
Citation: Zuo, J.; Hammouti, O.;

Taarabti, S. Multiplicity of Solutions

for Discrete 2n-TH Order Periodic

Boundary Value Problem with

φp-Laplacian. Axioms 2024, 13, 163.

https://doi.org/10.3390/

axioms13030163

Academic Editor: Clemente

Cesarano

Received: 29 January 2024

Revised: 21 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Multiplicity of Solutions for Discrete 2n-TH Order Periodic
Boundary Value Problem with φp-Laplacian

Jiabin Zuo 1,* , Omar Hammouti 2 and Said Taarabti 3

1 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
2 Laboratory LAMA, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796

Fès-Atlas, Fez 30000, Morocco; omar.hammouti.83@gmail.com
3 LISTI, National School of Applied Sciences of Agadir, Ibn Zohr University, Agadir 80000, Morocco;

s.taarabti@uiz.ac.ma
* Correspondence: zuojiabin88@163.com

Abstract: The purpose of this paper is to investigate the existence and multiplicity of nontrivial
solutions with the φp-Laplacian for the discrete 2n-th order periodic boundary value issue. To support
these conclusions, we have employed variational techniques and contemporary critical point theory.
A few new findings are expanded upon and enhanced. We give an example to show how our key
findings can be applied.
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1. Introduction

We will study the following nonlinear periodic boundary value problems of order 2n:

(P)


n
∑

k=1
(−1)k∆k(φp(∆kx(t − k))) = g(t, x(t)), t ∈ [1, N]Z,

∆ix(−(n − 1)) = ∆ix(N − (n − 1)), i ∈ [0, 2n − 1]Z,

where N ≥ n is an integer, φp(s) = |s|p−2s, 1 < p < ∞; the forward difference operator
∆ is defined by ∆x(t) = x(t + 1) − x(t), ∆0x(t) = x(t), ∆ix(t) = ∆i−1(∆x(t)) for i =
1, 2, 3,. . . , 2n; and g : [1, N]Z ×R −→ R is a continuous function, i.e., for any fixed t ∈ [1, N],
a function g(t, .) is continuous.

The x : [−(n − 1), N + n]Z −→ R fulfills (P), and it is the standard definition of a
solution of (P).

Consider the following 2n-th order p-Laplacian functional differential equation as a
discrete analog of (P).

n
∑

k=1
(−1)k dk

dtk

(
φp

(
dkx(t)

dtk

))
= g(t, x(t)), t ∈ ]0, 1[,

x(i)(0) = x(i)(1), i ∈ [0, 2n − 1]Z.

Discrete nonlinear equations are crucial for describing a variety of physical issues,
including nonlinear elasticity theory, mechanics, engineering topics, artificial or biological
control systems, neural networks, and economics. For more information, see the citations
provided by W. G. Kelly and P. D. Panagiotopolos [1,2]. According to the monographs
cited by F. M. Atici et al. [3–6], some authors have studied the existence and multiplicity of
solutions to some discrete p-Laplacian problems in recent years.
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It is common knowledge that critical point theory and variational approaches are
useful tools for investigating the existence and variety of answers to a broad range of
problems. In particular, El Amrouss and Hammouti showed the existence and multiplicity
of solutions for the following problem{

−∆(φp(∆x(t − 1))) = f(t, x(t)), t ∈ [1, N]Z,
x(0) = x(N + 1) = 0,

where N ≥ 1.
In [7], Dimitrov obtained the existence of at least three solutions to the following problem:

∆2(φp(∆2x(t − 2))) + αφp(x(t)) = λf(t, x(t)), t ∈ [1, N]Z,
x(0) = ∆x(−1) = ∆2x(N) = 0,

∆(φp(∆2x(N − 1))) = µg(x(T + N)),

where α, λ, and µ are real parameters and f and g are continuous.
In [8], Saavedra and Tersian proved the existence and multiplicity of solutions for the

following equation

∆n(φpn(∆
nx(t − 2))

)
+

n−1

∑
i=1

ai∆n−i
(

φpn−i

(
∆n−ix(t − 1)

))
+ (−1)nV(t)φq(x(t))

= (−1)nλf(t, x(t)), t ∈ [1, N]Z,

and the boundary condition

∆ix(−i) = ∆ix(N + 1) = 0, i ∈ [0, n − 1]Z,

where N ≥ 1 is a fixed positive integer, n <
N
2

is a positive integer, ai > 0, φpi (s) = |s|pi−2s,

1 < pi < ∞ for i ∈ [1, n − 1]Z, V is a N- periodic positive function, and f is continuous
function about the second variable.

From the point of view of orders for equations, the earliest outstanding work comes
from the research team of Yu and Zhou [9]. In recent years, our group has also done further
generalization and expansion without the p-Laplacian; our methods have mainly included
the topological degree theory and fixed point theorem, see [10,11].

The existence and multiplicity of nontrivial solutions to the discrete 2n-th order
periodic boundary value problem with the φ-Laplacian have been thoroughly examined by
a large number of researchers employing a range of approaches and strategies. Refs. [10–13]
is a recent work on this topic that the reader should consult. For instance, the following
issue was researched by the authors in [12],

(P)

{
−∆
(
|∆u(t − 1)|p(t−1)−2∆u(t − 1)

)
= g(t, u(t)), t ∈ [1, N]Z

u(0) = u(N + 1) = 0

by using the variational principle and critical point theory, some existence and multiplicty
results of an anisotropic discrete nonlinear problem with variable exponents were obtained.

Inspired by the above literature, in the present paper, we will investigate the existence
and multiplicity of nontrivial solutions to a discrete 2n-th order periodic boundary value
problem with φp-Laplacian; as far as we know, discrete cases are anaylzed less than
continuous cases.

The main results of our problem involve two main theorems. Here, using a kind of
variational method together with the Linking Theorem, we show that the problem admits
at least two solutions. We also point out that our hypotheses here are more general under
the previous conditions.
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We consider the following linear eigenvalue problem:

(P(k)
0 )

{
(−1)k∆2kx(t − k) = λx(t), t ∈ [1, N]Z,

∆ix(−(k − 1)) = ∆ix(N − (k − 1)), i ∈ [0, 2k − 1]Z,
(1)

where k ∈ [1, n]Z and λ ∈ R. The following theorems are the main points of this paper:

Theorem 1. Let n ≥ 1 be a positive integer and k ∈ [1, n]Z. If N ⩾ 2k + 1, then the problem
(P(k)

0 ) has exactly N real eigenvalues λ
(k)
j , j ∈ [0, N − 1]Z, which satisfies λ

(k)
j = Ck

2k + 2
k
∑

i=1
(−1)iCi+k

2k cos( 2πij
N ), j ∈ [0, N − 1]Z,

λ
(k)
j = λ

(k)
N−j, j ∈ [1, N − 1]Z.

Remark 1. Put
λ
(k)
max = max{λ

(k)
j , j ∈ [0, N − 1]Z}.

We will see later that λ
(k)
max =


4k, if N is even,

Ck
2k + 2

k
∑

i=1
(−1)iCi+k

2k cos(πi(N−1)
N ), if N is odd.

Theorem 2. Let n ≥ 1 be a positive integer. Assume that

(H1) γ exists with γ > (d(N, p))−p n
∑

k=1

(
λ
(k)
max

)p/2
such that lim

|z|→∞
inf min

t∈[1,N]Z

pG(t,z)
|z|p ≥ γ, where

G(t, z) =
∫ z

0 g(t, s)ds for all (t, z) ∈ [1, N]Z×R and d(N, p) =

{
N(p−2)/2p, p ∈ ]1, 2],
N−(p−2)/2p, p ∈ ]2, ∞[.

(H2) lim
z→0

G(t, z)
|z|p = 0.

(H3)
N
∑

t=1
G(t, x(t)) ≥ 0 for any x ∈ HN such that x = (a, a, . . . , a)T ∈ RN , with

HN = {x : [−(n − 1), N + n]Z −→ R | ∆ix(−(n − 1)) = ∆ix(N − (n − 1))}, (2)

where i = 0, 1, 2, 3, . . . , 2n − 1.

Then, the equation (P) admits at least two nontrivial solutions.

Example 1. Takethe function g : [1, N]Z ×R −→ R given by

g(t, z) =


et

ln(t + 1)
(1 + p ln |z|)|z|p−2z, |z| > 1, t ∈ [1, N]Z,

et

ln(t + 1)
|z|p−1z, |z| ≤ 1, t ∈ [1, N]Z.

we have,

G(t, z) =


et

ln(t + 1)
(|z|p ln |z|+ 1

p+1 ), |z| > 1, t ∈ [1, N]Z,

et

(p + 1) ln(t + 1)
|z|p+1, |z| ≤ 1, t ∈ [1, N]Z.

we obtain lim
|z|→∞

inf min
t∈[1,N]Z

pG(t,z)
|z|p = ∞, lim

z→0

G(t, z)
|z|p = 0 and

N
∑

t=1
G(t, x(t)) ≥ 0 for any x ∈ HN

such that x = (a, a, . . . , a)T ∈ RN .

Then, G satisfies the conditions (H1), (H2), and (H3).
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The article is structured as follows. Several introductory lemmas are found in Section 2.
Sections 3 and 4 provide proof of the main findings.

2. Preliminary Lemmas

In this study, we take into account the vector space HN as specified in (2).
HN has the inner product ⟨., .⟩ and the norm ∥.∥ as follows:

⟨x, y⟩ =
N

∑
t=1

x(t)y(t), ∥x∥2 =

(
N

∑
t=1

|x(t)|2
)1/2

for all x, y ∈ HN .

Furthermore, we define the norm ∥.∥p on HN by:

∥x∥p =

(
N

∑
t=1

|x(t)|p
)1/p

for any x ∈ HN .

By the Hölder inequality, we have

C−(N, p)∥x∥2 ≤ ∥x∥p ≤ C+(N, p)∥x∥2 for any x ∈ HN , (3)

where

C+(N, p) =

{
N−(p−2)/2p, p ∈ ]1, 2],
1, p ∈ ]2, ∞[,

and C−(N, p) =

{
1, p ∈ ]1, 2],
N−(p−2)/2p, p ∈ ]2, ∞[.

Remark 2. It is evident that we have for any x ∈ HN ,

x(−(n − 1)) = x(N − (n − 1))

x(−(n − 1) + 1) = x(N − (n − 1) + 1)
...

... (4)

x(0) = x(N)

x(1) = x(N + 1)
...

...

x(n) = x(N + n).

Clearly, since HN is isomorphic to a finite dimensional, it is an N-dimensional Hilbert
space. We understand that x = (x(1), . . . , x(N)) ∈ RN can be extended to the vector

(x(N − (n − 1)), x(N − (n − 1) + 1), . . . , x(N), x(1), x(2), . . . , x(N), x(1), . . . , x(n)) ∈ HN

when HN = RN .

Lemma 1 (see [14]). Set x(t) be defined on Z. For any k ∈ N∗ we have

∆kx(t) =
k

∑
i=0

(−1)k−iCi
kx(t + i), t ∈ Z

where the symbol Ci
k is used to denote a binomial coefficient.
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Lemma 2. Set n ∈ N∗. For any x, y ∈ HN , we have:

N

∑
t=1

φp(∆kx(t − k))∆ky(t − k) = (−1)k
N

∑
t=1

∆k
(

φp(∆kx(t − k))
)

y(t), k ∈ [1, n]Z. (5)

Proof. For k = 1, using y(N) = y(0) and ∆x(N) = ∆x(0), we have

N

∑
t=1

φp(∆x(t − 1))∆y(t − 1) = −
N

∑
t=1

∆
(

φp(∆x(t − 1))
)
y(t).

Assume that (5) is true for k ∈ [1, n − 1]Z, and we aim to prove that is also true for k + 1, i.e.,

N

∑
t=1

φp(∆k+1x(t − (k + 1)))∆k+1y(t − (k + 1))

= (−1)k+1
N

∑
t=1

∆k+1
(

φp(∆k+1x(t − (k + 1)))
)

y(t).

By using this equality y(N + 1) = y(1) and

∆k
(

φp(∆k+1x(N − k))
)
= ∆k

(
φp(∆k+1x(−k))

)
,

we obtain

N

∑
t=1

∆k+1
(

φp(∆k+1x(t − (k + 1)))
)

y(t)

= ∆k
(

φp(∆k+1x(N − k))
)

y(N + 1)− ∆k
(

φp(∆k+1x(−k))
)

y(1)

−
N

∑
t=1

∆k
(

φp(∆k+1x(t − k))
)

∆y(t)

= −
N

∑
t=1

∆k
(

φp(∆k+1x(t − k))
)

∆y(t)

= (−1)k+1
N

∑
t=1

φp(∆k+1x(t − k))∆k+1y(t − k)

= (−1)k+1
N

∑
t=1

φp(∆k+1x(t − (k + 1)))∆k+1y(t − (k + 1)).

This implies

N

∑
t=1

φp(∆k+1x(t − (k + 1)))∆k+1y(t − (k + 1))

= (−1)k+1
N

∑
t=1

∆k+1
(

φp(∆k+1x(t − (k + 1)))
)

y(t).

The evidence is conclusive.

For x ∈ HN , let Ψ be the functional denoted by

Ψ(x) =
1
p

N

∑
t=1

n

∑
k=1

|∆kx(t − k)|p −
N

∑
t=1

G(t, x(t)), (6)
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It is easy to see that Ψ ∈ C1(HN ,R) and

Ψ′(x).y =
N

∑
t=1

[
n

∑
k=1

φp

(
∆kx(t − k)

)
∆ky(t − k)− g(t, x(t))y(t)

]
for any y ∈ HN . (7)

By Lemma 2, Ψ′ can be expressed as

Ψ′(x).y =
N

∑
t=1

[
n

∑
k=1

(−1)k∆k
(

φp

(
∆kx(t − k)

))
− g(t, x(t))

]
y(t) for any y ∈ HN .

Finding the solution to the equation (P) is the same as discovering the critical point of
the function Ψ.

We denote Bρ is an open ball in E with radius ρ and center 0 .

3. Spectrum of (P(k)
0 )

We take into account the linear eigenvalue issue (P(k)
0 ) as stated in (1).

Definition 1. Set n ∈ N∗ and k ∈ [1, n]Z. λ ∈ R as an eigenvalue of (Pk
0 ) if x ∈ HN \ {0} exists

such that:
N

∑
t=1

(−1)k∆2kx(t − k)y(t) = λ
N

∑
t=1

x(t)y(t) for every y ∈ HN . (8)

To demonstrate Theorem 1, initially, we have three auxiliary findings.

Lemma 3. Set n ∈ N∗ and k ∈ [1, n]Z. The eigenvalues of (P(k)
0 ) are exactly the eigenvalues of

matrix Mk, where Mk is symmetrical for N ⩾ 2k + 1 is:

Mk =



m0 m1 m2 · · · mn−1 mn mn+1 mn+2 · · · mN−(n+1) mN−n mN−(n−1) · · · mN−2 mN−1

mN−1 m0 m1 · · · mn−2 mn−1 mn mn+1 · · ·
...

... mN−n · · · mN−3 mN−2

mN−2 mN−1 m0 · · · mn−3 mn−2 mn−1 mn · · ·
...

...
... · · · mN−4 mN−3

...
...

...
. . .

...
...

...
... · · ·

...
...

... · · ·
...

...
...

...
...

...
. . .

...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

...
. . .

...
... · · ·

...
...

... · · ·
...

...
...

...
...

...
...

...
. . .

... · · ·
...

...
... · · ·

...
...

...
...

...
...

...
...

...
. . . · · ·

...
...

... · · ·
...

...
...

...
...

...
...

...
...

...
. . .

...
...

... · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .
...

... · · ·
...

...
...

...
...

...
...

...
...

...
...

...
. . .

... · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . · · ·
...

...

m3 m4 m5
...

...
...

...
...

...
...

...
... m0 m1 m2

m2 m3 m4
...

...
...

...
...

...
...

...
... mN−1 m0 m1

m1 m2 m3
...

...
...

...
...

...
...

...
... mN−2 mN−1 m0


N×N

,

with

mi = (−1)iCi+k
2k , i ∈ [0, k]Z,

mi = 0, i ∈ [k + 1, N − (k + 1)]Z,

mi = (−1)N−iCN+k−i
2k , i ∈ [N − k, N − 1]Z.



Axioms 2024, 13, 163 7 of 15

Proof. Set n ∈ N∗, k ∈ [1, n]Z, and x, y ∈ HN . Clearly, there is a bilinear and symmet-
ric form

Γk : (u, v) −→
N

∑
t=1

(−1)k∆2kx(t − k)y(t),

A symmetric matrix Mk from the Riesz theorem exists that has the property

Γk(x, y) = ⟨Mkx, y⟩ for all x, y ∈ HN . (9)

Thus, the problem (P(k)
0 ) and the matrix Mk have the same eigenvalues.

We will now calculate the matrix Mk. Through Lemma 1, we have

⟨Mkx, x⟩ =
N

∑
t=1

(−1)k∆2kx(t − k)x(t)

=
N

∑
t=1

(−1)k

[
2k

∑
i=0

(−1)2k−iCi
2kx(t − k + i)

]
x(t)

=
N

∑
t=1

(−1)kx(t − k)x(t) + (−1)k−1C1
2kx(t − (k − 1))x(t) + . . . + (−1)1Ck−1

2k x(t − 1)x(t)

+ Ck
2kx2(t) + (−1)1Ck+1

2k x(t + 1)x(t) + . . . + (−1)kC2k
2k x(t + k)x(t)

=
N

∑
t=1

Ck
2kx2(t) + 2 × (−1)1Ck+1

2k x(t)x(t + 1) + . . . + 2 × (−1)kC2k
2k x(t)x(t + k)

= Ck
2k

N

∑
t=1

x2(t) + 2 × (−1)1Ck+1
2k

N

∑
t=1

x(t)x(t + 1) + . . . + 2 × (−1)kC2k
2k

N

∑
t=1

x(t)x(t + k).

Thus, we conclude that

Mk =



Ck
2k (−1)1Ck+1

2k · · · 0 · · · (−1)kC2k
2k · · · (−1)1Ck+1

2k
(−1)1Ck+1

2k Ck
2k (−1)1Ck+1

2k · · · 0 · · · (−1)3Ck+3
2k (−1)2Ck+2

2k
... (−1)1Ck+1

2k Ck
2k (−1)1Ck+1

2k · · · 0 · · · (−1)3Ck+3
2k

0
...

. . .
. . .

. . . · · ·
. . .

...
... 0

...
. . .

. . .
. . .

...
...

(−1)kCk
2k

... 0
...

. . .
. . . (−1)1Ck+1

2k (−1)2Ck+2
2k

... (−1)3Ck+3
2k

...
. . . · · ·

. . . Ck
2k (−1)1Ck+1

2k
(−1)1Ck+1

2k (−1)2Ck+2
2k (−1)3Ck+3

2k · · · · · · · · · (−1)1Ck+1
2k Ck

2k


N×N

.

The proof is finished.

Remark 3. In the Equation (9), if we replace y with x, then

< Mkx, x > =
N

∑
t=1

(−1)k∆2kx(t − k)x(t)

=
N

∑
t=1

|∆kx(t − k)|2, ∀k ∈ [1, n]Z.

Thus, Mk, k ∈ [1, n]Z are positive semidefinite.
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Let L be the following matrix:

L =



0 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · . . . . . . 1
1 0 · · · 0 0


N×N

. (10)

It is easy to verify this using some calculations,

Mk = m0 IN + m1L + m2L2 + . . . + mN−1LN−1

= R(L), (11)

where R(z) =
N−1
∑

i=0
mizi.

Lemma 4. The matrix L complies with the following rules:

(1) The eigenvalues of L are ωl = ei 2lπ
N ; l ∈ [0, N − 1]Z.

(2) L is diagonalizable on C.
(3) E(ωl) = span(Yl), l ∈ [0, N − 1]Z, where E(ωl) is the ωl-eigenspace and

Yl = (1, ωl , ω2
l , . . . , ω

(N−1)
l )T .

Proof. (1) The characteristic polynomial of L is

PL(z) = det(L − zIN)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−z 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 · · · . . . . . . 1
1 0 · · · 0 −z

∣∣∣∣∣∣∣∣∣∣∣∣∣
(N)

.

As it progresses in relation to the first column, we obtain

PL(z) = −z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−z 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
... · · ·

. . .
. . . 1

0 · · · · · · 0 −z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(N−1)

+ (−1)N+1 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0

−z
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(N−1)

= (−z)N + (−1)N+1

= (−1)N(zN − 1).

However, the following is the set of L’s eigenvalues:

UN = {ωl = ei 2lπ
N : l ∈ [0, N − 1]Z}.

(2) We know that L is diagonalizable on C since the eigenvalues of L are simple.
(3) Let Y = (y1, y2, . . . , yN)

T ∈ CN . Since LY = (y2, y3, y4, . . . , yN , y1)
T , we obtain
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Y ∈ E(ωl) = Ker(L − ωl IN) ⇐⇒



y2 = ωly1
y3 = ωly2

. = .

. = .

. = .
yN = ωlyN−1
y1 = ωlyN

⇐⇒ Y ∈ span(Yl), l ∈ [0, N − 1]Z.

Remark 4. (1) The eigenvectors of L form a basis B = (Y0, Y1, . . . , YN−1).
(2) The expression for the matrix L is:

L = PDP−1, (12)

with

D =



1 0 · · · · · · 0

0 ω1
. . . . . .

...
...

. . . ω2
. . .

...
...

. . . . . . . . . 0
0 · · · · · · 0 ωN−1


N×N

and

P =


1 1 1 · · · 1
1 ω1 ω2 · · · ωN−1
1 ω2

1 ω2
2 · · · ω2

N−1
...

...
...

. . .
...

1 ωN−1
1 ωN−1

2 · · · ω
(N−1)
N−1


N×N

,

where P is the invertible matrix from B to B1.

Lemma 5. Let n ∈ N∗ and k ∈ [1, n]Z; Sp(Mk) and Sp(L) are the Spectrum of the matrices Mk
and L, respectively. Then matrix Mk is diagonalizable and

Sp(Mk) = {R(λ) | λ ∈ Sp(L)}.

Proof. Let n ∈ N∗ and k ∈ [1, n]Z. It is clear that the matrix Mk is diagonalizable. From
(12), it is easy to see that

Ll = PDl P−1 for any l ∈ [0, N − 1]Z. (13)

Again by (11) and (13), we have

Mk = R(L) = PR(D)P−1, (14)

where

R(D) =



R(1) 0 · · · · · · 0

0 R(ω1)
. . . . . .

...
...

. . . R(ω2)
. . .

...
...

. . . . . . . . . 0
0 · · · · · · 0 R(ωN−1)


N×N

.
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Thus,
Sp(Mk) = {R(λ) | λ ∈ Sp(L)}.

Proof of Theorem 1. Let n ∈ N∗, k ∈ [1, n]Z and λ
(k)
j , j ∈ [0, N − 1]Z be the eigenvalue of

Mk. According to Lemma 5, we obtain

λ
(k)
j = R(ωj), (15)

where ωj = ei 2π j
N and R(z) =

N−1
∑

i=0
mizi.

Therefore,

λ
(k)
j =

N−1

∑
i=0

miω
i
j

= m0 +
k

∑
i=1

miω
i
j +

N−1

∑
i=N−k

miω
i
j.

Since ωN−i
j = ωi

j and mN−i = mi for any i ∈ [1, N − 1]Z, we obtain

λ
(k)
j = m0 +

k

∑
i=1

miω
i
j +

k

∑
i=1

miω
i
j

= m0 +
k

∑
i=1

mi

[
ωi

j + ωi
j

]
= Ck

2k + 2
k

∑
i=1

(−1)iCi+k
2k cos(

2πij
N

). (16)

Again using (16), we conclude that for all j ∈ [1, N − 1]Z

λ
(k)
N−j = Ck

2k + 2
n

∑
i=1

(−1)iCi+k
2k cos(

2πi
N

(N − j))

= Ck
2k + 2

k

∑
i=1

(−1)iCi+k
2k cos(2πi − 2πij

N
)

= λ
(k)
j .

Remark 5. It is simple to see:

(1) λ
(k)
0 = 0.

(2) λ
(k)
min = min{λ

(k)
j , j ∈ [1, N − 1]Z} = Ck

2k + 2
k
∑

i=1
(−1)iCi+k

2k cos( 2πi
N ).

(3) λ
(k)
max = max{λ

(k)
j , j ∈ [0, N − 1]Z} =


4k, if N is even,

Ck
2k + 2

k
∑

i=1
(−1)iCi+k

2k cos(πi(N−1)
N ), if N is odd.

Let
V = {x ∈ HN | ∆kx(t − k) = 0, (k, t) ∈ [1, n]Z × [1, N]Z}.
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Then,
V = {x ∈ HN | x = (a, a, . . . , a)T , a ∈ R}.

Let HN = V
⊕

W.

Lemma 6. Let p ∈ ]1, ∞[ and k ∈ [1, n]Z; then,

(1)

(d(N, p))p
(

λ
(k)
min

)p/2
∥x∥p

p ≤
N

∑
t=1

|∆kx(t − k)|p for any x ∈ W. (17)

(2)
N

∑
t=1

|∆kx(t − k)|p ≤ (d(N, p))−p
(

λ
(k)
max

)p/2
∥x∥p

p for any x ∈ HN , (18)

where

d(N, p) =

{
N(p−2)/2p, p ∈ ]1, 2],
N−(p−2)/2p, p ∈ ]2, ∞[.

Proof. (1) It follows from (3) that

(C−(N, p))p

(
N

∑
t=1

|∆kx(t − k)|2
)p/2

≤
N

∑
t=1

|∆kx(t − k)|p for any x ∈ HN .

Thus,

(C−(N, p))p(⟨Mkx, x⟩)p/2 ≤
N

∑
t=1

|∆kx(t − k)|p.

Therefore,

(C−(N, p))p
(

λ
(k)
min

)p/2
∥x∥p

2 ≤
N

∑
t=1

|∆kx(t − k)|p for any x ∈ W.

Using again (3), we obtain(
C−(N, p)
C+(N, p)

)p(
λ
(k)
min

)p/2
∥x∥p

p ≤
N

∑
t=1

|∆kx(t − k)|p for any x ∈ W.

Which means that

(d(N, p))p
(

λ
(k)
min

)p/2
∥x∥p

p ≤
N

∑
t=1

|∆kx(t − k)|p for any x ∈ W.

(2) From (3), we obtain

N

∑
t=1

|∆kx(t − k)|p ≤ (C+(N, p))p

(
N

∑
t=1

|∆kx(t − k)|2
)p/2

for any x ∈ HN .

Hence,
N

∑
t=1

|∆kx(t − k)|p ≤
(
C+(N, p)

)p
(⟨Mkx, x⟩)p/2.

So,
N

∑
t=1

|∆kx(t − k)|p ≤
(
C+(N, p)

)p
(

λ
(k)
max

)p/2
∥x∥p

2 for any x ∈ HN .
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Again utilizing (3), we obtain

N

∑
t=1

|∆kx(t − k)|p ≤
(

C+(N, p)
C−(N, p)

)p(
λ
(k)
max

)p/2
∥x∥p

p for any x ∈ HN ,

i.e.,

N

∑
t=1

|∆kx(t − k)|p ≤ (d(N, p))−p
(

λ
(k)
max

)p/2
∥x∥p

p for any x ∈ HN .

The proof of Lemma 6 is complete.

4. Proof of Theorem 2

Proof of Theorem 2. From (H2), for ε =
1

2p
(d(N, p))p n

∑
k=1

(
λ
(k)
min

)p/2
there is an η > 0

such that

|G(t, z)| ≤ 1
2p

(d(N, p))p
n

∑
k=1

(
λ
(k)
min

)p/2
|z|p for (t, |z|) ∈ [1, N]Z × [0, η]. (19)

For any x ∈ W and ∥x∥p ≤ η, we have |x(t)| ≤ η for any t ∈ [1, N]Z.
Using Lemma 6 and (19), we have

Ψ(x) ≥ 1
p

n

∑
k=1

N

∑
t=1

|∆kx(t − k)|p − 1
2p

(d(N, p))p
n

∑
k=1

(
λ
(k)
min

)p/2
∥x∥p

p

≥ 1
2p

(d(N, p))p
n

∑
k=1

(
λ
(k)
min

)p/2
∥x∥p

p.

Take σ =
1

2p
(d(N, p))p n

∑
k=1

(
λ
(k)
min

)p/2
ηp. Therefore,

Ψ(x) ≥ σ > 0, ∀x ∈ ∂Bη ∩ W. (20)

Additionally, we have established that constants σ > 0 and η > 0 exist such that
Ψ|∂Bη∩W ≥ σ. In other words, the Linking Theorem’s condition (ϕ1) is satisfied by Ψ.

We must validate all of the Linking Theorem’s additional assumptions before we can
use it to improve critical point theory.

From (H1), R > 0 exists such that:

pG(t, z)
|z|p ≥ γ − ε for (t, |z|) ∈ [1, N]Z × ]R, ∞[,

where ε > 0 satisfies,

ε < γ − (d(N, p))−p
n

∑
k=1

(
λ
(k)
max

)p/2
. (21)

Therefore,

G(t, z) ≥ 1
p
(γ − ε)|z|p for (t, |z|) ∈ [1, N]Z × ]R, ∞[. (22)

Moreover, by means of (22) and the continuity of z −→ G(t, z), c1 > 0 exists such that

G(t, z) ≥ 1
p
(γ − ε)|z|p + c1 for (t, |z|) ∈ [1, N]Z ×R.
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Thus, we have for any x ∈ HN

Ψ(x) ≤ 1
p
(d(N, p))−p

n

∑
k=1

(
λ
(k)
max

)p/2
∥x∥p

p −
1
p
(γ − ε)∥x∥p

p − c1N

≤ 1
p

[
(d(N, p))−p

n

∑
k=1

(
λ
(k)
max

)p/2
− (γ − ε)

]
∥x∥p

p − c1N. (23)

Take e ∈ ∂B1 ∩ W. For all y ∈ V and r ∈ R, let x = er + y; one has

Ψ(x) ≤ 1
p

[
(d(N, p))−p

n

∑
k=1

(
λ
(k)
max

)p/2
− (γ − ε)

]
∥re + y∥p

p − c1N

≤ 1
p
(C−(N, p))p

[
(d(N, p))−p

n

∑
k=1

(
λ
(k)
max

)p/2
− (γ − ε)

]
∥re + y∥p

2 − c1N

=
1
p
(C−(N, p))p

[
(d(N, p))−p

n

∑
k=1

(
λ
(k)
max

)p/2
− (γ − ε)

](
r2 + ∥y∥2

2

)p/2
− c1N.

Since (d(N, p))−p n
∑

k=1

(
λ
(k)
max

)p/2
− (γ − ε) < 0 and Ψ(x) = −

N
∑

t=1
G(t, x(t)) ≤ 0 for any

x ∈ V, then a constant R1 > η exists such that

Ψ(x) ≤ 0 for any x ∈ ∂Q,

where
Q = (BR1 ∩ V)⊕ {er| 0 < r < R1}.

From (21) and (23), we obtain Ψ(x) −→ −∞ as ∥x∥p → ∞. Thus, Ψ is anti-coercive;
then, for any (PS) sequence (xm) is bounded. It is clear that Ψ satisfies the (PS) condition
since the dimension of HN is finite.

According to the Linking Theorem [15], Ψ has a critical value c ≥ σ > 0, where
c = inf

g∈Γ
max
u∈Q

Ψ(g(x)),

and
Γ = {g ∈ C(Q, HN) : g|∂Q = id|∂Q}.

Let x̂ ∈ HN be a critical point and Ψ(x̂) = c.

Consequently, the nontrivial solution to the problem (P) is x̂.
Since Ψ is anti-coercive and bounded from above, then Ψ has a maximum point

x0 ∈ HN , i.e., Ψ(x0) = sup
x∈HN

Ψ(x).

The previous equality and (20) allow us to achieve

Φ(x0) = sup
x∈HN

Ψ(x) ≥ sup
x∈∂Bη∩W

Ψ(x) > 0.

Therefore, x0 is nontrivial solution to the problem (P).
Put

c0 = sup
x∈HN

Ψ(x) = Φ(x0).

If x0 ̸= x̂, then we have two nontrivial solutions x0 and x̂.
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Otherwise, suppose x0 = x̂; then, c0 = Ψ(x0) = Φ(x̂) = c, that is

sup
x∈HN

Ψ(x) = inf
g∈Γ

sup
x∈Q

Ψ(g(x)).

Choosing g = id, we obtain sup
x∈Q

Φ(x) = c0. Since the option of e ∈ ∂B1 ∩ W in Q is

arbitrary, we can use −e ∈ ∂B1 ∩ W.

Similar to this, there is a positive number R2 > η such that for any x ∈ ∂Q1, Ψ(x) ≤
0 where

Q1 = (BR2 ∩ V)⊕ {−er| 0 < r < R2}.

Thus, Ψ possesses a critical value c1 ≥ σ > 0 by the Linking Theorem. Once more, Ψ
has a critical value of c1 ≥ σ > 0, where c1 = inf

g∈Γ1
sup
x∈Q1

Ψ(g(x)),

and
Γ1 = {g ∈ C(Q1, HN) : g|∂Q1 = id|∂Q1}.

If c1 ̸= c0, then the case is established.

If c1 = c0, then sup
x∈Q1

Ψ(x) = c0. Due to the fact that Ψ|∂Q ≤ 0 and Ψ|∂Q1 ≤ 0, Ψ

attains its maximum at some points in the interior of Q and Q1. However, Q ∩ Q1 ⊂ V and
Ψ(x) ≤ 0 for any x ∈ V, which suggests that c0 ≤ 0, in contrast to c0 > 0. The proof of
Theorem 2 is finished.

5. Conclusions

In our work, we used one critical paint theorem (the Linking Theorem) to obtain the
new results that ensure the existence of at least two nontrivial solutions to the problem
under discussion, namely, (P).

The discrete problem involving p-Laplacian has strong theoretical significance and
application value.

Furthermore, our problem’s use of the term g makes it more difficult to look into
the uniqueness and convergence of solutions. As such, we leave this subject as an open
question for specialists in this domain.
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