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Abstract: In the vast statistical literature, there are numerous probability distribution models that can
model data from real-world phenomena. New probability models, nevertheless, are still required
in order to represent data with various spread behaviors. It is a known fact that there is a great
need for new models with limited support. In this study, a flexible probability model called the unit
Maxwell-Boltzmann distribution, which can model data values in the unit interval, is derived by
selecting the Maxwell-Boltzmann distribution as a base-line model. The important characteristics
of the derived distribution in terms of statistics and mathematics are investigated in detail in this
study. Furthermore, the inference problem for the mentioned distribution is addressed from the
perspectives of maximum likelihood, method of moments, least squares, and maximum product
space, and different estimators are obtained for the unknown parameter of the distribution. The
derived distribution outperforms competitive models according to different fit tests and information
criteria in the applications performed on four actual air pollutant concentration data sets, indicating
that it is an effective model for modeling air pollutant concentration data.
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1. Introduction

Volatile organic compounds (VOCs) are chemical pollutants that are frequently encoun-
tered in environments we breathe [1]. VOCs can be classified according to their volatility.
The World Health Organization (WHO) classifies indoor pollutants into three categories:
Very VOCs (VVOCs), VOCs, and Semi-VOCs (SVOCs). VVOCs are characterized by their
extremely high volatility; this allows them to be predominantly found in the air in gaseous
form rather than bound to materials or surfaces. Due to their high volatility, it is difficult
to accurately measure VVOCs. On the other hand, SVOCs are less volatile and are more
likely to be found in materials or surfaces rather than in the air. In indoor environments,
the concentration of VVOCs is typically higher than SVOCs due to their high volatility
and their tendency to be found in the air as a gas. Although it is difficult to accurately
measure VVOCs, they play a significant role in indoor air quality. Personal exposure to
VOCs, which are significant health concerns, has been evaluated by the U.S. Environmental
Protection Agency (EPA) in various cities in the U.S. through research. In general, the
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EPA’s research underscores the importance of understanding different VOC categories
according to volatility levels. Therefore, attempts to model the concentrations and ratios
of these compounds are common in statistical science, and it is important to model them
optimally. Aside from this, fraction evaluation is essential in a wide range of disciplines,
from engineering to healthcare. Traditionally, distributions supported on the unit interval
are crucial tools for modeling the behavior of such stochastic variables. Modeling and
predicting such variables are possible, but model selection beyond traditional models is a
must for establishing a base assumption as the measurements are limited to support (0, 1).

In this regard, researchers have proposed several statistical models for modeling the
phenomena on the support (0, 1). The foundational work in this field includes the beta
distribution, introduced by Bayes [2], which models these types of data. Subsequently, a
variety of unit interval distributions have been explored, such as the unit distribution [3],
the unit Johnson distribution [4], the four-parameter unit interval distribution [5], the
double bounded Kumaraswamy distribution [6], the Topp-Leone distribution [7] by Topp
and Leone, and the unit gamma distribution by Consul and Jain [8]. The alpha-unit
model [9], which is based on the standard normal distribution, is another contemporary
unitary distribution.

It is crucial to note that the constructions of the above-mentioned models employ
several transformation methodologies. These are the cumulative distribution function and
quantile transformation methodology, reciprocal transformation, exponentiation, condi-
tional distribution methodology, the T-X family approach, and the epsilon function studied
by Dombi et al. [10]. Upon using the above-mentioned strategies, researchers developed a
limited number of unit interval distributions. To account for the vast range of data found
in nature and measured within the unit interval, additional models are required. In recent
years, researchers have made some advancements in introducing distributions that can sta-
tistically model phenomena that take values on a bounded support, thereby enriching the
statistical literature with these new models. Some of these distributions include the quantile
distribution by Smithson and Shou [11]; Altun and Hamedani [12]’s work unit log-X gamma
distribution; Nakamura et al. [13]’s contribution regarding unit interval distribution; the
unit inverse Guassian distribution by Ghitany et al. [14]; Mazucheli et al. [15–17]’s work
on unit-Gompertz, unit-Lindley, and unit-Weibull distributions; and Gündüz et al. [18]’s
work on the unit Johnson distribution. Additionally, Altun [19] studied the log-weighted
exponential distribution, Biswas and Chakraborty [20] studied a new method for the con-
struction of unit interval distribution, Afify et al. [21] worked on a unit interval distribution,
Korkmaz and Korkmaz [22] studied unit log-log distribution, Fayomi et al. [23] studied the
unit–power Burr X distribution, Krishna et al. [24] studied the unit Teissier Distribution
using a conditional distribution approach, Biswas and Chakraborty [20] derived a number
of unit distributions, and Bakouch et al. [25] derived the unit exponential distribution.
These recent models have become important alternatives to the Beta distribution, a popular
tool for modeling observations measured in the unit interval.

In this study, we used the Maxwell-Boltzmann distribution (MBD) for deriving a unit
Maxwell-Boltzmann distribution (UMBD) by adopting the exponential transformation
methodology. Hence, we used the UMBD to model and analyze the concentrations of
pollutant data, which are the primary focus of this study.

The rest of this paper is organized as follows: Section 2 provides an overview of the
Maxwell-Boltzmann distribution. Section 3 derives the unit Maxwell-Boltzmann distri-
bution. Section 3 also investigates several characteristics of the unit Maxwell-Boltzmann
distribution, such as survival, hazard rate function (hrf), reserved hazard rate function
(rhrf), moment-generating functions, and its characterization. Section 4 investigates various
estimators for estimating the unit Maxwell-Boltzmann distribution’s parameter. A Monte-
Carlo simulation run is described in Section 5 to evaluate the efficiency of the estimators
provided in this paper. In Section 6, several examples for data modeling using the UMBD
are provided. These examples are presented to enable the evaluation of the UMBD’s per-
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formance in modeling real-world data and its effectiveness compared to alternatives. The
work’s conclusin is provided in Section 7.

2. An Overview to Maxwell-Boltzmann Distribution

The MBD is a fundamental probability distribution in statistical physics that describes
the distribution of the speeds or energies of particles in a gas at thermal equilibrium. The
distribution of a particle’s kinetic energy can be found using MBD, and when the speed
distribution is known, it can be associated with the particle’s speed using the formula
E = mv2/2, where v is the speed and m is the mass. The distribution function provides the
probability of finding a particle with a certain speed or energy within the system. While
this distribution is commonly used in physics and chemistry, it can also be used to model
data that is measured on the positive real line. MBD is defined as follows.

Definition 1. Let us assume that X is a random variable following an MBD with parameter θ > 0,
its pdf is represented by

g(x, θ) =

√
2
π

x2

θ3 exp
(
−x2

2θ2

)
, x > 0 (1)

with the cdf is

G(x, θ) = er f
(

x√
2θ

)
−
√

2
π

x
θ

exp
(
−x2

2θ2

)
, (2)

and the hrf defined as

H(x) =
x2

θ2
(

θe
x2

2θ2
√

π
2

(
1 − erf

(
x√
2θ

))
+ x
) , (3)

where θ is a positive-real valued shape parameter of the MBD and erf(.) implies the error function.

For further information on the error function, refer to Abramowitz and Stegun [26].
The hazard rate function of the MBD usually exhibits an increasing failure rate pattern for
all of the parameter’s values. The pdf and cdf of the MBD are illustrated in Figure 1 for
various parameter values.
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Figure 1. The pdf (left) and cdf (right) of the MBD for various values of θ.

3. Unit Maxwell-Boltzmann Distribution and Its Principal Characteristics

The purpose of this section is to derive the pdf and cdf of the UMBD. As part of this
section, we also examine statistically significant features of the UMBD, such as the hrf, rhrf,
the moments, the moment generating function, the characteristic function, the skewness,
and the kurtosis coefficients, as well as the mean, variance, and median.
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Definition 2. Let X be a random variable from MBD with parameter θ > 0. Then, the pdf of the
random variable Y = e−X is

f (y, θ) =

√
2
π ln2

(
1
y

)
e−

ln2( 1
y )

2θ2

θ3y
, 0 < y < 1, (4)

and the corresponding cdf is

F(y; θ) = 1 −

√
ln2
(

1
y

)
erf


√

ln2
(

1
y

)
√

2θ


ln
(

1
y

) +

√
2
π ln
(

1
y

)
e−

ln2 ( 1
y )

2θ2

θ
, 0 < y < 1, (5)

where θ is a positive real-valued parameter. The pdf and cdf of the UMBD are plotted in Figure 2
to provide information on the formal behavior of the model for a range of θ parameter values. The
UMBD is a useful model for handling data with left- or right-skewed distributions that are defined
on support (0, 1), as shown in Figure 2.
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Figure 2. The pdf (left) and cdf (right) of the UMBD for various values of the θ.

Next, we examine the UMBD’s characteristics, including its survival function, hrf,
rhrf, mode, moments, variance, kurtosis and skewness coefficients, and characteristic and
moment-generating functions.

Assume Y is a UMBD-distributed random variable with parameter θ. The UMBD’s
survival function SY(y), (y ∈ (0, 1)), when pdf (4) and cdf (5) are taken into account, is:

SY(y) = 1 − FY(y, θ)

=

√
ln2
(

1
y

)
erf


√

ln2( 1
y )

√
2θ


ln
(

1
y

) −
√

2
π ln

(
1
y

)
e
−

ln2 ( 1
y )

2θ2

θ .
(6)

By the definition of the hrf, the hrf of UMBD is

H(y) =
ln2
(

1
y

)
√

π
2 θ3ye

ln2 ( 1
y )

2θ2 erf

(
ln
(

1
y

)
√

2θ

)
− θ2yln

(
1
y

) (7)
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and reserved hazard rate of Y is

ξ(y) =

√
π
2 ln2

(
1
y

)
θ2

(
θye

ln2 ( 1
y )

2θ2

(
1 − erf

(
ln
(

1
y

)
√

2θ

))
−
√

π
2 yln

(
1
y

)) . (8)

The hrf and rhrf of the UMBD are plotted in Figure 3 for various values of parameter
θ to exemplify of their behavior:
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Figure 3 shows that the UMBD’s hrf is compatible with bathtub ( θ → 3 or θ ≥ 3) or
increasing forms (θ < 3), while its reverse hazard function decreases for all values of θ.

Proposition 1. If the random variable Y follows the UMBD with parameter θ, then H(y) satisfies

f ′(y)
f (y)

=
H′(y)
H(y)

− H(y). (9)

Proof. Given that Y is a continuous random variable and considering a general definition
of the hrf and Equation (7), one can promptly write

H′(y)
H(y)

=
f ′(y)S(y) + f 2(x)

S(y)2
S(y)
f (y)

=
f ′(y)
f (y)

+ H(y) (10)

Hence, the proposition statement follows. □

Proposition 2. Suppose a random variable Y : Ω → (0, 1) follows the UMBD with parameter
θ, and H(y) is its hrf given by Equation (7). Then, the following equation holds.

H′(y)
(H(y))2 =

(ln
(

1
y

))2
− 2θ2 − θ2ln( 1

y ))(θer f [
ln
(

1
y

)
√

2θ
]− −

(ln( 1
y ))

2

2θ2
√

2
π ln( 1

y ))

−
(ln( 1

y ))
2

2θ2
√

2
π

(
ln
(

1
y

))3
(11)

Proof. Necessity: Given that Y follows the UMBD (θ) with the probability density function
f (y) defined by Equation (4), one can express the logarithm of this pdf as follows:

ln( f (y)) = ln

(√
2
π

)
+ 2ln

(
ln
(

1
y

))
−

(
ln
(

1
y

))2

2θ2 − ln(y)− 3ln(θ). (12)
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If the above equality is differentiated concerning y, the following is obtained:

f ′(y)
f (y)

=

(
ln
(

1
y

))2
− 2θ2 − θ2ln

(
1
y

)
yθ2ln

(
1
y

) . (13)

Using this equation and considering Proposition 1, we can write

H′(y)
H(y)

=

(
ln
(

1
y

))2
− 2θ2 − θ2ln

(
1
y

)
yθ2ln

(
1
y

) +
e−

(ln( 1
y ))

2

2θ2
√

2
π

(
ln
(

1
y

))2

yθ2(θerf[
ln
(

1
y

)
√

2θ
]− e−

(ln( 1
y ))

2

2θ2
√

2
π ln( 1

y ))

. (14)

After some simplification, this equation is reduced to Equation (11).
Sufficiency: Given that Equation (11) holds, upon integration, we can express it as

∫ H′(u)
(H(u))2 du =

∫ (
(

ln
(

1
u

))2
− 2θ2 − θ2 ln( 1

u ))(θerf[
ln( 1

u )√
2θ

]− e−
(ln( 1

u ))
2

2θ2
√

2
π ln( 1

u ))

e−
(ln( 1

u ))
2

2θ2
√

2
π

(
ln
(

1
u

))3
du, (15)

That is,

− 1
H(u)

=

uθ2

(
θerf

[
ln( 1

u )√
2θ

]
− e−

(ln ( 1
u ))

2

2θ2
√

2
π ln
(

1
u

))

e−
(ln ( 1

u ))
2

2θ2
√

2
π

(
ln
(

1
u

))2
. (16)

If Equation (16) is integrated from 0 to y, it is obtained that

− ln(1 − F(y)) = −ln



√
ln2
(

1
y

)
erf


√

ln2
(

1
y

)
√

2θ


ln
(

1
y

) −

√
2
π ln
(

1
y

)
e−

ln2 ( 1
y )

2θ2

θ


, (17)

which after simplification yields

F(y) = 1 −

√
ln2
(

1
y

)
erf


√

ln2
(

1
y

)
√

2θ


ln
(

1
y

) +

√
2
π ln
(

1
y

)
e−

ln2 ( 1
y )

2θ2

θ
, (18)

whereby from the conditions F(0) = 0 and F(1) = 1. Thus, the proof is finished and the
function F(y) is verified as the cdf from the UMBD (θ). □

Lemma 3. Suppose r > 0 is an integer. The rth raw moment, µr, of the UMBD(θ) is

µr =

(
e

θ2r2
2

(
θ2r2 + 1

)
erfc
(

θr√
2

)
−
√

2
π

θr

)
. (19)
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Proof. Considering pdf (4) and following the definition of the rth moment, we have

µr = E(Yr) =
∞∫

−∞
yr f (y, θ)dy

=
1∫

0
yr

√
2
π ln2

(
1
y

)
e
−

ln2 ( 1
y )

2θ2

θ3y dy

=

(
e

θ2r2
2
(
θ2r2 + 1

)
erfc

(
θr√

2

)
−
√

2
π θr

)
.

(20)

Using Equation (20), the first two raw moments of the UMBD can be expressed as

µ1 = e
θ2
2

(
θ2 + 1

)
erfc

(
θ√
2

)
−
√

2
π

, (21)

µ2 = e2θ2
(

4θ2 + 1
)

erfc
(√

2θ
)
− 2

√
2
π

θ (22)

.
Thus, the variance of the UMBD is

Var(Y) = µ2 − µ2
1= −

(√
2
π

θ − e
θ2
2

(
θ2 + 1

)
erfc

(
θ√
2

))2

+ e2θ2
(

4θ2 + 1
)

erfc
(√

2θ
)
− 2

√
2
π

θ. (23)

Furthermore, the moment generating function and the characteristic function of the
UMBD are as follows:

MY(t) =
∞∫

−∞
ety f (y, θ)dy

=
∞
∑

j=0

tj

j!

1∫
0

yj f (y, θ)dy

=
∞
∑

j=0

tj

j!

(
e

θ2 j2
2
(
θ2 j2 + 1

)
erfc

(
θ j√

2

)
−
√

2
π θ j
) (24)

and

ϕY(t) =
∞∫

−∞
eity f (y, θ)dy

=
∞
∑

j=0

(
i t)j

j!

(
e

θ2 j2
2
(
θ2 j2 + 1

)
erfc

(
θ j√

2

)
−
√

2
π θ j
)

,
(25)

respectively. □

Proposition 4. The mode of UMBD is e−
1
2 θ(

√
θ2+8+θ).

Proof. By considering the pdf of the UMBD, we have

f ′(y, θ) =
d

dy
f (y, θ) =

ln
(

1
y

)
θ2 − 2

ln
(

1
y

) − 1

y
f (y, θ) = 0. (26)

Considering f (y, θ) ̸= 0 for ∀y ∈ (0, 1), we can write from (26) as

2
ln(y)

− ln(y)
θ2 − 1 = 0. (27)

Hence, from the solution of the Equation (27) with respect to y, the mode of the UMBD
is obtained as e−

1
2 θ(

√
θ2+8+θ). □



Axioms 2024, 13, 226 8 of 19

4. Inference

The goal of this section of the study is to investigate the solution to the problem
of estimating the unknown parameter of the UMBD. Here, maximum likelihood, least-
squares, weighted-least-squares, maximum spacing, and moments estimation techniques
are employed to accomplish this aim.

Let Y1, Y2, ..., Yn be a sample of an independently and identically distributed UMBD
with a one-dimensional parameter θ, and let y1, y2, ..., yn represent a realization of it. The
likelihood function L(θ, y1, y2, ..., yn) is

L(θ, y1, y2, ..., yn) =
n

∏
i=1

√
2
π ln2

(
1
yi

)
e−

ln2 ( 1
yi

)

2θ2

θ3yi
(28)

and the logarithmic likelihood function is

lnL(θ, y1, y2, . . . , yn) = 1
2

(
−∑n

i=1 ln2(yi)
θ2 + 4

n
∑

i=1
ln(ln(yi))− 2

n
∑

i=1
ln(yi)− 6nln(θ)

)
+ 1

2 (nln(2)− nln(π)).
(29)

The maximum likelihood estimator (MLE) for the θ can be obtained by the derivation
of Equation (29) concerning θ and setting the resulting derivative as equal to zero. The
Equation (29)’s derivative with respect to θ is

δlnL(θ, y1, y2, . . . , yn)

δθ
=

(
∑n

i=1 ln2(yi)

θ3 − 3n
θ

)
= 0. (30)

Hence, from the solution of the Equation (30), we have the MLE of the parameter θ as

θ̂ =

√
∑n

i=1 ln2(yi)

3n
. (31)

The least-squares estimator (LSE) of the θ can be obtained by minimizing the utility
function as

QLSE =
n

∑
i=j


1 −

√
ln2
(

1
y(j)

)
erf


√

ln2
(

1
y(j)

)
√

2θ


ln
(

1
y(j)

) +

√
2
π ln
(

1
y(j)

)
e−

ln2 ( 1
y(j)

)

2θ2

θ
− Pj



2

, (32)

with respect to parameter θ, where y(1), y(2), . . . , y(n) and
(

y(1) < y(2) < · · · < y(n)
)

are an

order with the measurements y1, y2, ..., yn, and Pj =
j

n+1 . For further information about
least squares estimation methodology, see Günay & Yilmaz [27]. Here, the utility function
QLSE includes nonlinear functions and it has to be solved using a numerical method. We
use the “fmincon” routine of the Octave [28] for minimizing the QLSE function.

Similarly to LSE, the weighted-LSE (WLSE) for θ is obtained by minimizing the
utility function
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QWLSE =
n

∑
j=1

(n + 1)2(n + 2)
j(n − j + 1)


1 −

√
ln2
(

1
y(j)

)
erf


√

ln2
(

1
y(j)

)
√

2θ


ln
(

1
y(j)

) +

√
2
π ln
(

1
y(j)

)
e−

ln2 ( 1
y(j)

)

2θ2

θ
− Pj



2

. (33)

To construct the maximum product space estimator (MPSE) of the parameter θ, we
have used the [27] steps for this aim and have the utility function

QMPSE =
n+1

∑
j=1

ln
[

F
(

y(j), θ
)
− F

(
y(j−1), θ

)]
, (34)

QMPSE =
n+1
∑

j=1
ln

1 −

√
ln2( 1

y(j)
)erf(

√
ln2( 1

y(j)
)

√
2θ

)

ln( 1
y(j)

)
+

√
2
π ln( 1

y(j)
)e

−
ln2 ( 1

y(j)
)

2θ2

θ

−

1 −

√
ln2( 1

y(j−1)
)erf(

√
ln2( 1

y(j−1)
)

√
2θ

)

ln( 1
y(j−1)

)
+

√
2
π ln( 1

y(j−1)
)e

−
ln2 ( 1

y(j−1)
)

2θ2

θ


.

(35)

Subsequently, the objective function QMPSE regarding parameter θ is numerically maxi-
mized to yield the MPSE of θ. In the function QMPSE, F

(
Y(0), θ

)
≡ 0, and F

(
Y(n+1), θ

)
≡ 1.

For maximizing the function QMPSE, one can use the “fmincon” function of the Octave [28].
Based on y1, y2, . . . , yn observations and the first moment of the UMBD given by

Equation (20), an estimator based on the method of moments for θ denoted as θ̂MOM can be
formally derived by solving the equation

1
n

n

∑
i=1

yi = e
θ2
2

(
θ2 + 1

)
erfc

(
θ√
2

)
−
√

2
π

(36)

with respect to θ. Thus, the method of moments estimator (MOME) of the parameter θ is
obtained analytically as

θ̂MOM =

√
π

2n
√

2

n

∑
i=1

ln
(

1
yi

)
. (37)

5. Simulation Study

In this section, performance of the estimators MLE, LSE, WLSE, MPSE, and MOME
are numerically assessed. Criteria MSE and bias are used to compare the above-mentioned
estimators, and they are denoted as

MSE =
1
m

n

∑
i=1

(
θ − θ̂i

)2
(38)

and

Bias =
1
m

n

∑
i=1

θ̂i − θ, (39)

respectively, where m implies the repetition number of the simulation. Tables 1–4 exhibit
the results of the simulations based on 1000 replicates performed on the different sample
sizes of n = 50, 100, 500, and 1000.



Axioms 2024, 13, 226 10 of 19

Table 1. Simulated results based on the different sample sizes for parameter θ = 0.25.

n = 30 n = 50 n = 100 n = 200

Method θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂

MLE 0.2491 0.0009 0.0002 0.2487 0.0013 0.0002 0.2498 0.0002 0.0001 0.2507 0.0007 0.0001
LSE 0.2510 0.0010 0.0003 0.2494 0.0006 0.0003 0.2512 0.0012 0.0002 0.2512 0.0012 0.0001

WLSE 0.2508 0.0008 0.0003 0.2493 0.0007 0.0003 0.2511 0.0011 0.0002 0.2509 0.0009 0.0001
MPSE 0.2493 0.0007 0.0002 0.2486 0.0014 0.0002 0.2499 0.0001 0.0001 0.2507 0.0007 0.0001
MOME 0.2501 0.0001 0.0003 0.2489 0.0011 0.0003 0.2507 0.0007 0.0002 0.2507 0.0007 0.0001

Table 2. Simulated results based on the different sample sizes for parameter θ = 0.50.

n = 30 n = 50 n = 100 n = 200

Method θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂

MLE 0.5007 0.0007 0.0013 0.5009 0.0009 0.0008 0.4957 0.0043 0.0004 0.4981 0.0019 0.0002
LSE 0.5019 0.0019 0.0015 0.5022 0.0022 0.0009 0.4970 0.0030 0.0004 0.4993 0.0007 0.0002

WLSE 0.5024 0.0024 0.0015 0.5028 0.0028 0.0009 0.4968 0.0032 0.0004 0.4989 0.0011 0.0002
MPSE 0.5017 0.0017 0.0013 0.5014 0.0014 0.0008 0.4959 0.0041 0.0004 0.4982 0.0018 0.0002
MOME 0.5005 0.0005 0.0013 0.5022 0.0022 0.0008 0.4962 0.0038 0.0004 0.4983 0.0017 0.0002

Table 3. Simulated results based on the different sample sizes for parameter θ = 1.00.

n = 30 n = 50 n = 100 n = 200

Method θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂

MLE 1.0084 0.0084 0.0085 0.9947 0.0053 0.0037 1.0003 0.0003 0.0018 0.9983 0.0017 0.0010
LSE 1.0100 0.0100 0.0097 0.9933 0.0067 0.0052 1.0003 0.0003 0.0023 1.0021 0.0021 0.0011

WLSE 1.0110 0.0110 0.0097 0.9930 0.0070 0.0052 1.0003 0.0003 0.0023 1.0011 0.0011 0.0011
MPSE 1.0077 0.0077 0.0088 0.9934 0.0066 0.0038 1.0003 0.0003 0.0018 0.9984 0.0016 0.0010
MOME 1.0079 0.0079 0.0088 0.9951 0.0049 0.0039 1.0002 0.0002 0.0020 0.9999 0.0001 0.0010

Table 4. Simulated results based on the different sample sizes for parameter θ = 2.00.

n = 30 n = 50 n = 100 n = 200

Method θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂ θ̂ Biasθ̂ MSEθ̂

MLE 1.9925 0.0075 0.0184 2.0063 0.0063 0.0125 1.9966 0.0034 0.0059 1.9928 0.0072 0.0029
LSE 1.9965 0.0035 0.0179 2.0180 0.0180 0.0140 1.9989 0.0011 0.0081 1.9958 0.0042 0.0033

WLSE 1.9953 0.0047 0.0179 2.0187 0.0187 0.0140 1.9997 0.0003 0.0081 1.9953 0.0047 0.0033
MPSE 1.9866 0.0134 0.0180 2.0075 0.0075 0.0126 1.9972 0.0028 0.0059 1.9930 0.0070 0.0030
MOME 1.9902 0.0098 0.0178 2.0111 0.0111 0.0128 1.9997 0.0003 0.0062 1.9940 0.0060 0.0030

Based on the results provided in Tables 1–4, it can be concluded that all estimates
perform well in estimating parameter θ with sufficiently small bias and MSE values. Addi-
tionally, we ran another simulation to examine how the estimators perform asymptotically.
We set the value of parameter θ as 1 without loss of generality. The bias and MSE values of
each estimate are calculated for different sample sizes n by 1000 simulations. The simulated
results are displayed in Figure 4. One can see from Figure 4 that the bias and MSE values
of the estimates decrease when the sample size n increases. Therefore, it can be asserted
that all estimates exhibit asymptotic consistency and are unbiased.
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6. Applications

Air pollution (Ap) is a multifaceted environmental problem that comes from various
sources. The main sources of Ap include factories, refineries, vehicle emissions, energy
production plants (especially those that rely on coal or oil), and other activities that release
pollutants into the atmosphere [29]. Many of these pollutants are also sources of greenhouse
gas emissions.

The health effects of Ap are significant; long-term exposure is linked to chronic condi-
tions such as asthma, cardiovascular diseases, and premature death [30]. Major pollutants
that cause such health problems include VOCs. In addition to affecting human health, Ap
also affects agricultural productivity by disrupting plant biochemical reactions and causing
soil degradation through acid rain [31].

In general, Ap can be considered as a global problem. Comprehensive strategies
developed to overcome this problem and reduce sources of Ap contribute to the health
of the environment and quality of life in the long term by offering a win-win strategy
for reducing its effects on health and the environment and increasing general well-being
and sustainability.

We have studied four environmental datasets for modeling harmful air pollutant con-
tents like carbon monoxide (CO), sulfate particles and benzo(a)pyrene that are monitored
on a continuous basis. Concentrations of these pollutants are reported once every hour,
24 h a day, and 365 days a year.

6.1. Competing Models

In this section, we compare the fits of the UMBD with the unit Topp Leone (UTL), unit
log-Lindley (ULL), unit log-weighted exponential (ULWE), and unit Kumerswamy (UKw)
distributions. All of these distributions are used for modeling bounded data. To reveal the
potential of the UMBD model, these models are compared through analyses conducted on
four environmental data sets. The pdfs of competing models are expressed in Table 5.

Table 5. Competing models with distribution functions.

Distribution Distribution
Function Domain of Function Reference

UTL xθ(2 − x)θ I(0,1)(x), θ > 0 [32]

ULL xθ(1+θ(λ−log(x)))θ

1+θλ
I(0,1)(x), θ > 0, λ > 0 [33]

ULWE (1+θ)
(

xλ− x(1+θ)λ

1+θ

)
θ

I(0,1)(x), θ > 0, λ > 0 [19]

UKw 1 −
(

1 − xθ
)λ I(0,1)(x), θ > 0, λ > 0 [6]
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To determine which distribution or distributions can model the relevant dataset,
Anderson-Darling (A∗), Cramér-von Mises (W∗), and Kolmogorov-Smirnov (KS) tests were
used. Additionally, to verify the distribution that optimally models the data among the
probable models, information criteria like Akaike Information Criterion (AIC), Corrected
Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), and Hannan-
Quinn Information Criterion (HQIC) were examined.

6.2. Datasets
6.2.1. Dataset I

Carbon monoxide (CO) is a colorless, odorless gas that can have toxic effects on the
human body. CO can originate from various sources, both natural and anthropogenic.
Common sources of CO include fires, vehicle exhaust, gasoline-powered engines, fossil
fuel heating systems, etc. The impact of high-level CO poses serious risks to human
health. It can exacerbate symptoms of heart disease, leading to issues like chest pain.
Additionally, high-level CO may cause vision problems and reduce physical and mental
capabilities in otherwise healthy individuals. With reference to this, the first dataset
measured the concentration of air pollutant CO in Alberta, Canada from the Edmonton
Central (downtown) Monitoring Unit (EDMU) station during 1995. Measurements are
listed in Myrick [34] for the period 1976–1995 as 0.19, 0.20, 0.20, 0.27, 0.30, 0.37, 0.30, 0.25,
0.23, 0.23, 0.26, 0.23, 0.19, 0.21, 0.20, 0.22, 0.21, 0.25, 0.25, and 0.19.

Table 6 shows that the observed data behave as positively skewed and leptokurtic
in nature. In this regard, we studied the goodness-of-fit statistics (GoF) and found that
the proposed UMBD is the only choice for the analysis of environmental air pollutant CO
contents. The model can be visualized in Table 7.

Table 6. Descriptive statistics of Dataset I.

Size Mean Median Standard
Deviation Skewness Kurtosis Sk.

Ku.

20 0.2375 0.23 0.0461 1.2889 4.4491 0.2896

Table 7. GoF statistics of Dataset I.

Distribution θ̂ λ̂ A∗ W∗ KS p-Value

UMBD 0.8452 ------ 1.9835 0.3605 0.3335 0.2211

UTL 1.1271 ------ 3.1434 0.6249 0.4345 0.0459

ULL 1.3758 1.5909 × 10−10 2.8405 0.5493 0.3971 0.0854

ULWE 1.3758 9.60 × 10−7 2.8405 0.5493 0.3971 0.0854

UKw 1.2212 5.2095 3.0949 0.6385 0.5205 0.0089

Moreover, the information criterion indicates that the UMBD outperforms the other
models with the least loss of information, as reported in Table 8.

Table 8. Information criterion of Dataset I.

Distribution −l AIC AICc BIC HQIC

UMBD 19.2862 −36.5724 −36.3502 −35.5767 −36.378

UTL 8.5407 −15.0815 −14.8593 −14.0858 −14.8871

ULL 9.15843 −14.3169 −13.6110 −12.3254 −13.9281

ULWE 9.15843 −14.3169 −13.6110 −12.3254 −13.9281

UKw 14.4142 −24.8285 −24.1226 −22.8370 −24.4397
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6.2.2. Dataset II

The second dataset measures the benzo(a)pyrene (BaP) concentration in air. Unfor-
tunately, this chemical compound is also predominantly manmade. BaP is a polycyclic
aromatic hydrocarbon (PAH) with a high molecular weight [35]. Natural occurrences of
BaP include volcanic eruptions and forest fires. Other sources of BaP are incomplete com-
bustions of organic materials, such as in-vehicle emissions [36]. Human metabolism of BaP
has pivotal carcinogenic effects [37]. Surface water, tap water, precipitation, groundwater,
wastewater, and sewage sludge are all sources of BaP. The second dataset measured the air
quality monitoring of the annual average concentration of the pollutant BaP (ng/m3). Data
were reported from the Edmonton Central (downtown) Monitoring Unit (EDMU) location
in Alberta, Canada, in 1995 [34]. Measurements are reported as 0.22, 0.20, 0.25, 0.15, 0.38,
0.18, 0.52, 0.27, 0.27, 0.27, 0.13, 0.15, 0.24, 0.37, and 0.20.

From Table 9, it is evident that Dataset II is positively skewed and leptokurtic. In this
regard, the GoF statistics as portrayed in Table 10 indicate that the UMBD is a good choice
for such an environmental air pollution phenomenon.

Table 9. Descriptive statistics of Dataset II.

Size Mean Median Standard
Deviation Skewness Kurtosis Sk.

Ku.

15 0.2533 0.24 0.1037 1.1789 3.9753 0.2966

Table 10. GoF statistics of Dataset II.

Distribution θ̂ λ̂ A∗ W∗ KS p-Value

UMBD 0.8593 ------ 0.5906 0.0982 0.2189 0.6677

UTL 1. 1278 ------ 1.9062 0.3534 0.3305 0. 1807

ULL 1.3864 −1.571 × 10−32 1.6432 0.2894 0.2968 0.2869

ULWE 0.00001 1.3864 1.6432 0.2893 0.2969 0.2869

UKw 1.2212 4.5619 1.4449 0.2684 0.3258 0.1935

Such a claim is further consolidated by observing Table 11, which suggests that the
UMBD is the model with the least loss of information. Also, from Figure 5, it is evident that
the UMBD yields a good fit with the least loss of information criteria.

Table 11. Information criterion of Dataset II.

Distribution −l AIC AICC BIC HQIC

UMBD 12.4300 −22.8600 −22.6377 −21.8642 −22.6656

UTL 5.9637 −9.9274 −9.7052 −8.9317 −9.7332

ULL 6.3668 −8.7336 −8.0277 −6.7421 −6.7421

ULWE 6.3668 −8.7336 −8.0277 −6.7421 −6.7421

UKw 9.2649 −14.5298 −13.8239 −12.5383 −14.1410
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6.2.3. Dataset III

Sulfate particles are particles that contain sulfur. These are found in air particles that
are smaller than one micron. They can be released from natural and manmade sources,
such as industrial processes, coal burning, cement production, vehicle emissions, and sea
salt [38–40]. Exposure to this pollutant has been associated with numerous health problems,
including reduced lung function, more frequent respiratory symptoms and illnesses (like
childhood bronchitis and cough), and even premature death [41]. Therefore, understanding
the concentration of sulfate particles indoors or outdoors is vital for assessing their impact
on air quality. In this regard, the third dataset measures the concentration of sulphate in
Calgary from 31 different periods during 1995. Measurements are taken from [34] and are
listed as 0.048, 0.013, 0.040, 0.082, 0.073, 0.732, 0.302, 0.728, 0.305, 0.322, 0.045, 0.261, 0.192,
0.357, 0.022, 0.143, 0.208, 0.104, 0.330, 0.453, 0.135, 0.114, 0.049, 0.011, 0.008, 0.037, 0.034,
0.015, 0.028, 0.069, and 0.029.

The analysis of the third dataset indicates that the data portray skewed and leptokurtic
natures, which is displayed in Table 12. Moreover, Table 13 illustrates that the proposed
model also acts as a good alternate for the competing models. Furthermore, such compe-
tence seems to emerge as strong candidate when the information criterion yields a least
value, which is portrayed in Table 14.

Table 12. Descriptive statistics of Dataset III.

Size Mean Median Standard
Deviation Skewness Kurtosis Sk.

Ku.

31 0.1706 0.0820 0.1944 1.6184 5.0882 0.3181

Table 13. GoF statistics of Dataset III.

Distribution θ̂ λ̂ A∗ W∗ KS p-Value

UMBD 1.5820 ------ 1.3459 0.1473 0.1606 0.4001

UTL 0.5424 ------ 1.4801 0.2665 0.1580 0.4211

ULL 0.000001 0.8192 0.8557 0.1412 0.1261 0.7086

ULWE 0.00003 0.8192 0.8557 0.1411 0.1260 0.7086

UKw 0.7388 2.9782 0.6398 0.0956 0.1315 0.6573
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Table 14. Information criterion measure of Dataset III.

Distribution −l AIC AICC BIC HQIC

UMBD 23.3506 −44.7012 −44.5633 −43.2672 −44.2338

UTL 21.6018 −41.2036 −41.0657 −39.7696 −40.7362

ULL 23.2327 −42.4654 −42.0368 −39.5974 −41.5305

ULWE 23.2327 −42.4654 −42.0368 −39.5974 −41.5305

UKw 23.6241 −43.2482 −42.8196 −40.3802 −42.3133

6.2.4. Dataset IV

The fourth dataset measured the concentration of pollutant CO in Alberta, Canada
from the Calgary northwest (residential) monitoring unit (CRMU) station during 1995.
Measurements are listed in [34] for the period 1976-95 as 0.16, 0.19, 0.24, 0.25, 0.30, 0.41,
0.40, 0.33, 0.23, 0.27, 0.30, 0.32, 0.26, 0.25, 0.22, 0.22, 0.18, 0.18, 0.20, and 0.23.

From Table 15, it is evident that dataset IV depicts positive skewness and leptokurtic
behavior. However, GoF statistics as portrayed in Table 16 are least when compared with
the competing models. As stated by Table 17, the information criteria of the proposed
model are also yield minimum values, thus the proposed model acts as the least loss of
information with single parameter.

Table 15. Descriptive statistics of Dataset IV.

Size Mean Median Standard
Deviation Skewness Kurtosis Sk.

Ku.

20 0.2570 0.2450 0.0692 0.7948 2.9508 0.2694

Table 16. GoF statistics of Dataset IV.

Distribution θ̂ λ̂ A∗ W∗ KS p-Value

UMBD 0.8161 ------ 1.7337 0.2975 0.2675 0.2563

UTL 1.1959 ------ 3.6486 0.7195 0.4005 0.0163

ULL 2.2250 7.04 × 10−33 3.2294 0.6113 0.3668 0.0353

ULWE 1.4378 2.89 × 10−8 3.2294 0.6113 0.3668 0.0353

UKw 1.2312 4.6236 3.1513 0.6289 0.4064 0.0141

Table 17. Information criterion of Dataset IV.

Distribution −l AIC AICC BIC HQIC

UMBD 17.9885 −33.9770 −33.7548 −32.9813 −33.7826

UTL 8.1365 −14.2730 −14.0508 −13.2773 −14.0786

ULL 8.5914 −13.1828 −12.4769 −11.1913 −12.7940

ULWE 8.5914 −13.1828 −12.4769 −11.1913 −12.7940

UKw 12.7916 −21.5832 −20.8773 −19.5917 −21.1944

Moreover, from Figure 6, it is evident that the proposed model yields good fit with the
least loss of information criterion.
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7. Conclusions

In this study, we have introduced a flexible single-parameter unit distribution called
UMBD for modeling datasets bounded to the interval (0, 1). We have investigated the
moments of the distribution and related distribution measurements, such as variance,
skewness, and kurtosis. We have obtained the survival function, hrf, and rhrf of the UMBD
and illustrated their behaviors through graphs. Moreover, we have obtained the moment
generating and mode of the UMBD in this paper. We have investigated the inference
problem for the parameter of the UMBD from the perspectives of maximum likelihood,
least squares, weighted least squares, method of moments, and maximum product space
methodologies. We have also performed various simulation studies to determine the esti-
mation performances and empirical behaviors of the obtained estimators. Additionally, we
have presented analyses performed on four practical datasets to demonstrate data mod-
eling with the UMBD. We believe that the UMBD will be beneficial to data modelers and
researchers from different fields and that the work in the paper will inspire the derivation
of other unit distributions.

The results we obtained indicate that the UMBD would not be appropriate for model-
ing lifetime data with decreasing-increasing-decreasing (modified bathtub) and unimodal
hazard rates shapes. As a result, these shortcomings can be fixed in a subsequent study.
Additional estimation techniques, such as those based on the Bayesian perspective, may
also be put forth. Furthermore, we also suggest adding a shape parameter to this model
and looking into the existence of its information matrix.
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Abbreviations

Abbriviation Definition
VOC Volatile organic compounds
WHO World Health Organization
VVOC Very Volatile Organic Compounds
SVOC Semi Volatile Organic Compounds
EPA Environmental Protection Agency
MBD Maxwell-Boltzmann distribution
UMBD Unit Maxwell-Boltzmann distribution
hrf Hazard rate function
rhrf Reserved hazard rate function
pdf Probability density function
cdf Cumulative distribution function
erf Error function
MLE Maximum likelihood estimator
LSE Least squares estimator
WLSE Weighted least squares estimator
MPSE Maximum product space estimator
MOM Method of moments
MOME Method of moments estimator
MSE Mean squared error
Ap Air pollution
CO Carbon monoxide
UTL Unit Topp Leone
ULL Unit log-Lindley
ULWE Unit log-weighted exponential
UKw Unit Kumerswamy
KS Kolmogorov-Smirnov
AIC Akaike Information Criterion
AICc Corrected Akaike Information Criterion
BIC Bayesian Information Criterion
HQIC Hannan-Quinn Information Criterion
EDMU Edmonton Central Monitoring Unit
GoF Goodness-of-fit Statistics
BaP Benzo(a)pyrene
PAH Polycyclic aromatic hydrocarbon
CRMU Calgary northwest (residential) monitoring unit
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