Exact Descent Inexact Descent 

BFGS BFGS_V DFP DFP_V BFGS BFGS_V DFP DFP_V 

f1(x) 1157 1157 1228 1211 1854 1648 - 1762 
2526 2523 2712 2667 3980 3413 3750 

f2(x) 2400 2370 - - 4351 3218 - - 
5663 5560 9908 7242 

f3(x) 1404 1396 - 1643 1905 1508 5837 2497 
3206 3190 3743 4286 3394 13,362 5686 

f4(x) 3328 2964 - - - - - - 
7455 6668 

For exact descent, there are practically no differences between the BFGS and 
BFGS_V methods. In exact descent, successive descent vectors for quadratic functions 
are conjugated, and matrix learning, considered in a coordinate system with an identity 
matrix of second derivatives, is carried out using an orthogonal system of vectors. Minor 
errors lead to the fact that this orthogonality is violated, which affects the DFP method. 

For inexact descent, the BFGS_V method significantly outperforms the BFGS meth-
od. The DFP and DFP_V methods are practically ineffective on these tests, although the 
DFP_V method shows better results. 

Thus, with one-dimensional search errors, the BFGS_V algorithm is significantly 
more effective than the BFGS method. The DFP method is practically not applicable 
when the problem is highly conditioned. 

Table 2 shows the experimental data with normalization of the matrix (124) at K > 1. 
For the functions f3(x) and f4(x), the coefficient K had to be reduced to obtain a more ef-
fective result. 

Table 2. Results of minimization with normalization of matrix (124) at K = 10,000 and n = 1000. For 
results marked with an asterisk, K = 100. 

 
Exact Descent Inexact Descent 

BFGS BFGS_V DFP DFP_V BFGS BFGS_V DFP DFP_V 
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f1(x) 1038 1038 1041 1041 1221 1189 1307 1260 
2194 2193 2197 2195 2190 2116 2431 2343 

f2(x) 791 795 1091 852 1386 1012 2524 1509 
1863 1874 2560 2028 3129 2159 5794 3341 

f3(x) 1082 * 1090 * 8977 * 1343 * 1281 1129 4281 1845 
2436 2454 20,201 3055 2802 2453 9742 4183 

f4(x) 4062 * 3850* - - - - - - 
9135 8686 

The initial normalization of the metric matrices, as follows from the results of Tables 
1 and 2, significantly improves the convergence of QNMs. The situation corresponds to 
the case in Figure 2 for K > 1. Large eigenvalues in the unexplored part of the subspace 
make it easy to find new conjugate directions and efficiently train metric matrices with 
almost orthogonal training vectors. 

For exact descent, there are practically no differences between the BFGS and 
BFGS_V methods. For inexact descent, the BFGS_V method significantly outperforms 
the BFGS method. The DFP and DFP_V methods are efficient for functions f1(x) − f3(x), 
while for inexact descent, the DFP_V method significantly outperforms the DFP method.  

Thus, in the case of one-dimensional search errors, the BFGS_V algorithm is signifi-
cantly more efficient than the BFGS method and correct initial normalization of metric 
matrices can significantly increase the convergence rate of the method. 

For the purpose of giving a visual demonstration of the method, we minimize a 
two-dimensional function as follows: 𝑓 (𝑥) = (𝑥 + 100𝑥 ) , 𝑥 = (1,1). 

To test the idea of the efficiency of orthogonalization to increase the performance of 
the quasi-Newton method, to adversely affect the minimization conditions, the initial 
matrix was normalized at K = 0.000001, which should significantly complicate the solu-
tion of the problem and reveal the effect of the advantages of the degree of orthogonality 
of the learning vectors of the BFGS and BFGS_V methods over the DFP method. 

The stopping criterion was 𝑓(𝑥 ) − 𝑓∗ ≤ 𝜀 = 10 . 

The results are shown in Table 3. The row with f5(x) shows the number of iterations, 
while the row with fmin shows the minimal function value achieved. 

Table 3. Results of minimization with normalization of matrix (124) at K = 0.000001 and n = 2. 

 
Exact Descent 

BFGS BFGS_V DFP_V 
Number of iterations 13 5 3733 

Fmin 2.5862 × 10−3 7.5003 × 10−4 7.7552 × 10−3 

The path of three considered algorithms is shown in Figure 3. 
Here, theoretical results of the influence of the orthogonality degree of matrix learn-

ing vectors on the convergence rate of the method are confirmed. The BFGS_V method 
performs forced orthogonalization, which improves the result of the BFGS method. The 
trajectories of the methods are listed in Tables A1–A3 of Appendix A (the trajectory of 
the DFP method is shown partially). 
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Figure 3. Level curves and paths of the optimization algorithms for function f5. 

9. Conclusions 
This paper presents methods for converting metric matrices in quasi-Newton meth-

ods based on gradient learning algorithms. As a result, it is possible to represent the sys-
tem of learning steps in the form of an algorithm for minimizing a certain objective func-
tion along a system of directions and to draw conclusions about the convergence rate of 
the learning process based on the properties of this system of directions. The main con-
clusion is that the convergence rate is directly dependent on the degree of orthogonality 
of the learning vectors. 

Based on the study of learning algorithms in the DFP and BFGS methods, it is pos-
sible to show that the degree of orthogonality of the learning vectors in the BFGS meth-
od is higher than that in the DFP method. This means that entering the unexplored re-
gion of the minimization space due to the noise and inaccuracies of one-dimensional de-
scent in the DFP method is more difficult than in the BFGS method, which explains why 
the BFGS updating formula has the best results. 

As a result of studies on quadratic functions, it has been revealed that the dimen-
sion of the minimization space is reduced when iterations with an exact one-
dimensional descent or iterations with additional orthogonalization are included in the 
quasi-Newton method. It is shown that it is also possible to increase the orthogonality of 
the learning vectors and thereby increase the convergence rate of the method through 
special normalization of the initial metric matrix. The theoretically predicted effects of 
increasing the efficiency of quasi-Newton methods were confirmed as a result of a com-
putational experiment on complex ill-conditioned minimization problems. In future 
work, we plan to study minimization methods under the conditions of a linear back-
ground that adversely affects the convergence. 
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Appendix A 

Table A1. Trajectory of the BFGS_V method moving. 

Iteration f5(x) x1 x2 
0 0.0 1.0 1.0 
1 9.605985 × 10−1 9.900005 × 10−1 5.073008 × 10−5 
2 9.605986 × 10−1 9.900005 × 10−1 5.332304 × 10−5 
3 9.605988 × 10−1 9.900006 × 10−1 5.659179 × 10−5 
4 1.396454 × 10−1 6.112994 × 10−1 2.122674 × 10−4 
5 7.500359 × 10−4 1.654885 × 10−1 5.745936 × 10−5 

Table A2. Trajectory of the BFGS method moving. 

Iteration f5(x) x1 x2 
0 0.0 1.0 1.0 
1 4.865982 × 102 9.854078 × 10−1 −4.592161 × 10−1 
2 1.489919 9.895086 × 10−1 −4.914216 × 10−2 
3 9.608406 × 10−1 9.899878 × 10−1 −1.220497 × 10−3 
4 9.605957 × 10−1 9.899999 × 10−1 −6.968405 × 10−6 
5 9.605941 × 10−1 9.899990 × 10−1 −1.031223 × 10−4 
6 9.605941 × 10−1 9.899990 × 10−1 −9.891454 × 10−5 
7 9.605941 × 10−1 9.899990 × 10−1 −9.945802 × 10−5 
8 9.612290 × 10−1 9.899966 × 10−1 1.815384 × 10−3 
9 9.641387 × 10−1 9.899999 × 10−1 −4.249478 × 10−3 

10 9.605818 × 10−1 9.899963 × 10−1 9.036299 × 10−6 
11 9.059276 × 10−1 9.603298 × 10−1 −1.719565 × 10−2 
12 1.634266 × 10−2 2.596599 × 10−1 2.457950 × 10−2 
13 2.586155 × 10−3 −2.187391 × 10−2 −2.244455 × 10−2 

Table A3. Trajectory of the DFP method moving. 

Iteration f5(x) x1 x2 
0 0.0 1.0 1.0 
1 9.605985 × 10−1 9.900005 × 10−1 5.073008 × 10−5 
2 9.605986 × 10−1 9.900005 × 10−1 5.332304 × 10−5 
3 9.605988 × 10−1 9.900006 × 10−1 5.659179 × 10−5 
4 9.605991 × 10−1 9.900006 × 10−1 6.073300 × 10−5 
5 9.605994 × 10−1 9.900007 × 10−1 6.601199 × 10−5 
6 9.605942 × 10−1 9.899988 × 10−1 −1.191852 × 10−4 
7 9.605942 × 10−1 9.899988 × 10−1 −1.202172 × 10−4 
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8 9.605942 × 10−1 9.899988 × 10−1 −1.215724 × 10−4 
9 9.605942 × 10−1 9.899988 × 10−1 −1.233791 × 10−4 

10 9.605942 × 10−1 9.899987 × 10−1 −1.258332 × 10−4 
11 9.605957 × 10−1 9.899999 × 10−1 −8.005638 × 10−6 
12 9.605974 × 10−1 9.899977 × 10−1 −2.294417 × 10−4 
13 9.605962 × 10−1 9.900000 × 10−1 4.809401 × 10−6 
14 9.605946 × 10−1 9.899985 × 10−1 −1.494894 × 10−4 
15 9.605941 × 10−1 9.899992 × 10−1 −8.356599 × 10−5 
16 9.605941 × 10−1 9.899990 × 10−1 −1.019703 × 10−4 
17 9.605941 × 10−1 9.899990 × 10−1 −9.866443 × 10−5 
18 9.605941 × 10−1 9.899990 × 10−1 −9.826577 × 10−5 
19 9.605941 × 10−1 9.899990 × 10−1 −9.914318 × 10−5 
20 9.605941 × 10−1 9.899990 × 10−1 −9.806531 × 10−5 
21 9.639558 × 10−1 9.899569 × 10−1 −4.240006 × 10−3 
22 9.605941 × 10−1 9.899991 × 10−1 −9.292366 × 10−5 
23 9.605942 × 10−1 9.899988 × 10−1 −1.237791 × 10−4 
24 9.605943 × 10−1 9.899994 × 10−1 −6.417724 × 10−5 
25 9.605943 × 10−1 9.899986 × 10−1 −1.365365 × 10−4 
26 9.605942 × 10−1 9.899992 × 10−1 −7.609652 × 10−5 
27 9.605941 × 10−1 9.899989 × 10−1 −1.126456 × 10−4 
28 9.605941 × 10−1 9.899990 × 10−1 −9.613542 × 10−5 
29 9.605941 × 10−1 9.899990 × 10−1 −1.018252 × 10−4 
30 9.605941 × 10−1 9.899990 × 10−1 −1.002864 × 10−4 
31 9.605941 × 10−1 9.899990 × 10−1 −1.007205 × 10−4 
32 9.605941 × 10−1 9.899990 × 10−1 −1.001624 × 10−4 
33 9.605941 × 10−1 9.899990 × 10−1 −1.006906 × 10−4 
34 9.605941 × 10−1 9.899990 × 10−1 −1.000533 × 10−4 
35 9.605941 × 10−1 9.899990 × 10−1 −1.006925 × 10−4 
36 9.605941 × 10−1 9.899990 × 10−1 −9.993761 × 10−5 
37 9.605941 × 10−1 9.899990 × 10−1 −1.007145 × 10−4 
38 9.605941 × 10−1 9.899990 × 10−1 −9.980530 × 10−5 
39 9.605941 × 10−1 9.899990 × 10−1 −1.007537 × 10−4 
40 9.605941 × 10−1 9.899990 × 10−1 −9.964890 × 10−5 
41 9.605941 × 10−1 9.899990 × 10−1 −1.008103 × 10−4 
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