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Abstract: In this work, we integrate some new approximate functions using the logarithmic penalty
method to solve nonlinear optimization problems. Firstly, we determine the direction by Newton’s
method. Then, we establish an efficient algorithm to compute the displacement step according
to the direction. Finally, we illustrate the superior performance of our new approximate function
with respect to the line search one through a numerical experiment on numerous collections of
test problems.
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1. Introduction

The nonlinear optimization is a fundamental subject in the modern optimization
literature. It focuses on the problem of optimizing an objective function in the presence of
inequality and/or equality constraints. Furthermore, the optimization problem is obviously
linear if all the functions are linear, otherwise it is called a nonlinear optimization problem.

This research field is motivated by the fact that it arises in various problems encoun-
tered in practice, such as business administration, economics, agriculture, mathematics,
engineering, and physical sciences.

In our knowledge, Frank and Wolfe are the deans in nonlinear optimization problems.
They established a powerful algorithm in [1] to solve them. Later, they used another
method in [2] based on the application of the Simplex method on the nonlinear problem
after converting it to a linear one.

This pioneer work inspired many authors to propose and develop several methods
and techniques to solve this class of problems. We refer to [3,4] for interior point methods
to find the solution of nonlinear optimization problems with a high dimension.

In order to make this theory applicable in practice, other methods are designed on
the linear optimization history, among robust algorithms with polynomial complexity. In
this perception, Khachian succeeded in 1979 to introduce a new ellipsoid method from
approaches applied originally to nonlinear optimization.

Interior point methods outperform the Simplex ones, and they have recently been
the subject of several monographs including Bonnans and Gilbert [5], Evtushenko and
Zhadan [6], Nesterov and Emirovski [7], and Wright [8] and Ye [9].

Interior point methods can be classified into three different groups as follows: projec-
tive methods and their alternatives as in Powell [10] and Rosen [11,12], central trajectory
methods (see Ouriemchi [13] and Forsgren et al. [14]), and barrier/penalty methods, where
majorant functions were originally proposed by Crouzeix and Merikhi [15] to solve a
semidefinite optimization problem. Inspired by this work, Menniche and Benterki [16]
and Bachir Cherif and Merikhi [17] applied this idea to linear and nonlinear optimizations,
respectively.
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A majorant function for the penalty method in convex quadratic optimization was
proposed by Chaghoub and Benterki [18]. On the other hand, A. Leulmi et al. [19,20] used
new minorant functions for semidefinite optimization, and this idea was extended to linear
programming by A. Leulmi and S. Leulmi in [21].

As far as we know, our new approximate function has not been studied in the nonlinear
optimization literature. These approximate functions are more convenient and efficient
than the line search method for rapidly computing the displacement step.

Therefore, in our work, we aim to optimize a nonlinear problem based on prior
efforts. Thus, we propose a straightforward and effective barrier penalty method using
new minorant functions.

More precisely, we first introduce the position of the problem and its perturbed
problem with the results of convergence in Sections 2 and 3 of our paper. Then, in Section 4,
we establish the solution of the perturbed problem by finding new minorant functions.
Section 5 is devoted to presenting a concise description of the algorithm and to illustrating
the outperformance of our new approach by carrying out a simulation study. Finally, we
summarize our work in the conclusion.

Throughout this paper, the following notations are adopted. Let ⟨., .⟩ and ∥.∥ denote
the scalar product and the Euclidean norm, respectively, given by the following:

⟨x, y⟩ = xTy =
n

∑
i=1

xiyi, x, y ∈ Rn

and

∥x∥ =
√
⟨x, x⟩ =

√
n

∑
i=1

x2
i

2. The Problem

We aim to present an algorithm for solving the following optimization problem:
min f (x)
Ax = b
x ≥ 0,

(P)

where b ∈ Rm and A ∈ Rm×n is a full-rank matrix with m < n.
For this purpose, we need the following hypothesis:

Hypothesis 1. f is nonlinear, twice continuously differentiable, and convex on L, where
L = {x ∈ Rn : Ax = b; x ≥ 0} is the set of realizable solutions of (P).

Hypothesis 2. (P) satisfies the condition of interior point (IPC), i.e., there exists x0 > 0 such that
Ax0 = b.

Hypothesis 3. The set of optimal solutions of (P) is nonempty and bounded.

Notice that these conditions are standard in this context. We refer to [17,20].
If x∗ is an optimal solution, there exist two Lagrange multipliers p∗ ∈ Rm and q∗ ∈ Rn,

such that 
▽ f (x∗) + AT p∗ = q∗ ≥ 0,

Ax∗ = b,

⟨q∗, x∗⟩ = 0.

(1)
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3. Formulation of the Perturbed Problem of (P)

Let us first consider the function ψ defined on R×Rn by the following:

ψ(η, x) =

 f (x) +
n
∑

i=1
ξ(η, xi) if x ≥ 0, Ax = b

+∞ if not,

where ξ : R2 −→ (−∞,+∞] is a convex, lower semicontinuous and proper function
given by the following:

ξ(η, α) =


η ln(η)− η ln(α) if α > 0 and η > 0,

0 if α ≥ 0 and η = 0,

+∞ otherwise.

Thus, ψ is a proper, convex, and lower semicontinuous function.
Furthermore, the function g defined by

g(η) = inf
x∈Rn

[
ψη(x) = f (x) +

n

∑
i=1

ξ(η, xi)

]
(Pη)

is convex. Notice that for η = 0, the perturbed problem (Pη) coincides with the initial
problem (P); then, f ∗ = g(0).

3.1. Existence and Uniqueness of Optimal Solution

To show that the perturbed problem (Pη) has a unique optimal solution, it is sufficient
to demonstrate that the recession cone of ψη is reduced to zero.

Proof. For a fixed η, the function ψη is proper, convex, and lower semicontinuous. The
asymptotic function of ψη is defined by the following:(

ψη

)
∞(d) = lim

α→+∞

ψη(x0 + αd)− ψη(x0)

α
,

thus, the asymptotic functions of f and ψη satisfy the relation:

(
ψη

)
∞(d) =

{
( f )∞(x) if d ≥ 0, Ad = 0,

+∞ if not.

Moreover, hypothesis H3 is equivalent to

{d ∈ Rn : ( f )∞(x) ≤ 0, d ≥ 0, Ad = 0} = {0}.

Then, {
d ∈ Rn :

(
ψη

)
∞(d) ≤ 0

}
= {0}

and from [17], for each non-negative real number η, the strictly convex problem (Pη)
admits a unique optimal solution noted by x∗η . The solution of the problem (P) is the limit
of the solutions sequence of the perturbed problem (Pη) when η tends to 0.

3.2. Convergence of the Solution

Now, we are in a position to state the convergence result of (Pη) to (P), which is
proved in Lemma 1 on [18].

Let η > 0, for all x ∈ L; we define ψ(x, η) = fη(x).

Lemma 1 ([18]). We consider η > 0. If the perturbed problem (Pη) admits an optimal solution xη ,
such that lim

η→0
xη = x∗, then the problem (P) admits an optimal solution x∗.
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We use the classical prototype of penalty methods. We begin our process with
(x0, η0) ∈ L̃ × (0, ∞), where

L̃ = {x ∈ Rn : x > 0, Ax = b} (2)

and the iteration scheme is divided into the following steps:
1. Select ηk+1 ∈ (0, ηk).
2. Establish an approximate solution xk+1 for (Pηk). It is obvious that ψ(ηk, xk+1) <

ψ(ηk, xk).

Remark 1. If the values of the objective functions of the problem (P) and the perturbed problem
(Pη) are equal and finite, then (P) will have an optimal solution if and only if (Pη) has an
optimal solution.

The iterative process stops when we obtain an acceptable approximation of g(0).

4. Computational Resolution of the Perturbed Problem

Our approach to the numerical solution of the perturbed problem (Pη), consists of two
stages. In the first one, we calculate the descent direction using the Newton approach, and
in the second one, we propose an efficient new-minorant-functions approach to compute
the displacement step easily and quickly relative to the line search method.

4.1. The Descent Direction

As (Pη) is strictly convex, the necessary and sufficient optimality conditions state that
xη is an optimal solution of (Pη) if and only if it satisfies the nonlinear system:

∇ψη

(
xη

)
= 0.

Using the Newton approach, a penalty method is provided to solve the above system,
where the vector xk+1 in each is given by xk+1 = xk + αkdk.

The solution of the following quadratic convex optimization problem is necessary to
obtain the Newton descent direction d :

min
d

[〈
▽ψη(x), d

〉
+

1
2

〈
▽2ψη(x)d, d

〉
: Ad = 0

]
= min

d
[H(η, x) : Ad = 0],

where x ∈ L̃ and

ψη(x) = f
(

xη

)
+ nη ln η − η

n

∑
i=1

ln(xi)

∇ψη(x) = ∇ f (x)− ηX−1e

∇2ψη(x) = ∇2 f (x) + ηX−2e

H(η, x) =
〈
▽ψη(x), d

〉
+

1
2

〈
▽2ψη(x)d, d

〉
,

with the diagonal matrix X = diag(xi)i=1,n.
The Lagrangian is given by the following:

L(x, s) =
〈
∇ f (x)− X−1η, d

〉
+

1
2

〈(
∇2 f (x) + X−2η

)
d, d

〉
+ ⟨Ad, s⟩,

where s ∈ Rm is the Lagrange multiplier. It is sufficient for solving the linear system
equations with n + m :{

∇ f (x)− ηX−1e +
〈(
∇2 f (x) + X−2η

)
d, d

〉
+ Ats = 0

Ad = 0,
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then, { (
▽2 f (x)− ηX−2)d + ATs = ηX−1e −▽ f (x)

Ad = 0.
(3)

It is simple to prove that system (3) is non-singular. We obtain{
dT(▽2 f (x)− ηX−2)d + dT ATs = dTηX−1e − dT▽ f (x)

dT Ad = 0,

As dT ATs = (Ad)Ts = 0 and Ad = 0, we obtain〈
▽2 f (x)d, d

〉
+ ⟨▽ f (x), d⟩ = η

[〈
X−1d, e

〉
−

∥∥∥X−1d
∥∥∥2

]
. (4)

The system can also be written as follows:{ (
X▽2 f (x)X

)(
X−1d

)
+ η I

(
X−1d

)
+ XATs = ηXX−1e − X▽ f (x)

AX
(
X−1d

)
= 0,

. (5)

Thus, the Newton descent direction is obtained.
Throughout this paper, we take x instead of xη .

4.2. Computation of the Displacement Step

This section deals with the numerical solution of the displacement step. We give a
brief highlight of the line search methods used in nonlinear optimization problems. Then,
we collect some important results of approximate function approaches applied to both
semidefinite and linear programming problems. Finally, we propose our new approximate
function method for the nonlinear optimization problem (P).

4.2.1. Line Search Methods

The line search methods consists of determining a displacement step αk, which ensures
the sufficient decrease in the objective at each iteration xk+1 = xk + αkdk, where αk > 0,
along the descent direction dk; in other words, it involves solving the following one-
dimensional problem:

φ(α) = min
α>0

ψη(xk + αdk).

The disadvantage of this method is that the solution α is not necessarily optimal, which
make the feasibility of xk+1 not guaranteed.

The line search techniques of Wolfe, Goldstein-Armijo, and Fibonacci are the most
widely used ones. However, generally, their computational volume is costly. This is what
made us search for another alternative.

4.2.2. Approximate Functions Techniques

These methods are based on sophisticated techniques introduced by J.P. Crouzeix et al. [15]
and A. Leulmi et al. [20] to obtain the solution of a semidefinite optimization problem.

The aim of these techniques is to give a minimized approximation of one real-variable
function φ(α) defined by

φ(α) =
1
η
[ψη(x + αd)− ψη(x)]

=
1
η
[ f (x + αd)− f (x)]−

n

∑
i=1

ln(1 + αti), t = X−1d.

The function φ is convex, and we obtain the following:
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φ′(α) =
1
η
⟨▽ f (x + αd), d⟩ −

n

∑
i=1

ti
1 + αti

,

φ′′(α) =
1
η

〈
▽2 f (x + αd), d

〉
+

n

∑
i=1

t2
i

(1 + αti)
2 .

We find that φ′(0) + φ′′(0) = 0, deduced from (4), which is expected since d is the
direction of Newton’s descent direction.

We aim to avoid the disadvantages of line search methods and accelerate the conver-
gence of the algorithm. For this reason, we have to identify an ᾱ that yields a significant
decrease in the function φ(α). This is the same as solving a polynomial equation of degree
n + 1, where f is a linear function.

Now, we include a few helpful inequalities below, which are used throughout the paper.
H. Wolkowicz et al. [22] see also Crouzeix and Seeger [23] presented the following

inequalities:

z − σz
√

n − 1 ≤ min
i

zi ≤ z − σz√
n − 1

z +
σx√
n − 1

≤ max
i

zi ≤ z + σz
√

n − 1,

where z and σz represent the mean and the standard deviation, respectively, of a
statistical real numbers series {z1, z2, . . . , zn}. The later quantities are defined as follows:

z =
1
n

n

∑
i=1

zi and σ2
z =

1
n

n

∑
i=1

z2
i − z2 =

1
n

n

∑
i=1

(zi − z)2.

Theorem 1 ([15]). Let zi > 0, for i = 1, 2, . . . , n. We have the following:

n

∑
i=1

ln(zi) ≤ ln
(

z + σz
√

n − 1
)
+ (n − 1) ln

(
z − σz√

n − 1

)
. (6)

where zi = 1 + αti, z = 1 + αt, and σz = ασt.

We will proceed to present the paper’s principal result.

4.2.3. New Approximate Functions Approach

Let

φ(α) =
1
η
[ f (x + αd)− f (x)]−

n

∑
i=1

ln(1 + αti),

be defined on α̃ = min
i∈I−

{
−1
ti

}
such that I− = {i : ti < 0}.

To find the displacement step, it is necessary to solve φ′(α) = 0. Considering
the difficulty of solving a non-algebraic equation, approximate functions are recom-
mended alternatives.

Two novel approximation functions of φ are introduced in the following lemma.

Lemma 2. For all α ∈
[
0, α∗1

[
with α∗1 = min(α̂, α̂1), we have

φ(α) ≥ φ̂1(α),

and for all α ∈ [0, α∗2 [ with α∗2 = min(α̂, α̂2), we obtain

φ̂2(α) ≤ φ(α),
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where
φ̂1(α) =

1
η
( f (x + αd)− f (x))− ln(1 + δα)− (n − 1) ln(1 + βα),

and
φ̂2(α) =

1
η
( f (x + αd)− f (x))− τ ln(1 + β1α),

with 
β = t − σt√

n−1

δ = t + σt
√

n − 1

β1 = ∥t∥2

nt .

(7)

Furthermore, we have
φ̂2(α) ≤ φ̂1(α) ≤ φ(α),

Proof. We start by proving that
φ(α) ≥ φ̂1(α),

Theorem 1 gives

n

∑
i=1

ln(zi) ≤ ln
(

z + σz
√

n − 1
)
+ (n − 1) ln

(
z − σz√

n − 1

)
,

then,
n

∑
i=1

ln(1 + αti) ≤ ln(1 + αδ) + (n − 1) ln(1 + αβ),

and

−
n

∑
i=1

ln(1 + αti) ≥ − ln(1 + αδ)− (n − 1) ln(1 + αβ).

Hence,

1
η ( f (x + αd)− f (x))−

n
∑

i=1
ln(1 + αti) ≥ 1

η ( f (x + αd)− f (x))− ln(1 + αδ)

−(n − 1) ln(1 + αβ).

Therefore,

φ(α) ≥ φ̂1(α) =
1
η
( f (x + αd)− f (x))− ln(1 + αδ)− (n − 1) ln(1 + αβ),

φ̂′
1(α) =

1
η
⟨▽ f (x + αd)− d⟩ − δ

1 + αδ
− (n − 1)

β

1 + αβ
.

Let us consider the following:

g(α) = φ(α)− φ̂2(α).

We have

g′′(α) =
n

∑
i=1

t2
i

(1 + αti)2 − τ
β1

(1 + αβ1)
2 .

Because of the fact that |ti| ≤ ∥t∥ and nt ≤ ∥t∥, it is easy to see that ∀α ≥ 0, g′′(α) ≥ 0.
Therefore,

1
η
( f (x + αd)− f (x))−

n

∑
i=1

ln(1 + αti) ≥
1
η
( f (x + αd)− f (x))− τ ln(1 + β1α),

then, φ(α) ≤ φ̂2(α).
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Hence, the domain of (φ̂i)i=1,2 is included in the domain of φ, which is (0, α̃), where

α̃ = max[α : 1 + αδ > 0, 1 + αβ > 0].

Let us remark that

0 = φ̂i(0) = φ(0), −φ′(0) = −φ̂′
i(0) = φ′′

i (0) = φ̂′′
i (0) > 0, i = 1, 2.

Thus, φ is well approximated by φ̂i in a neighborhood of 0. Since φ̂i is strictly convex,
it attains its minimum at one unique point ᾱ, which is the unique root of the equation
φ̂′

i(α) = 0. This point belongs to the domain of φ̂i (i = 1, 2). Therefore, φ is bounded from
below by φ̂1 :

φ̂1(ᾱ) ≤ φ(ᾱ) < 0

And it is also bounded from below by φ̂2 :

φ̂2(ᾱ) ≤ φ(ᾱ) < 0.

Then, ᾱ gives an apparent decrease in the function φ.

4.3. Minimize an Auxiliary Function

We now consider the minimization of the function

φ1(α) = nγα − ln(1 + δα)− (n − 1) ln(1 + βα),

and we also have the following approximate function:

φ2(α) = nγα − τ ln(1 + β1α),

where β1 is defined in (7). Then, we have the following:

φ′
1(α) = nγ − δ

1 + δα
− (n − 1)

β

1 + βα
,

φ′′
1 (α) =

δ2

(1 + δα)2 + (n − 1)
β2

(1 + βα)2 .

and

φ′
2(α) = nγ − τ

β1
(1+β1α)

,

φ′′
2 (α) = τ

β2
1

(1 + β1α)2 .

We remark that for i = 1, 2 :

φi(0) = 0, φ′
i(0) = n

(
γ − t

)
, φ′′

i (0) = ∥t∥2.

We present the conditions φ′
i(0) < 0 and φ′′

i (0) > 0. The function φ is strictly convex.
It attains its minimum at one unique point α such that φ′

i(α) = 0, which is one of the roots
of the equations

γδβα2 + α(γδ + γβ − δβ) + γ − t = 0, (8)

and
nγβ(1 + βα)− ∥t∥2 = 0. (9)

For Equation (8), the roots are explicitly calculated, and we distinguish the follow-
ing cases:

• If δ = 0, we obtain ᾱ1 = t−γ
γβ .
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• If β = 0, we obtain ᾱ1 = t−γ
γδ .

• If γ = 0, we have ᾱ1 = −t
δβ .

• If γδβ ̸= 0, ᾱ is the only root of the second-degree equation that belongs to the domain

of definition of φ. We obtain △ = 1
γ2 +

1
β2 +

1
δ2 − 2

δβ +
(

2n−4
n

)[
1

βγ − 1
γδ

]
. Both roots are

ᾱ1.1 =
1
2

(
1
γ
− 1

β
− 1

δ
+

√
△
)

,

and

ᾱ1.2 =
1
2

(
1
γ
− 1

β
− 1

δ
+

√
△
)

.

Then, the root of Equation (9) is explicitly calculated, and we have

ᾱ2 =

(
∥t∥2

β(1−β)
− 1

β

)
.

Consequently, we compute the two values ᾱi, i = 1, 2, explicitly. Then, we take
ᾱ1, ᾱ2 ∈ [0, α̃ − ε[ , where ε > 0 is a fixed precision and φ′(ᾱi) > 0, i = 1, 2.

Remark 2. The computation of ᾱi, i = 1, 2 is performed through a dichotomous procedure in the
cases where ᾱi /∈ (0, α̃ − ε), and φ′(ᾱi) > 0, as follows:

Put a = 0, b = α̃ − ε.
While |b − a| > ε do
If φ′( a+b

2 ) < 0 then, b = a+b
2 ,

else a = a+b
2 , so ᾱi = b.

This computation guarantees a better approximation of the minimum of φ′(α) while remaining
in the domain of φ.

4.4. The Objective Function f Is
4.4.1. Linear

For all x, there exists c ∈ Rn such that f (x) = ⟨c, x⟩.
The minimum of φ̂i is reached at the unique root ᾱ of the equation φ′(α) = 0. Then,

φ̂i(ᾱ) ≤ φ(ᾱ) < φ̂i(0) = φ(0) = 0.

Take γ = n−1⟨c, d⟩ in the auxiliary function φ. The two functions φ and (φ̂i)i=1,2
coincide.

ᾱ yields a significant decrease in the function ψη along the descent direction d. It is
interesting to note that the condition φ̂′

i(0) + φ̂′′
i (0) = 0 (i = 1, 2) implies the following:

−φ̂′
i(0) = n

(
t − γ

)
= ∥t∥2 = n

(
t2 − σ2

t

)
= φ̂′′

i (0) > 0.

4.4.2. Convex

▽ f (x + αd) is no longer constant, and the equation φ̂′
i(α) = 0 is not reduced to one

equation of a second degree for i = 1, 2.
We consider another function φ̃ less than φ. Given α̂ ∈ (0, α̃), we have, for all α ∈ (0, α̂],

the following:
f (x + αd)− f (x)

η
≤ f (x + α̂d)− f (x)

ηα̂
α, (10)

then,

φ(α) ≥ φ̃1(α) =
f (x + α̂d)− f (x)

ηα̂
α − ln(1 + αδ)− (n − 1) ln(1 + αβ)



Axioms 2024, 13, 176 10 of 14

and

φ(α) ≥ φ̃2(α) =
f (x + α̂d)− f (x)

ηα̂
α − τ ln(1 + β1α), τ ∈ ]0, 1[.

We choose γ = f (x+α̂d)− f (x)
nηα̂ in the auxiliary function φ , and we compute the root ᾱ of

the equation φ′
i(α) = 0 with i = 1, 2.

Therefore, we have two cases:

1. Where ᾱ ≤ α̂ : We have the following:

φ(ᾱ) ≥ φ̂i(ᾱ) ≥ φ̃i(ᾱ), for i = 1, 2

and, thus, along the direction d, we obtain a significant decrease in the function ψη .
The approximation accuracy of φ by φ̃i being better for small values of α̂ (for i = 1, 2),
it is recommended to use a new value of α̂, situated between α̃ and the former α̂, for
the next iteration. Moreover, the cost of the supplementary computation is small since
it is the cost of one evaluation of f and the resolution of a second-order equation.

2. Where ᾱ > α̂ : The computation of α̂ is performed through a dichotomous procedure
(see Remark 3).

5. Description of the Algorithm and Numerical Simulations
5.1. Description of the Algorithm

This section is devoted to introducing our algorithm for obtaining an optimal solution
x̄ of (P).

Begin
Initialization
ε > 0 is a given precision. η̂ > 0 and σ ∈ [0, 1] are given.
x0 is a strictly realizable solution from L̃, d0 ∈ Rm.
Iteration

1. Start with η > η̂.
2. Calculate d and t = X−1d.
3. If ∥t∥ > ε, calculate t, γ, δ, β , and β1.
4. Determine ᾱ following (8), (10), or (9) depending on the linear or nonlinear case.
5. Take the new iterate x = x + ᾱd = X(e + ᾱt) and go back to step 2.
6. If ∥t∥ ≤ ε, a well approximation of g(η) has been obtained.

(a) If η ≥ η̂ and η = ση, return to step 2.
(b) If η < η̂, STOP: a well approximate solution of (P) has been obtained.

End algorithm.
The aim of this method is to reduce the number of iterations and the time consumption.

In the next section, we provide some examples.

5.2. Numerical Simulations

To assess the superior performance and accuracy of our algorithm, based on our
minorant functions, numerical tests are conducted to make comparisons between our new
approach and the classical line search method.

For this purpose, in this section, we present comparative numerical tests on different
examples taken from the literature [5,24].

We report the results obtained by implementing the algorithm in MATLAB on an Intel
Core i7-7700HQ (2.80 GHz) machine with 16.00 Go RAM.
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5.2.1. Examples with a Fixed Size
Nonlinear Convex Objective

Example 1. Let us take the following problem:
min 2x2

1 + 2x2
2 − 2x1x2 − 4x1 − 6x2

x1 + x2 + x3 = 2

x1 + 5x2 + x4 = 5

x1, x2, x3, x4 ≥ 0.

The optimal value is−7.1613, and the optimal solution is x∗ =
(

1.1290 0.7742 0.0968 0
)t.

Example 2. Let us take the following problem:

min x3
1 + x3

2

x1 − x2 + x3 + x4 = 3

2x1 + x2 − x3 + x4 = 2.0086

x1 + x3 + 2x4 = 4.9957

x1, x2, x3, x4 ≥ 0.

The optimal value is 0.0390, and the optimal solution is x∗ =
(

0.3391 0 0.6652 1.9957
)t.

Example 3. Let us consider the following problem:
min x3

1 + x3
2 + x1x2

2x1 − x2 + x3 = 8

x1 + 2x2 + x4 = 6

x1, x2, x3, x4 ≥ 0.

The optimal value is 1.6157, and the optimal solution is x∗ =
(

1.1734 0 5.6532 4.8265
)t.

This table presents the results of the previous examples:

Example st1 st2 LS

iter Time (s) iter Time (s) iter Time (s)

1 12 0.0006 19 0.0015 6 0.0091
2 5 0.0004 9 0.0009 44 0.099
3 3 0.0001 5 0.0006 65 0.89

5.2.2. Example with a Variable Size
The Objective Function f Is

1-Linear: Let us consider the linear programming problem:

ζ = min[cTx : x ≥ 0, Ax = b],

where A is an m × 2m matrix given by the following:

A[i, j] =

{
1 if i = j or j = i + m

0 if not,

c[i] = −1, c[i + m] = 0 and b[i] = 2, ∀i = 1, . . . m,
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where c, b ∈ R2m.
The results are presented in the table below.

Size st1 st2 LS

iter Time (s) iter Time (s) iter Time (s)

5 × 10 1 0.0021 2 0.0039 9 0.0512
20 × 40 1 0.0031 3 0.0045 13 0.0821

50 × 100 2 0.0049 3 0.0032 17 0.3219
100 × 200 2 0.0053 4 0.0088 19 0.5383
200 × 400 2 0.0088 4 0.0098 22 0.9220
250 × 500 3 0.0096 5 0.0125 26 9.2647

2-Nonlinear:

Example 4 (Quadratic case [13]). Let the quadratic problem be as follows:

ζ = min[ f (x) : x ≥ 0, Ax ≥ b],

with f (x) = 1
2 ⟨x, Qx⟩, Q is the matrix defined for n = 2m by the following:

Q[i, j] =


2j − 1 if i > j

2i − 1 if i < j

i(i + 1)− 1 if i = j, i, j = 1, .., n

A[i, j] =

{
1 if i = j or j = i + m, i = 1, .., m and j = 1, .., n

0 if not

c[i] = −1, c[i + m] = 0 and b[i] = 2, ∀i = 1, .., m.

This example is tested for many values of n.

The obtained results are given by the following table:

ex(m, n) st1 st2 LS

iter Time (s) iter Time (s) iter Time (s)

300 × 600 5 0.9968 4 0.9699 26 19.5241
400 × 800 7 18.1448 5 9.6012 35 86.1259
600 × 1200 12 36.3259 5 19.0099 23 98.2354

1000 × 2000 21 56.9912 17 41.1012 33 109.2553
1500 × 3000 28 140.1325 23 95.6903 40 1599.1596

Example 5 (The problem of Erikson [25]). Let the following be the quadratic problem:

ζ = min

[
f (x) =

n

∑
i=1

xi ln
(

xi
ai

)
: xi + xi+m = b, x ≥ 0

]
,

where n = 2m, ai > 0 and b ∈ Rm are fixed.
This example is tested for different values of n, ai, and bi.

The following table resumes the obtained results in the case (ai = 2, ∀i = 1, . . . , n,
bi = 4, ∀i = 1, . . . , m) :
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ex(m, n) st1 st2 LS

iter Time (s) iter Time (s) iter Time (s)

10 × 20 1 0.0001 2 0.0012 4 0.0236
40 × 100 2 0.0021 3 0.0033 5 0.7996

100 × 200 2 0.0043 3 0.0201 5 1.5289
500 × 1000 2 3.0901 4 5.9619 12 22.1254

In the above tables, we take ε = 1.0 × 10−4.
We also denote the following:
- (iter) is the number of iterations.
- (time) is the computational time in seconds (s).
- (sti)i=1,2 represents the strategy of approximate functions introduced in this paper.
- (LS) represents the classical line search method.
Commentary: The numerical tests carried out show, without doubt, that our approach

leads to a very significant reduction in the cost of calculation and an improvement in the
result. When comparing the approximate functions to the line search approach, the number
of iterations and computing time are significantly reduced.

6. Conclusions

The contribution of this paper is particular focused on the study of nonlinear optimiza-
tion problems by using the logarithmic penalty method based on some new approximate
functions. We first formulate the problems (P) and (Pη) with the results of the convergence.
Then, we find their solutions by using new approximate functions.

Finally, to lend further support to our theoretical results, a simulation study is con-
ducted to illustrate the good accuracy of the studied approach. More precisely, our new
approximate functions approach outperforms the line search one as it significantly reduces
the cost and computing time.
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