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Abstract: In this paper, we consider a tandem dual queuing system consisting of multi-server stages.
Stage 1 is characterized by an infinite buffer, one-by-one service of customers, and an exponential
distribution of service times. Stage 2 is characterized by a finite buffer and a phase-type distribution
of service times. Service at Stage 2 is provided to groups of customers. The service time of a group
depends on the size of the group. The size is restricted by two thresholds. The waiting time of a
customer at each stage is limited by a random variable with an exponential distribution, with the
parameter depending on the stage. After service at Stage 1, a customer can depart from the system
or try to enter Stage 2. If the buffer at this stage is full, the customer is either lost or returns for
service at Stage 1. Customer arrivals are described by the versatile Markov arrival process. The
system is studied via consideration of a multi-dimensional continuous-time Markov chain. Numerical
examples, which highlight the influence of the thresholds on the system performance measures, are
presented. The possibility of solving optimization problems is illustrated.
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1. Introduction

Tandem queues are useful for modeling the operation of various telecommunication,
logistic, production, manufacturing, and other systems and networks, and the existing
literature is very extensive; see, e.g., [1–6]. The work in [2–5] gives extensive surveys of
the state-of-the-art in analysis of tandem queues. In [1] by M. Neuts, the comprehensive
analysis of a two-server tandem queue with the stationary Poisson arrival process, general
service time distribution of service times at the first stage of the tandem, exponential service
time distribution at the second stage and a finite intermediate buffer are implemented. This
tandem queuing system is studied in terms of an embedded semi-Markov process. The
presented analysis is quite complicated, aiming to implement analysis of tandem queues
with a more complicated arrival process and more general distribution of the service time
at the second stage (at the expense of considering less general distribution of service time
at the first stage). Further, M. Neuts developed the matrix analytic method. This method
allows us to effectively treat various complicated tandem queues. In this paper, essentially
we use that method. In [6], a similar methodology was applied for the study of a tandem
queue with two stages, the Markov arrival process (MAP) of customers, and finite buffers
and phase type distribution of the service time at both stages of the tandem.

A brief survey of the relevant literature and examples of potential applications of
tandem queues with group service, which are similar to what is considered in this paper, to
the analysis and optimization of real systems in service, production and manufacturing
sectors can be found in the recent paper [7]. As it is highlighted in [7], two of the most
distinguishing features of the model considered in that paper are as follows:
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(a) The arrival flow is described not by the stationary Poisson process, as in the
overwhelming majority of existing papers, but by the Markov arrival process (MAP) which
is much more complicated but suitable for taking into account such typical features of the
arrival processes as possible fluctuation of the instantaneous arrival rate, over-dispersion
(large variance of inter-arrival times) and positive correlation of successive inter-arrival
times. The neglect to take these features into account causes huge errors in the prediction of
performance measures for the system. Predicted results based on the model of the stationary
Poisson arrival process are too optimistic. For example, for the single server queuing model
with a finite buffer the probability of a customer loss due to the buffer overflow, computed
in assumption that the arrival flow is described by the stationary Poisson arrival process,
can be of order 10−6. The value of this probability computed with the use of the MAP as
the model of arrival flow with the same mean arrival rate and even relatively small (about
0.2) positive correlation of the neighboring inter-arrival times is about 10−2. The same order
of this probability is obtained via the computer simulation of the system. Similar increase
of the loss probability occurs when the coefficient of variation of inter-arrival times is large.
The reason for this phenomenon is the following. If the inter-arrival times are positively
correlated, then periods of time, during which customers arrive rarely (and the bandwidth
of the server is under-utilized, the server often stays idle) alternate with periods of time
during which customers arrive frequently (and a lot of arriving customers are lost). The
same occurs when the inter-arrival times have a large variance.

(b) Service at Stage 2 is provided only to groups of customers. This is typical for many
real systems, in particular production, delivery, and transportation systems. In transporta-
tion systems, the lower limit of a group size is defined by economic considerations (to
avoid service by almost empty vehicles). The upper limit is defined by the capacity of
the exploited service vehicle (airplane, ship, bus, train, etc.). The task of choosing these
limits is non-trivial. The small value of the lower limit helps to avoid leaving servers idle
in the presence of a queue. But the potential profit from using the group service (smaller
service time per customer) is poorly used. A large value of the lower limit helps to use
the advantages of a group service to a greater extent but leads to a longer waiting time
for customers until the group of the minimal size required for the service beginning is
accumulated.

Results of the analysis of tandem queues with the group service of customers, in
particular, the tandem queue considered in [7], can be used for the optimal choice of the
limits of a group size and optimal planning of the fleet of vehicles of a transportation
company that has the opportunity to match the capacity of the provided service vehicle to
the size of the waiting group of customers.

It is worth mentioning that a significant contribution to the study of isolated queues
with group customer service was made by S. Chakravarthy; see, e.g., [8–13]. Mention also
the papers [14–17]. In [14–16], the MAP process or its generalizations is supposed. In [17],
dependence of a group service time on its size is examined and applications to fog and
cloud computing systems are discussed.

The main advantage of the tandem queue considered in this paper, in comparison to
the rather advanced model considered in [7], is that both stages of a tandem considered
in [7] are described by the single-server systems, while we assume that they are multi-server
systems. This advantage is essential both from the theoretical and practical points of view.
From the former one, it is known that due to the description by a more complicated random
process, analysis of multi-server queues may be considerably more difficult than the study
of single-server queues. From the practical point of view, this is important because in many
companies customer’s service technological process consists of two stages: auxiliary and
essential. The number of servers at Stage 1 providing auxiliary services such as registration
of customers, their preparation for service, order picking, packing, passengers boarding,
etc., and the number of servers at Stage 2 that provide the essential service (e.g., the
number of vehicles implementing orders delivering, cars, buses, trains, aircrafts, etc., and
implementing passengers transportation, etc.,) is more than one. Another two distinctions
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of the models considered here and in [7] are as follows. Here, we assume that, with an
arbitrarily fixed probability, an arbitrary customer can depart from the tandem after service
at Stage 1. This corresponds, e.g., to the real-world situations when a customer orders
the service in advance and the delivering will be provided only later. Or the customer
purchased a product that can be delivered to home by himself or herself, without the
assistance of the vendor. Or the customer is dissatisfied by the quality of service at Stage 1
and decides to abandon the essential service in the system. In [7], this probability is assumed
to be equal to 0, i.e., it must be mandatory for the essential service to be implemented
immediately after the order registration, possibly with some delay in the intermediate
buffer. The second distinction is that here we assume that the customer can be lost or return
to Stage 1 if the buffer at Stage 2 is full. In [7], the blocking of Stage 1 was assumed in such
a situation.

A brief preview of the paper’s structure is as follows. The operation of tandem is
completely described in Section 2, and the necessary parameters and distributions are
introduced. Key components of the model are briefly stated. The multidimensional
continuous-time Markov chain describing the dynamics of the system is introduced in
Section 3.1 and its generator is presented and derived in Section 3.2. Stability conditions
for this chain in cases of patient and impatient customers at Stage 1 (requiring different
treatment) are presented in Section 3.3. The problem of computation of the chain invariant
state probabilities is briefly touched on in Section 3.4. Section 4 contains formulas for the
computation of the values of the key performance measures of the system. A numerical
example is given in Section 5, including an illustration of possible applications of the result
of the implemented analysis for the managerial goals.

2. Mathematical Model

We consider a tandem queuing system consisting of two stages. The Stage 1 operation
is described as a multi-server queuing system with N1 independent, identical servers and
an infinite buffer. The queuing system describing Stage 2 has N2 independent identical
servers and a finite buffer of capacity R. The scheme of the tandem operation is shown in
Figure 1.

R r

N
2

r
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N
1

1-q

q
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Figure 1. The structure of the tandem queue.

Customers enter the tandem system in the flow defined by the MAP. This arrival
process is given by an irreducible Markov chain with continuous time νt, t ≥ 0, having a
finite state space {1, 2, . . . , W}, and matrices D0 and D1 such that the matrix D1 consists
of the intensities of transitions of the chain νt, accompanied by the arrival of a customer.
The non-diagonal elements of the matrix D0 determine the intensity of the correspond-
ing transition of the chain νt without the arrival of a customer, and the modules of the
negative diagonal elements determine the intensity of the exit of the process νt from the
corresponding state. The matrix D(1) = D0 + D1 is the generator of the Markov chain νt.

The average customer rate λ is determined by the formula λ = θD1e where θ is a row
vector of stationary probabilities of the Markov chain νt. This vector is the only solution
to the system θD(1) = 0, θe = 1. Here, and below, 0 is a row vector of appropriate size
consisting of zeros, and e is a column vector of appropriate size consisting of ones.
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More detailed information about the MAP can be found, e.g., in [18–22]. The problem
of construction of the MAP for description of the traffic in a real-world system based on
information about the traces of the flow was considered, e.g., in [23–27].

An arriving customer starts service at the Stage 1 if there is at least one idle server.
Otherwise, it becomes buffered and waits for the release of one of the servers. At Stage 1,
customers are serviced one at a time, and their service time has an exponential distribution
with the parameter µ, µ < ∞.

After receiving service at Stage 1, the customer can decide to leave the system without
service at Stage 2 with the probability q or with the complementary probability, it can
continue processing in the tandem and move to Stage 2.

Customers at Stage 2 are served by groups. Each of the N2 servers at Stage 2 can
serve a group of customers consisting of at least rmin customers and no more than rmax
customers. Thus, the parameters rmin, 1 ≤ rmin ≤ R, and rmax, rmin ≤ rmax ≤ R, determine
the minimum and maximum size of the group that can be taken for service.

If at the time a customer arrives at Stage 2 there are r, 0 ≤ r ≤ rmin − 2, customers in
the buffer of Stage 2, then the incoming customer becomes buffered and awaits service,
and it does not matter whether there are free servers at this stage. If, at a customer arrival
moment at Stage 2, the number of customers in the buffer at this stage is rmin − 1 and there
is a free server, then the group of size rmin is picked up for servicing. If all servers are busy,
the customer joins the buffer if it is not full. If the buffer is full, the customer leaves the
system with the probability p or, with the complementary probability, returns to the Stage 1
of tandem.

If at the moment of a server releasing at Stage 2 (the end of a group service time),
there are r, r ≥ rmin customers in the buffer of Stage 2, then a group of customers of size
min{r, rmax} is picked up for service.

We assume that the group service time at Stage 2 has a phase-type (PH) distribution
specified by a Markov chain mt, t ≥ 0, with the state space {1, 2, . . . , M} of the transient
states and a unique absorbing state M + 1. The irreducible representation of the PH
distribution of service of a group consisting of r customers is given as (βr, S), r = rmin, rmax.
Note that βr is a stochastic row vector of dimension M, and the square matrix S of dimension
M is a subgenerator. The average service time for a group of customers of size r is defined
as b(r)1 = βr(−S)−1e. Note that by assuming that the initial probability vector of service
time depends on the size of the group, we take into account the dependence of the service
process on the size of the group. More information about the PH distribution can be found,
e.g., in [28–31].

Note that in the majority of papers dealing with group service, the authors assume
that the service time of a group does not depend on the size of the group. This assumption
is not very bad because, e.g., in the description of transportation systems, the time of the
journey of a bus or aircraft between cities does not essentially depend on the number of
traveling passengers. This assumption significantly simplifies the analysis of the model,
and this is the main motivation for imposing this assumption.

In some other real-world systems, this assumption is not very realistic. For example,
in modeling goods or food delivery systems, the service time of a group may consist of the
time required to deliver the goods to the target distribution area in the city and the times
for delivering the items to concrete recipients within this area. Thus, the total delivery time
of a group depends on the size of the group. This is why we consider the given above
description of the PH distribution of service of a group consisting of r customers. Note
that in some communication systems, group service corresponds to the broadcasting of
information. In that case, if the service time of an individual customer has a PH distribution,
then the service time of a group is the maximum of individual service times, see, e.g., [32],
and also has the PH distribution with parameters depending on the size of the group in
the same manner as we assume here.

It is worth noting that sometimes the assumption that service time distribution is of
PH type, but not its special case such as the exponential distribution, is imposed to fit
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not only the mean service time but the higher moments of distribution, the variance in
particular. Here, the situation is different. We impose this assumption with specifically cho-
sen irreducible representation to significantly reduce the dimensionality of the considered
Markov chain. If we would try to assume that the service time of groups of different sizes
has exponential distribution with a parameter depending on the group size and there is
a wide range of possible sizes, the process describing the service of customers receiving
service will have a very large size, irrespective of the description of this process, see [33].

It is suggested that customers staying in the buffers of the first and second stages may
become impatient and leave the tandem system without service, independently of other
customers, after a random time having an exponential distribution with the rate α, α > 0,
and γ, γ > 0, correspondingly. Impatience (reneging from the system due to waiting
too long) is the typical feature of customers in many real-world systems. Impatience
is related to various psychological factors if the customers are humans: obsolescence of
information, perishing of the products, expiration of the established by the service level
agreement upper limit for service beginning, departure of the waiting mobile user from
the cell, etc. Customer impatience can imply under-utilization of the service facility and
the decrease in the possible revenue by the service provider. Therefore, consideration of
queuing systems with impatient customers is popular in the existing literature. For the
surveys, see, e.g., [34,35]. The account of the impatience phenomenon is very important
in the context of systems with group service because waiting for accumulation in the
buffer of the required minimal number of customers in the presence of idle servers may
be psychologically uncomfortable for customers and motivate them to leave the system
without receiving the service if the waiting seems to be too long.

Note that the model of operation of Stage 2 of the tandem is close to the model of an
isolated queuing system considered in [36]. However, the use of that model for description
of the marginal distribution of the states of Stage 2 of the tandem considered here is
impossible due to two reasons: (i) the model considered in [36] assumes the MAP as the
descriptor of the arrival flow while, due to the infinite capacity of the buffer at Stage 1,
the output flow from that stage is not defined by the MAP; (ii) due to the existence of the
possibility of the customer’s return to Stage 1 (in case of the intermediate buffer overflow)
there is a strong dependence between two stages and exact decomposition of the tandem
queue to two isolated queues is not possible. Therefore, consideration of the random
process describing the simultaneous transition of the states of two stages is mandatory.

Thus, the key features of the considered tandem queuing model, which define its
generality and possible wide applicability, are as follows:

• MAP flow of customers that allows the adequate fitting of real-world flows;
• Infinite buffer at Stage 1 of tandem and finite intermediate buffer;
• Possibility of a group service of customers at Stage 2 with the fixed lower and upper

size of the group;
• Possibility of the dependence of a group service time on the size of the group;
• PH distribution of service time of a group at Stage 2;
• Possibility of customers reneging from the system during waiting time at both stages

and after service completion at Stage 1;
• Possibility of customer loss or return to Stage 1 in case of an intermediate buffer

overflow.

Our aim is to implement an analysis of the stationary behavior of the described tandem
queuing system.

3. The Process Describing the Dynamics of the System and Its Stationary Analysis
3.1. Definition of the Process

Let it, it ≥ 0, be the number of customers at Stage 1 of the tandem, including the
customers receiving service and waiting in the buffer; rt, rt = 0, R, is the number of
customers in the buffer of Stage 2; nt, nt = 0, N2, is the number of busy servers at Stage 2;
νt, νt = 1, W, is the state of the underlying process of the MAP; s(k)t is the number of servers
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on the k-th phase of service, s(k)t = 0, min{nt, N2}, k = 1, M,
M
∑

k=1
s(k)t = min{nt, N2}, at time

t, t ≥ 0.
The behavior of the tandem system under study is described by a regular irreducible

Markov chain with continuous time (CTMC)

ξt = {it, rt, nt, νt, s(1)t , . . . , s(M)
t }, t ≥ 0.

The chosen way of describing simultaneous service processes in several parallel
servers is traced back to [37,38] and is called the CSFP (count-server-for-phase) approach
in [33]. Application of this approach leads to the necessity of more difficult analytical work
compared to the TPFS (track-phase-for-server) approach. But its application allows us to
significantly reduce the size of the blocks of the generator of CTMC describing the behavior
of the system. In turn, this makes it feasible to implement the computation of the steady
state distribution of CTMC for not only very small numbers of servers and capacity of the
intermediate buffer.

3.2. Generator of the Process

Let us renumber the states of the CTMC ξt in the direct lexicographical order of
the components (it, rt, nt, νt) and reverse the lexicographical order of the components
(s(1)t , . . . , s(M)

t ) and call the set of states of the chain having the value i of the first component
of the CTMC as level i, i ≥ 0. The set of states of the chain having the values (i, r) of the
first and second components of the CTMC is called the sub-level (i, r), i ≥ 0, r = 0, R.

To write down the expression for the infinitesimal generator of the CTMC ξt, we need
the following denotations:

⊗ and ⊕ are the symbols of the Kronecker product and sum of matrices; see, for
example, [39,40];

I is the identity matrix, and O is the zero matrix, the dimension of which is indicated
by a subscript if necessary;

δcondition is the Kronecker delta, that is, δcondition =

{
1, condition is true,
0, condition is f alse;

diag{d1, d2, . . . , dn} is the diagonal matrix with diagonal elements d1, d2, . . . , dn;
diag+{d1, d2, . . . , dn} is the square matrix with non-zero updiagonal elements
d1, d2, . . . , dn;
diag−{d1, d2, . . . , dn} is the square matrix with non-zero subdiagonal elements
d1, d2, . . . , dn;
The numbers Tn specify the cardinality of the state space of the vector process st =

{s(1)t , . . . , s(M)
t } when n servers of Stage 2 are busy. They are calculated as

T0 = 1, Tn =
(n + M − 1)!
n!(M − 1)!

, n = 1, N2;

The matrix Ln defines the transition intensities of the process st at the moment when
service in one of n busy servers at Stage 2 is completed, n = 1, N2;

The matrix An contains the transition intensities of the process st at the moment of the
change in the phase of service in one of n busy servers of Stage 2, n = 1, N2;

The matrix Pn(βr) defines the transition probabilities of the process st at the moment
when the group of r customers starts service in the presence of n busy servers of Stage 2,
n = 0, N2 − 1;

The diagonal elements of the diagonal matrix ∆n determine the rates of the exit of the
process st from the corresponding states. The matrices ∆n are computed by the formula

∆n = −diag{Ane + Lne}, n = 1, N2.
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The detailed description of the matrices Pn(βr) n = 0, N2 − 1, r = rmin, rmax, Ln, An,
∆(n), n = 1, N2, and algorithms for their calculation are presented in [37,38,41].

The following statement is true.

Theorem 1. The generator Q of the CTMC ξt, t ≥ 0, has the following block tridiagonal structure:

Q =


Q0,0 Q0,1 O O O . . .
Q1,0 Q1,1 Q1,2 O O . . .
O Q2,1 Q2,2 Q2,3 O . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .


where the non-zero blocks Qi,j, |i − j| ≤ 1, containing the intensities of transitions from level i to
level j are defined as follows.

1. The diagonal blocks Qi,i, i ≥ 0, have the form Qi,i = (Qi,i)r,r′ , r, r′ = 0, R, where the
non-zero blocks (Qi,i)r,r′ are given as

• (Qi,i)r,r = diag{D0, D0 ⊕ (An + ∆n), n = 1, N2} − [rγ + µmin{i, N1}
+αmax{0, i − N1}]I

W
N2
∑

n=0
Tn

+ diag−{IW ⊗ Ln, n = 1, N2}, r = 0, rmin − 1,

• (Qi,i)r,r = D0 ⊕ (AN2 + ∆N2)− [rγ + µmin{i, N1}+ αmax{0, i − N1}]IWTN2

+ δr=R(1 − p)(1 − q)µmin{i, N1}IWTN2
, r = rmin, R,

• (Qi,i)r,r−1 = rγI
W

N2
∑

n=0
Tn

, r = 1, rmin − 1, rmin ̸= 2,

• (Qi,i)1,0 =

(
O

WTN2×W
N2−1

∑
n=0

Tn

γIWTN2
+ IW ⊗ LN2 PN2−1(β1)

)
, if rmin = 1,

• (Qi,i)rmin ,rmin−1 =

(
O

WTN2×W
N2−1

∑
n=0

Tn

rminγIWTN2

)
, rmin ̸= 1,

• (Qi,i)r,r−1 = rγIWTN2
, r = rmin + 1, R, rmax ̸= 1,

• (Qi,i)r,0 =

(
O

WTN2×W
N2−1

∑
n=0

Tn

IW ⊗ LN2 PN2−1(βr)
)

,

r = rmin, rmax, if rmin ̸= 1, and r = rmin + 1, rmax, if rmin = 1,

• (Qi,i)r,r−rmax =

(
O

WTN2×W
N2−1

∑
n=0

Tn

IW ⊗ LN2 PN2−1(βrmax
)
)

,

r = rmax + 1, min{rmax + rmin − 1, R},

• (Qi,i)r,r−rmax = IW ⊗ LN2 PN2−1(βrmax
), r = rmax + rmin, R, rmax ̸= 1,

• (Qi,i)r,r−1 = rγI
W

N2
∑

n=0
Tn

+ IW ⊗ LN2 PN2−1(β1), r = rmin + 1, R, rmax = 1.

2. The updiagonal blocks Qi,i+1, i ≥ 0, are the block diagonal matrices with the diagonal blocks
of the form

• (Qi,i+1)r,r = diag{D1 ⊗ ITn , n = 0, N2}, r = 0, rmin − 1,

• (Qi,i+1)r,r = D1 ⊗ ITN2
, r = rmin, R.

3. The subdiagonal blocks Qi,i−1, i ≥ 1, have the form Qi,i−1 = (Qi,i−1)r,r′ , r, r′ = 0, R, where
the non-zero blocks (Qi,i−1)r,r′ are given as
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• (Qi,i−1)r,r = (αmax{0, i − N1}+ qµmin{i, N1})I
W

N2
∑

n=0
Tn

, r = 0, rmin − 1, rmin ̸= 1,

• (Qi,i−1)rmin−1,0 = (1 − q)µmin{i, N1}diag+{IW ⊗ Pn(βrmin
), n = 0, N2 − 1}, rmin ̸= 1,

• (Qi,i−1)0,0 = (αmax{0, i − N1} + qµmin{i, N1})I
W

N2
∑

n=0
Tn

+ diag+{IW ⊗ Pn(β1),

n = 0, N2 − 1} × (1 − q)µmin{i, N1}, rmin = 1,

• (Qi,i−1)r,r = (αmax{0, i − N1}+ qµmin{i, N1})IWTN2
+ δr=R p(1 − q)µmin{i, N1}IWTN2

,

r = rmin, R,

• (Qi,i−1)r,r+1 = (1 − q)µmin{i, N1}I
W

N2
∑

n=0
Tn

, r = 0, rmin − 2,

• (Qi,i−1)rmin−1,rmin = (1 − q)µmin{i, N1}

 O
W

N2−1
∑

n=0
Tn×WTN2

IWTN2

,

• (Qi,i−1)r,r+1 = (1 − q)µmin{i, N1}IWTN2
, r = rmin, R − 1.

Proof. The theorem is proved by studying the intensities of all conceivable transitions of
the CTMC ξt during an infinitesimal time period.

Since during such a period customers enter the system and receive service at Stage 1
one at a time, the matrices Qi,j, i, j ≥ 0, are zero matrices for all i, j such that |i − j| > 1.

The blocks Qi,j, |i− j| ≤ 1, are built from the matrices (Qi,j)r,r′ containing the transition
rates of the CTMC ξt from the sub-level (i, r) to the sub-level (j, r′), r, r′ = 0, R.

Let us explain the form of all these blocks.

1. The matrices Qi,i, i ≥ 0, have the following non-zero blocks:

• the diagonal blocks (Qi,i)r,r, r = 0, R,

• the subdiagonal blocks (Qi,i)r,r−1, r = 1, R,

• updiagonal blocks (Qi,i)r,r+1, r = 0, R − 1,

• the blocks (Qi,i)r,0, r = rmin − 1, rmax,

• the blocks (Qi,i)r,r−rmax , r = rmax + 1, R.

This is explained by the fact that during an interval of infinitesimal length, customers
can arrive at the buffer of Stage 2 one-by-one, leave it one at a time due to impatience,
and move to service in groups of size r, where r = rmin, rmax.

1.1. The diagonal elements of the diagonal blocks (Qi,i)r,r, r = 0, R, are negative. Their
modules determine the intensity of departure of the CTMC ξt from the respective
state. The CTMC ξt can exit from its current state in the following cases:

(a) The underlying process νt of customer arrival leaves the current state. The
corresponding transition intensities are determined up to sign by the di-
agonal entries of the matrix D0 ⊗ I N2

∑
n=0

Tn

for r = 0, rmin − 1, and the matrix

D0 ⊗ ITN2
for r = rmin, R.

(b) One of the busy servers’ service processes at Stage 2 changes its phase. In this
case, the transition rates are determined by the diagonal entries of the matrix
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diag{OW×W , IW ⊗ ∆n, n = 1, N2}, if r = 0, rmin − 1, and matrix IW ⊗ ∆N2 , if
r = rmin, R.

(c) A customer from the buffer of Stage 2 leaves this stage due to impatience.
The corresponding rates are given by the matrices rγI

W
N2
∑

n=0
Tn

, r = 0, rmin − 1,

and rγIWTN2
, r = rmin, R.

(d) A customer from the buffer of Stage 1 leaves this stage due to impatience.
The matrices αmax{0, i − N1}I

W
N2
∑

n=0
Tn

, if r = 0, rmin − 1, and αmax{0, i −

N1}IWTN2
, if r = rmin, R, set the corresponding intensities.

(e) A customer successfully finishes service at Stage 1. The corresponding in-
tensities are set by the matrices µmin{i, N1}I

W
N2
∑

n=0
Tn

, if r = 0, rmin − 1, and

µmin{i, N1}IWTN2
, if r = rmin, R.

(f) A customer, after successful service at Stage 1 moves to Stage 2, finds the full
buffer of Stage 2, and returns to Stage 1. The corresponding rates are given
by the matrix δr=R(1 − p)(1 − q)µmin{i, N1}IWTN2

.

1.2. The non-diagonal entries of the matrices (Qi,i)r,r, r = 0, R, of the matrices Qi,i
determine the transition rates of the CTMC ξt without changing the values of the
components i and r. These transitions are defined by

(a) The non-diagonal entries of the matrix D0 ⊗ I N2
∑

n=0
Tn

, if r = 0, rmin − 1, or

D0 ⊗ ITN2
, if r = rmin, R when the underlying process νt makes a jump

without an customer generation;
(b) The entries of the matrix diag−{IW ⊗ Ln, n = 1, N2} when the process st

makes a transition implying the finish of the service, but a new service does
not begin, since the number r of the customers in the buffer of Stage 2 is such
that r < rmin;

(c) The entries of the matrix diag{OW×W , IW ⊗ An, n = 1, N2}, if r = 0, rmin − 1,
and matrix IW ⊗ AN , if r = rmin, R, when the process st makes a jump that
does not lead to service termination;

1.3. The blocks (Qi,i)r,r−1, r = 1, R, contain the transition rates of the CTMC ξt oc-
curring when the number of customers in the buffer at Stage 2 decreases by one.
This can happen only when a customer leaves this buffer due to impatience.
Thus, the matrices (Qi,i)r,r−1 are given by the matrix rγI

W
N2
∑

n=0
Tn

, if r = 1, rmin − 1,

rmin ̸= 2, the matrix
(

O
WTN2×W

N2−1
∑

n=0
Tn

rminγIWTN2

)
for r = rmin, rmin ̸= 1,

and the matrix rγIWTN2
, if r = rmin + 1, R, rmax ̸= 1.

1.4. Let us explain in more detail the form of blocks (Qi,i)1,0 when rmin = 1 and
rmin = 2.
If rmin = 1, then a released server of Stage 2 always starts service if the buffer of
this stage is not empty. The reduction in the number of customers in the buffer
occurs if the service at Stage 2 is finished or a customer leaves the buffer due
to impatience. The rates of occurring these events are specified by the matrices(

O
WTN2×W

N2−1
∑

n=0
Tn

IW ⊗ LN2 PN2−1(β1)
)

and
(

O
WTN2×W

N2−1
∑

n=0
Tn

γIWTN2

)
,

respectively.
1.5. Next, let us comment on the expressions for the blocks (Qi,i)r,0, specifying the

transition rates of the process ξt from the sub-level (i, r) to the sub-level (i, 0),
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which occurs when r customers are accepted for simultaneous service at Stage 2.
The corresponding rates are given by the entries of the matrix(

O
WTN2×W

N2−1
∑

n=0
Tn

IW ⊗ LN2 PN2−1(βr)
)

for r = rmin, rmax, if rmin ̸= 1, and for r = rmin + 1, rmax, if rmin = 1.
1.6. There is also a possible situation when, at the moment of realizing the server of

Stage 2, there are r, r = rmax + 1, R, customers in the buffer of Stage 2, then the
group consisting of rmax customers goes to service at Stage 2. The corresponding
rates are given by the components of the matrix(

O
WTN2×W

N2−1
∑

n=0
Tn

IW ⊗ LN2 PN2−1(βrmax
)
)

,

for r = rmax + 1, rmax + rmin − 1, and by the components of the matrix IW ⊗
LN2 PN2−1(βrmax

), if r = rmax + rmin, R, rmax ̸= 1.
As a result of the presented considerations, we obtain the expressions for the
blocks Qi,i, i ≥ 0, presented above.

2. The updiagonal blocks Qi,i+1, i ≥ 0, contain the transition rates of the CTMC ξt
occurring when the number of customers at Stage 1 increases. This can only occur
when a new customer enters the system. Therefore, these blocks are specified by the
matrix diag{D1 ⊗ ITn , n = 0, N2} if r = 0, rmin − 1, and by the matrix D1 ⊗ ITN2

if

r = rmin, R.
3. The subdiagonal blocks Qi,i−1, i ≥ 1, contain the rates of the CTMC ξt transition

when the number of customers at Stage 1 decreases by one. This can occur under the
following scenarios:

3.1. a customer at Stage 1 leaves the buffer due to impatience. In this case, blocks
Qi,i−1 have the non-zero diagonal blocks (Qi,i−1)r,r which are specified by the
matrix αmax{0, i − N1}I

W
N2
∑

n=0
Tn

if r = 0, rmin − 2, rmin ̸= 1, and αmax{0, i − N1}

if r = rmin, R.
3.2. a customer decides to leave the system after successful service at Stage 1. In

this case, the transition rates are defined by the matrix qµmin{i, N1}I
W

N2
∑

n=0
Tn

for

r = 0, rmin − 2, rmin ̸= 1 and by the matrix qµmin{i, N1}IWTN2
for r = rmin, R.

3.3. a customer is lost after successful service at Stage 1, moving to Stage 2 and finding
the full buffer of Stage 2. The intensities of this event occurrence are given by the
entries of the matrix p(1 − q)µmin{i, N1}IWTN2

.

3.4. If rmin = 1, besides cases 3.1. and [3.2.], we also need to count the case when, after
service at Stage 1, the customer decides to continue service at Stage 2, finds a free
device, and immediately goes to service. That is why the block (Qi,i−1)0,0 contains
the additional summand (1 − q)µmin{i, N1}diag+{IW ⊗ Pn(β1), n = 0, N2 − 1}.

3.5. The blocks Qi,i−1 also have a non-zero block (Qi,i−1)rmin−1,0, rmin ̸= 1, given
by the formula (1 − q)µmin{i, N1}diag+{IW ⊗ Pn(βrmin

), n = 0, N2 − 1}, which
specifies the transition intensity of the CTMC in the case when a customer after
service at Stage 1 , moves to second stage and enters the buffer of this stage when
it already contains rmin − 1 customers and then a group of rmin goes for service.

3.6. The blocks Qi,i−1 also have the non-zero blocks (Qi,i−1)r,r+1, r = 0, R − 1, which
contain the rates of CTMC ξt transitions from the sub-level (i, r) to the sub-level
(i − 1, r + 1). An increase in the number of customers in the buffer of Stage 2 may
occur when a customer, after service at Stage 1, attends Stage 2. The intensities of
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the corresponding transitions are specified by the matrix
(1 − q)µmin{i, N1}I

W
N2
∑

n=0
Tn

if r = 0, rmin − 2, by the matrix

(1 − q)µmin{i, N1}

 O
W

N2−1
∑

n=0
Tn×WTN2

IWTN2


for r = rmin − 1 and by the matrix (1 − q)µmin{i, N1}IWTN2

if r = rmin, R − 1.

The theorem has been proven.

3.3. Ergodicity of the Process

Having obtained the explicit form of the generator, it is possible to implement the
analysis of the stationary distribution of the states of the system. The first part of such an
analysis consists of the derivation of the condition for ergodicity of the CTMC ξt. This
derivation differs in the cases when the impatience rate α at Stage 1 is strictly positive and
when it is equal to zero.

In the first case, looking at the explicit expressions for the blocks of the generator, it is
not difficult to verify that the following limits exist:

Wk = lim
i→∞

Z−1
i Qi,i+k−1 + δk,1 I, k = 0, 1, 2, (1)

where δk,1 = 1 if k = 1 and δk,1 = 0, otherwise, and the matrix Zi is the diagonal matrix
whose diagonal entries coincide with the diagonal entries of the matrix Qi,i taken with the
opposite sign.

Existence of the limits (1) implies, according to the definition given in [42], that
the CTMC ξt is the particular case of the asymptotically quasi-Toeplitz Markov chains
(AQTMC).

Sufficient condition for ergodicity of AQTMC obtained in [42] in the case when the
matrix W0 + W1 + W2 is irreducible is the fulfillment of inequality

wW0e > wW2e (2)

where the row vector w is the unique solution of the system

w = w(W0 + W1 + W2), we = 1.

Calculating the explicit expressions for matrices Wk, k = 0, 1, 2, from (1), we can easily
verify that W0 = I, W1 = W2 = O. Thus, the inequality (2) is trivially fulfilled. Therefore, if
the impatience rate α at Stage 1 is strictly positive then the CTMC ξt is ergodic for any set
of the system parameters.

In the second case, when α = 0, the CTMC ξt is the level-independent quasi-birth-
and-death process with many boundary levels (level independence takes place for levels i
such that i ≥ N) the criterion of ergodicity for the CTMC ξt is obtained immediately from
the results by M. Neuts, see [28], as follows.

Let Qi,j|α=0 be equal to the matrix Qi,j if α is set to be equal 0.
Let Q0 = QN1,N1 |α=0, Q− = QN1,N1−1|α=0, and Q+ = QN1,N1+1|α=0.
According to [28], the CTMC ξt is ergodic if and only if the inequality

yQ−e > yQ+e, (3)

is fulfilled where the row vector y is the unique solution to equations

y(Q− + Q0 + Q+) = 0, ye = 1. (4)
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Thus, to verify whether or not the CTMC ξt is ergodic it is necessary to solve the
finite system (4) of the linear algebraic equations and verify whether or not the inequality
(3) holds good.

If the return of a customer to Stage 1 due to the overflow of the buffer at Stage 2 is
impossible (p = 1), the criterion of ergodicity is reduced to the requirement of fulfillment
of inequality λ < N1µ.

3.4. Outline of Calculation of Stationary Distribution of the Process

Let the considered CTMC ξt be ergodic. Then the following stationary probabilities
of the CTMC ξt states exist:

π(i, r, n, ν, s(1), . . . , s(M)) =

lim
t→∞

P{it = i, rt = r, nt = n, νt = ν, s(1)t = s(1), . . . , s(M)
t = s(M)},

i ≥ 0, r = 0, R, n = 0, N2, ν = 1, W,

s(k) = 0, min{n, N2}, k = 1, M,
M

∑
k=1

s(k) = min{n, N2}.

Let us form the row vectors π(i, r), i ≥ 0, r = 0, R, of the stationary probabilities of
the states belonging to the sub-level (i, r), and the vectors πi = (π(i, 0), π(i, 1), . . . , π(i, R))
of the stationary probabilities of the states belonging to the level i, i ≥ 0.

It is well known that the row vectors πi, i ≥ 0, satisfy the system of equations:

(π0, π1, . . . , πi, . . . )Q = 0, (π0, π1, . . . , πi, . . . )e = 1.

In the case when the customers at Station 1 are absolutely patient (α = 0), the vectors
πi, i ≥ 0, can be found in so-called matrix-geometric form, see [28].

If the customers are impatient (α > 0), the problem of computation of the vectors
πi, i ≥ 0, via solution of the infinite system of equations is much more complicated.
Fortunately, because the CTMC ξt belongs to the class of AQTMC, the vectors πi, i ≥ 0,
can be computed using the numerically stable algorithms elaborated on in [42–44].

4. Formulas for Computation of the Values of the Key Performance Measures of
the System

The goal of the computation of the stationary distribution of the states of any queuing
model is its use for the computation and optimization of the main performance indicators
of the system. Let us present some formulas for their computation.

The average number of customers in the buffer of Stage 1 is calculated using the formula

L(1)
bu f =

∞

∑
i=N1+1

(i − N1)πie.

The average number of busy servers at Stage 1 is calculated using the formula

N(1)
serv =

N1

∑
i=1

iπie.

The average number of customers at Stage 1 is calculated using the formula

L(1) = L(1)
bu f + N(1)

serv =
∞

∑
i=1

iπie.
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The average number of customers in the buffer of Stage 2 is calculated using the formula

L(2)
bu f =

∞

∑
i=0

R

∑
r=1

rπ(i, r)e.

The average number of busy servers in Stage 2 is calculated by the formula

N(2)
serv =

∞

∑
i=0

(
rmin−1

∑
r=0

N2

∑
n=1

nπ(i, r, n)e + N2

R

∑
r=rmin

π(i, r)e).

The average number of customers at Stage 2 is calculated using the formula

L(2) = L(2)
bu f + N(2)

serv =
∞

∑
i=0

(
rmin−1

∑
r=0

N2

∑
n=0

(r + n)π(i, r, n)e +
R

∑
r=rmin

(r + N2)π(i, r)e)

where the vectors π(i, r, n), i ≥ 0, n = 0, N2, are defined by the partition

π(i, r) = (π(i, r, 0), π(i, r, 1), . . . , π(i, r, N2), r = 0, rmin − 1,

π(i, r) = π(i, r, N2), r = rmin, R.

The average intensity of the output flow of successfully serviced customers from
Stage 1 is calculated by the formula

µ
(1)
out =

∞

∑
i=0

µmin{i, N1}πie.

The average intensity of the output flow of successfully serviced customers from
Stage 2 is calculated by the formula

µ
(2)
out =

∞

∑
i=0

(
rmin−1

∑
r=0

N2

∑
n=1

π(i, r, n)(IW ⊗ Ln)e +
R

∑
r=rmin

π(i, r)(IW ⊗ LN2)e).

The average intensity of the input flow of customers to Stage 2 is calculated by
the formula

λ
(2)
in = (1 − q)

∞

∑
i=0

µmin{i, N1}πie.

The average intensity of the input flow of customers to Stage 2 that were accepted for
this stage is calculated by the formula

λ
(2)
accepted = (1 − q)

∞

∑
i=0

µmin{i, N1}
R−1

∑
r=0

π(i, r)e.

The probability that an arriving customer will find an idle server at Stage 1 and enter
the service is found by the formula

P(1)
to−serv =

1
λ

N1−1

∑
i=0

(
rmin−1

∑
r=0

N2

∑
n=0

π(i, r, n)(D1 ⊗ ITn)e +
R

∑
r=rmin

π(i, r)(D1 ⊗ ITN2
)e).

The probability that an arriving customer will find all busy servers at Stage 1 and go
to the buffer is found by the formula

P(1)
to−bu f =

1
λ

∞

∑
i=N1

(
rmin−1

∑
r=0

N2

∑
n=0

π(i, r, n)(D1 ⊗ ITn)e +
R

∑
r=rmin

π(i, r)(D1 ⊗ ITN2
)e).
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The rate of customer leaving the buffer of Stage 2 for service is calculated by the formula

µto−serv =
∞

∑
i=0

[(1 − q)µmin{i, N1}rmin

N2−1

∑
n=0

π(i, rmin − 1, n)e+

+
R

∑
r=rmin

min{r, rmax}π(i, r)(IW ⊗ LN2)e].

The probability that a customer, after service at Stage 1, will find the buffer of Stage 2
full and leave the system is found by the formula

Ploss− f ull−bu f f er =
p(1 − q)

λ

∞

∑
i=0

µmin{i, N1}π(i, R)e.

The probability that a customer, after service at Stage 1, attends Stage 2 is found by
the formula

Pto−second−stage =
1 − q

λ

∞

∑
i=0

µmin{i, N1}
R−1

∑
r=0

π(i, r)e.

The loss probability of an arbitrary customer from the buffer of Stage 1 due to impa-
tience is calculated using the formula

P(1)
imp−loss =

αL(1)
bu f

λ
.

The loss probability of an arbitrary customer from the buffer of Stage 2 due to impa-
tience is calculated using the formula

P(2)
imp−loss =

γL(2)
bu f

λ
.

The loss probability of a customer being accepted to Stage 2 from the buffer of Stage 2
due to impatience is calculated using the formula

P(2)
imp−loss−accepted =

γL(2)
bu f

λ
(2)
accepted

.

The average size of the group that is picked up for service at Stage 2 is calculated as

Sgroup =
µto−serv

µ
(2)
out

.

The loss probability of an arbitrary customer in Stage 1 is calculated using the formula

P(1)
loss = P(1)

imp−loss.

The loss probability of an arbitrary customer in Stage 2 is calculated using the formula

P(2)
loss = P(2)

imp−loss + Ploss− f ull−bu f f er.

The loss probability of an arbitrary customer is calculated using the formula

Ploss = P(1)
loss + P(2)

loss = 1 − µto−serv + qµ
(1)
out

λ
. (5)
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Remark 1. The algorithm for computation of the stationary probability vectors, which we used for
computation of different performance measures of the system in the following section, is numerically
stable, but expressions for the blocks of the generator are quite bulky. Therefore, computer realization
of the algorithm is not easy and its control is mandatory. Beside various other means for control,
Formula (5) giving two different possibilities for the loss probability calculation can be used for the
accuracy of realization and computation control.

5. Numerical Example

The considered tandem system has a lot of parameters, each of which has an impact
on performance metrics of the system that deserves a detailed illustration. For example,
this concerns the mean arrival rate, the coefficients of variation and correlation of inter-
arrival times, number of servers at both stages of tandem, service rate at Stage 1, capacity
of the intermediate buffer, impatience rates of customers at both buffers, probabilities of
abandonment of service at Stage 2 and customer return to Stage 1 in case of the intermediate
buffer overflow. However, because the main novelty of the model consists of the possibility
of group service at Stage 2 with restriction on the minimum and maximum of a group size
and dependence of service time on the size of a serviced group, we state as the goal of this
example to highlight the impact of the thresholds rmin and rmax defining the borders of a
size of a group that can be serviced at Stage 2 of the tandem and illustrate the possibility of
the optimal choice of these thresholds. We present the results illustrating this impact under
the fixed below set of the other system parameters.

Let the number of servers at Stage 1 be N1 = 10, the number of servers at Stage 2 be
N2 = 5 and the capacity of the buffer at Stage 2 be R = 30.

Customers enter the tandem system in the MAP flow defined by the matrices

D0 =

(
−1.8 0

0 −0.6

)
, D1 =

(
1.74 0.06
0.012 0.588

)
.

This flow has the average customer rate λ = 0.8, the coefficient of correlation of
successive inter-arrival times 1.37 and the coefficient of variation of these times 0.128.

The service rate of the customer at Stage 1 µ = 0.2.
We assume that the mean service time tr of a group consisting of r customers, r = 1, R,

at Stage 2 is defined by formulas

t1 = 25, tr = t1 + (r − 1)∆t, ∆t = 6, r = 1, R.

Such a choice of parameters implies that the average service time t1 of the first customer
in the group is 25 min; each subsequent customer in the group adds 6 min to the average
service time of the group. To obtain these values of the mean service times, we choose a
phase-type distribution with the irreducible representation (βr, S), r = 1, R, where

S =

(
− 1

t1
0

0 − 1
tR

)
, βr =

(
tR − tr

tR − t1
, 1 − tR − tr

tR − t1

)
.

The mean service time of the groups monotonously increases, with the increase in
the number of customers in a serviced group from 1 to 30, from 25 to 199. The coefficient
of variation of the group service time varies as follows. For the group size equal to 1, the
vector β1 is given by β1 = (1, 0). This implies that service time of a group consisting of
one customer has the exponential distribution with the rate 1

25 = 0.04. Correspondingly,
the coefficient of variation of such a group service time is equal to one. With growth of
group size r, service time distribution becomes hyper-exponential distribution that has the
coefficient of variation greater than one. This coefficient increases with the growth of group
size r. For r = 2, 3, 4, the values of this coefficient are 3.09781, 3.84003, 4.03732, respectively.
However, then this coefficient starts decreasing. For r = 5, 6, 10, 20, 29, 30, it takes values
3.99875, 3.8562, 3.07659, 1.70804, and 1.05412, 1, correspondingly. The initial growth of the
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coefficient of variation of the group service time with its further decrease fits the behavior
of the service time interpreted as parcels delivering from the warehouse to some district of
the city. The main amount of time is spent on the car trip from the warehouse to the district.
Delivering of parcels to each client inside the district adds smaller amount of time to the
total time during which the car will be busy by delivering. Initial increase in the variance
of the delivering time is caused by the raise in uncertainty of the total delivering time due
to the adding of complimentary random times of delivering to an individual client. The
variance starts decreasing with the further growth of the number of delivered parcels due
to the law of large numbers. Value 1 of the coefficient of variation when r = R = 30 is
easily explained by the fact that the vector βR is given by βR = (0, 1) what implies that
service time of a group consisting of R customers has the exponential distribution with the
rate 1

199 = 0.005.
The impatience rates at Stages 1 and 2 are α = 0.02 and γ = 0.03,, respectively. The

probabilities p and q are chosen as p = 0.9 and q = 0.1.
Let us vary the parameter rmin in the range from 1 to 30 and the parameter rmax in the

range from rmin to R with Step 1.
Figures 2 and 3 illustrate the dependencies of the average number of customers in the

buffer of Stage 1, L(1)bu f , and Stage 2, L(2)bu f , under different values of the parameters rmin and rmax.
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Figure 2. The dependence of the average number L(1)
bu f of customers in the buffer of Stage 1 on the

parameters rmin and rmax.
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Figure 3. The dependence of the average number L(2)
bu f of customers in the buffer of Stage 2 on the

parameters rmin and rmax.

The form of the shape presented in Figure 3 is explained as follows. The service
of customers in the larger groups is profitable in terms of the average service time per
customer. For the group consisting of r customers, the latter time is defined as

t1 + (r − 1)∆t

r
= ∆t +

t1 − ∆t

r
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and evidently decreases when r increases. When the numbers rmin and rmax are small, this
advantage of group service is weakly used. When rmin increases, this advantage starts
working and L(2)

bu f decreases. However, with the subsequent growth of rmin, the number

L(2)
bu f starts to increase because the large values of rmin lead to the accumulation of the

larger number of customers in the second buffer until service beginning. This leads to
the starvation of servers at Stage 2, their under-utilization, and, finally, the increase in the
average number of L(2)

bu f .
The form of the shape presented in Figure 2 correlates with Figure 3. When the

numbers rmin and rmax are small, the mentioned advantage of group service is not used.
This implies a high probability that the buffer of Stage 2 is full and the customer who
finished service at Stage 1 returns (with the probability (1 − p)) for service at Stage 1.
When rmin increases, this advantage starts to work, and the probability of the second buffer
overflow decreases. Correspondingly, the rate of customer’s return to Stage 1 decreases,
which causes the decrease of L(1)

bu f . However, with the subsequent growth of rmin, the

number L(2)
bu f starts to increase (because, as noted above, the large values of rmin lead to

the accumulation of a larger number of customers in the second buffer). Simultaneously,
the probability of the second buffer overflow becomes higher. The essential increase in the
value of L(2)

bu f when rmin and rmax become large, which is observed in Figure 2, does not

induce the growth of L(1)
bu f because many customers renege from the second buffer due to

impatience but do not return to Stage 1.
It is worth noting that it is hardly possible to give more exact intuitive explanation

of the shape of surfaces presented in Figures 2 and 3 due to the complexity of the model.
In particular, the difficulty of explanations is related with the fact that variation of the
thresholds rmin and rmax causes the change of the distribution of the size of the serviced
groups while, as it was noted above, variance of the service time non-monotonically behaves
when the size of a group varies. It is well known that the average queue length depends
on the variance of the service time. Thus, the complicated non-monotonic behavior of this
variance makes the intuitive explanation difficult. This makes valuable algorithmic and
numerical analysis of the considered tandem.

Figure 4 shows the dependence of the average number N(2)
serv of busy servers at Stage 2

on the parameters rmin and rmax.
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Figure 4. The dependence of the average number N(2)
serv of busy servers at Stage 2 on the parameters

rmin and rmax.

This number achieves its maximum when rmin is small, the advantages of group
service are not exploited, and, therefore, more servers of Stage 2 must work. When rmin
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increases, servers are used more effectively, and the average number N(2)
serv of busy servers at

Stage 2 decreases. The influence of the threshold rmax in this example is not very significant.
Figure 5 shows the dependence of the average size Sgroup of the group, which is

picked up for service at Stage 2, on the parameters rmin and rmax. As can be expected,
the number Sgroup is minimal when the restriction on the minimum size of a group is
weak. Sgroup essentially increases when this restriction becomes stronger. Finally, when
rmin = rmax = R = 30, all customers are served in groups of size 30. The dependence of
Sgroup on rmax is not so essential. Sgroup obviously increases when rmax becomes larger. But
for large values of rmax the increase becomes slow due to the fact that the number of used
servers also depends on the arrival rate. For the fixed arrival rate, the number of used
servers (and the average size of the group) are restricted from above.
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Figure 5. The dependence of the average size of the group that is picked up for service at Stage 2 on
the parameters rmin and rmax.

Therefore, dependence of Sgroup can be summarized as follows. For all values of rmin,
Sgroup monotonically increases when rmax grows from rmin to N. The range of values of
Sgroup monotonically decreases when rmin grows. For example, for rmin = 1, the value of
Sgroup grows from 1 to 5.26 (the difference is 4.26). For rmin = 2, the value of Sgroup varies
from 2 to 5.59 (the difference is 3.59). For rmin = 8, the value of Sgroup varies from 8 to 9.66
(the difference is 1.66). For rmin = 20, the difference is 0.21. For rmin = 28, the difference is
0.006. Note that these dependencies are qualitatively clear. But the worth of our numerical
results is in giving the exact quantitative characterization of these probabilities.

Figures 6–10 show the dependencies on the parameters rmin and rmax of the loss
probabilities of an arbitrary customer due to various reasons. P(1)

loss and P(2)
loss are the

probabilities of the loss from Stages 1 and 2. The loss at Stage 1 is caused by the impatience
of customers in the first buffer. As it is clear from the formula for its computation, the loss
probability P(1)

loss is proportional to the average number L(1)
bu f of customers in the buffer of

Stage 1. Figures 2 and 6 confirm this. The loss at Stage 2 may occur due to the impatience
of customers from the buffer and due to the second buffer overflow. Ploss− f ull−bu f f er is

the probability of a loss due to the buffer overflow. P(2)
imp−loss is the probability of the loss

from the buffer of Stage 2 due to impatience. Because, in this example, the probability
Ploss− f ull−bu f f er is quite small, the shape of the surface presented in Figure 7 is very similar

to the shape of the surface presented in Figure 9. The probability P(2)
imp−loss−accepted presented

in Figure 10 is the probability of the loss of a customer accepted to Stage 2 due to impatience.
It is slightly larger than the probability P(2)

imp−loss presented in Figure 10 because the value
λ of the arrival rate to the system in the denominator of the formula for computation
of P(2)

imp−loss is greater than the value λaccepted of the arrival rate of admitted to Stage 2

customers in the denominator of the formula for computation of P(2)
imp−loss−accepted.



Axioms 2024, 13, 214 19 of 24

r
min

r
max

0.0047

0.00475

0.0048

0.00485

0.0049

0.00495

0.005

0.00505

0
5

10
15

20
25

30

0
5

10
15

20
25

30

P
loss

(1)

0.0047
0.00475
0.0048
0.00485
0.0049
0.00495
0.005
0.00505

Figure 6. The dependence of the loss probability of an arbitrary customer from Stage 1 on the
parameters rmin and rmax.
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Figure 7. The dependence of the loss probability of an arbitrary customer from Stage 2 on the
parameters rmin and rmax.
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Figure 8. The dependence of the probability that a customer after service at Stage 1 will find the
buffer of Stage 2 full and leave the system on the parameters rmin and rmax.

As it is evident from Figures 2–10, the performance measures of the system admit
values in a wide range when the thresholds rmin and rmax vary. Therefore, it is reasonable
to use the results of computation of these measures for optimization of the operation of the
system. Various optimization problems can be formulated and solved.
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Figure 9. The dependence of the loss probability of an arbitrary customer from the buffer of Stage 2
due to impatience on the parameters rmin and rmax.
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Figure 10. The dependence of the loss probability of an customer accepted to Stage 2 from the buffer
of Stage 2 due to impatience on the parameters rmin and rmax.

For example, the quality of the system’s operation can be evaluated in terms of the
following cost criterion:

E = E(rmin, rmax) = aqµ
(1)
out + bµto−serv − cλP(1)

loss − dλP(2)
loss − f rmax.

Here, a and b are the revenue of the system earned via the service of one customer at
Stages 1 and 2, correspondingly; c and d are the charges for the loss of an arbitrary customer
at Stages 1 and 2; and f is the cost for maintaining one place in a service device (a delivery
vehicle) per unit of time. This criterion E determines the average profit obtained by the
system per unit of time, and our managerial goal is to obtain such parameters as rmin and
rmax under which the system’s revenue is maximal.

In this numerical example, let us set the following values for the cost coefficients:

a = 0.1, b = 2, c = 1, d = 3, f = 0.005.

Figure 11 shows the dependence of the cost criterion E on the parameters rmin and rmax.
The optimal value E∗ of the cost criterion is equal to 0.340837. It is achieved under the

following values of the thresholds: r∗min = 4, r∗max = 18. When all customers are serviced
at Station 2 one-by-one, i.e., rmin = rmax = 1, and the advantages of group service are not
used, the value E is −1.4909. Let us leave rmin = 1, which means that all servers at Stage 2
are busy when the buffer is non-empty, and increase rmax, we more fully use the advantages
of group service. The value of E increases up to the value achieved for rmax = 18. The
cost criterion achieves the value 0.32. The further increase of rmax from 18 to 30 leads the
monotonic decrease of E to the value of 0.2852.
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Figure 11. The dependence of the cost criterion on the parameters rmin and rmax.

When we start the increase of rmin, the value of E increases. For rmin ≥ 5, the value
of E becomes positive. The optimal value E∗ of the cost criterion is equal to 0.340837. It
is achieved under the following values of the thresholds: r∗min = 4, r∗max = 18. When we
further increase the values of rmin, the value of the cost criterion becomes worse, even for the
best choice of rmax. For rmin ≥ 15, the value of E becomes negative for any rmax. This means
that the use of the advantage of group service increases. But simultaneously, it increases
the charge for maintaining the capacity of the service devices. For rmin = rmax = 30, the
value of the cost criterion is −1.2471.

Thus, this example highlights the possibility of essentially improving the effectiveness
of the system operation via the proper use of the minimal and maximal sizes rmin and rmax
of the groups picked up from the buffer for service.

If we modify the optimization problem by imposing an additional constraint on the
average number Sgroup of the average size of the group that is picked up for service at Stage
2. Such a constraint is reasonable, e.g., if each customer (passenger) books a ticket and the
system manager would like to have a definite average profit from each service (calculated
as the difference between the money paid by the passengers and expenditures of the service
provider, including payment of a vehicle lease, fuel, taxes, the service team’s or driver’s
salary, etc.). Under such an additional constraint, the optimal values rmin and rmax become
equal to 6 and 22, respectively. The optimal revenue E∗ becomes equal to 0.3147.

6. Conclusions

In this paper, we considered the novel two-stage tandem queuing system. Customer
arrival process may have the fluctuating instantaneous rate, correlation of the subsequent
inter-arrival times and versatile values of their variance. This process considerably more
adequately describes the flows in real-world systems than the stationary Poisson process
supposed in the majority of the existing research of the tandem queuing systems. The most
distinctive feature of the considered model is the possibility of group service for customers
at Stage 2 and dependence of the group service time on the size of a group. The distribution
of the service time of a group of any fixed size has a PH distribution with irreducible
representation depending on the size of the group.

Both stages of the tandem are described by the multi-server systems with impatient
customers that may renege from the tandem without receiving service if their waiting time
reaches the fixed in advance value having an exponential distribution. While the analysis
of the tandem is presented here for both cases, with absolutely patient and impatient
customers, account of the possible impatience increases the adequacy of the considered
model to real-world systems. The possibility that customers received service at Stage 1
depart from the tandem without trying to receive service at Stage 2 is suggested. Such a
departure can occur, e.g., in the following two cases: the customer has received all required
service at Stage 1 and does not need service at Stage 2; preliminary service of the customer
at Stage 1 was not satisfactory and he/she decides to skip the main service at Stage 2. The
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possibility of customers, which have received service at Stage 1, losing or returning to
Stage 1 due to a finite intermediate buffer overflow is also suggested.

The behavior of the system is described by the CTMC including the number of
customers at Stage 1 of the tandem, the number of customers in the buffer of Stage 2, the
number of busy servers at Stage 2, the state of the underlying process of the MAP and
the number of servers at each phase of service at Stage 2. This CTMC is the well-studied
level-independent quasi-birth-and-death process in case of the patient customers and the
AQTMC in case of the impatient customers. Stationary analysis of this CTMC under the
fixed values (thresholds) of the minimum and maximum size of the groups, service to
which is provide at Stage 2, is implemented. The significant impact of these values on the
main performance indicators of the tandem is numerically highlighted. An example of
solving the problem of the service provider’s revenue maximization is presented. This
example confirms the possibility of essentially improving the effectiveness of the system
operation via the proper use of the thresholds.

The considered model can be applied to designing and managing various telecommu-
nication, logistic, production, manufacturing, and other systems and networks in which
service can be decomposed into two stages, e.g., the preliminary (auxiliary) service and the
main (essential) service. For example, in modeling of very popular now systems of a food
or goods delivering, Stage 1 corresponds to the acceptance of an order from a customer
and packing the required items to some container for delivering. Stage 2 corresponds to
the container delivering to the customer by some transport. Simultaneous delivering of the
container to many customers is very common to reduce the provider expenditures related
to the use of the transport. The obtained results can be used for the choice of suitable
capacity of two service devices and their optimal matching as well as for optimization of
the thresholds defining the minimum and maximum size of the groups to which service
can be provided. These sizes can predefine the capacity of the required transport units and
economically feasible restrictions on the minimal number of delivered orders.

Results of the presented analysis can be used for the study of various extensions of
the considered model. For example, customers arriving at Stage 1 when all servers are
busy cannot be buffered but should retry for service later on. Customers are heterogeneous
and some of them have a priority in access to service at one or both stages. Servers can be
completely or partially unreliable. There is a cross-traffic of customers arriving directly to
Stage 2. Parameters of the system are influenced by an external random process, etc.
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