Fixed Point Theorems for Set-Valued Contractions in Metric Spaces

Seong-Hoon Cho

Citation: Cho, S.-H. Fixed Point Theorems for Set-Valued Contractions in Metric Spaces. Axioms 2024, 13, 86. https://doi.org/10.3390/ axioms13020086

Academic Editor: Behzad DjafariRouhani

Received: 27 December 2023
Revised: 21 January 2024
Accepted: 22 January 2024
Published: 27 January 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, Hanseo University, Seosan 356-706, Chungnam, Republic of Korea; shcho@hanseo.ac.kr; Tel.: +82-41-660-1316

Abstract

In this paper, the concepts of Wardowski-type set-valued contractions and Işik-type setvalued contractions are introduced and fixed point theorems for such contractions are established. A positive answer to the open Question is given. Examples to support main theorems and an application to integral inclusion are given.

Keywords: fixed point; contraction; generalized contraction; set-valued contraction; metric space
MSC: 47H10; 54H25

1. Introduction and Preliminaries

Wardowski [1] introduced the notion of F-contraction mappings and the generalized Banach contraction principle by proving that every F-contractions on complete metric spaces have only one fixed point, where $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function such that
(F1) F is strictly increasing;
(F2) for all sequence $\left\{s_{n}\right\} \subset(0, \infty)$,

$$
\lim _{n \rightarrow \infty} s_{n}=0 \Longleftrightarrow \lim _{n \rightarrow \infty} F\left(s_{n}\right)=-\infty ;
$$

(F3) there exists a point $q \in(0,1): \lim _{t \rightarrow 0^{+}} t^{q} F(t)=0$.
Among several results ([2-18]) generalizing Wardowski's result, Piri and Kumam [19] introduced the concept of Suzuki-type F-contractions and obtained related fixed point results in complete metric spaces, where $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a strictly increasing function such that
(F4) $\inf F=-\infty$;
(F5) F is continuous on $(0, \infty)$.
Nazam [20] generalized Wardowski's result to four maps defined on b-metric spaces and proved the existence of a common fixed point by using conditions (F2), (F3) and
(F6) $\tau+F\left(r s_{n}\right) \leq F\left(s_{n}\right) \Longrightarrow \tau+F\left(r^{n} s_{n}\right) \leq F\left(r^{n-1} s_{n-1}\right)$ for each $r>0, n \in \mathbb{N}$, where $\tau>0$.

Younis et al. [18] generalized Nazam's result in b-metric spaces using only condition (F1). That is, they only used the strictly growth of $F:(0, \infty) \rightarrow(-\infty, \infty)$ and distinguished two cases: $s=1$ and $s>1$, where s is the coefficient of b-metric spaces. Younis et al. [21] introduced the notion of Suzuki-Geraghty-type generalized (F, ψ)-contractions and generalized the result of [14] in partial b-metric spaces along with Geraghty-type contraction with conditions (F1), (F4) and (F5), and they gave applications to graph the theory and solution of some integral equations. Younis and Singh [22] extended Wardowski's result to b-metric-like spaces and obtained the sufficient conditions for the existence of solutions of some class of Hammerstein integral equations and fractional differential equations.

On the other hand, Abbas et al. [23] and Abbas et al. [24] extended and generalized Wadorski's result to two self mappings on partially ordered metric space and fuzzy mappings on metric spaces, respectively, and proved the existence of a fixed point using conditions (F1), (F2) and (F3).

Note that for a function $F:(0, \infty) \rightarrow(-\infty, \infty)$, the following are equivalent:
(1) (F2) is satisfied;
(2) (F4) is satisfied;
(3) $\lim _{t \rightarrow 0^{+}} F(t)=-\infty$.

Hence, we have that

$$
\lim _{n \rightarrow \infty} s_{n}=0 \Rightarrow \lim _{n \rightarrow \infty} F\left(s_{n}\right)=-\infty
$$

whenever (F4) holds.
Very recently, Fabiano et al. [25] gave a generalization of Wardowski's result [1] by reducing the condition on function $F:(0, \infty) \rightarrow(-\infty, \infty)$ and by using the right limit of function $F:(0, \infty) \rightarrow(-\infty, \infty)$. They proved the following Theorem 1.

Theorem 1 ([25]). Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow E$ is a map such that for all $x, y \in E$ with $\rho(T x, T y)>0$,

$$
\tau+F(\rho(T x, T y)) \leq F(\rho(x, y))
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function. If $(F 1)$ is satisfied, then T possesses only one fixed point.

In [25], Fabiano et al. asked the following question:
Question ([25]). Can conditions for the function F be reduced to (F1) and (F2), and can the proof be made simpler in some results for multivalued mappings in the same way as it was presented in [25] for single-valued mappings?

In this paper, we give a positive answer to the above question by extending the above theorem to set-valued maps and obtain a fixed point result for Işik-type set-valued contractions. We give examples to interpret main results and an application to integral inclusion.

Let (E, ρ) be a metric space. We denote by $C L(E)$ the family of all nonempty closed subsets of E, and by $C B(E)$ the set of all nonempty closed and bounded subsets of E.

Let $H(\cdot, \cdot)$ be the generalized Pompeiu-Hausdorff distance [26] on $C L(E)$, i.e., for all $A, B \in C L(E)$,

$$
H(A, B)=\left\{\begin{array}{lc}
\max \left\{\sup _{a \in A} \rho(a, B), \sup _{b \in B} \rho(b, A)\right\}, & \text { if the maximum exists, } \\
\infty, & \text { otherwise }
\end{array}\right.
$$

where $\rho(a, B)=\inf \{\rho(a, b): b \in B\}$ is the distance from the point a to the subset B.
Let $\delta(A, B)=\sup \{\rho(a, b): a \in A, b \in B\}$. When $A=\{x\}$, we denote $\delta(A, B)$ by $\delta(x, B)$.

For $A, B \in C L(E)$, let $D(A, B)=\sup _{x \in A} d(x, B)=\sup _{x \in A} \inf _{y \in B} d(x, y)$.
Then, we have that for all $A, B \in C L(E)$

$$
D(A, B) \leq H(A, B) \leq \delta(A, B)
$$

Note that the following Lemma 1 can be obtained by applying the assumptions of Lemma 1 to Theorem 4.29 of [27]. In fact, let $F:(0, \infty) \rightarrow(-\infty, \infty)$ be monotonically increasing $(x<y$ implies $F(x) \leq F(y))$ and $\left\{p_{n}\right\}$ be a given sequence of $(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} p_{n}=l, \text { where } l>0
$$

Then, it follows from Theorem 4.28 of [27] that we obtain the conclusion of Lemma 1. Here, we give another proof of Lemma 1.

Lemma 1. Let $l>0$, and let $\left\{t_{n}\right\},\left\{s_{n}\right\} \subset(l, \infty)$ be non-increasing sequences such that

$$
t_{n}<s_{n}, \forall n=1,2,3, \cdots \text { and } \lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=l .
$$

If $F:(0, \infty) \rightarrow(-\infty, \infty)$ is strictly increasing, then we have

$$
\lim _{n \rightarrow \infty} F\left(t_{n}\right)=\lim _{n \rightarrow \infty} F\left(s_{n}\right)=F\left(l^{+}\right) \geq F(l)
$$

where $F\left(l^{+}\right)$denotes $\lim _{t \rightarrow l^{+}} F(t)$.
Proof. As F is strictly increasing, the function $F_{*}:(0, \infty) \rightarrow F((0, \infty))$ defined by $F_{*}(t)=F(t) \forall t \in(0, \infty)$, is bijective and continuous on $(0, \infty)$. We infer that

$$
\lim _{t \rightarrow l^{+}} F_{*}(t) \geq F_{*}(l), \lim _{n \rightarrow \infty} F_{*}\left(t_{n}\right)=\lim _{t \rightarrow l^{+}} F_{*}(t) \text { and } \lim _{n \rightarrow \infty} F_{*}\left(s_{n}\right)=\lim _{t \rightarrow l^{+}} F_{*}(t)
$$

Since $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are non-increasing, it follows from the strict increasingness of F that

$$
F_{*}\left(t_{n+1}\right) \leq F_{*}\left(t_{n}\right)<F_{*}\left(s_{n}\right) \leq F_{*}\left(s_{n-1}\right) .
$$

Hence, we obtain that

$$
\lim _{t \rightarrow l^{+}} F_{*}(t)=\lim _{n \rightarrow \infty} F_{*}\left(t_{n+1}\right) \leq \lim _{n \rightarrow \infty} F_{*}\left(t_{n}\right) \leq \lim _{n \rightarrow \infty} F_{*}\left(s_{n}\right) \leq \lim _{n \rightarrow \infty} F_{*}\left(s_{n-1}\right) \leq \lim _{t \rightarrow l^{+}} F_{*}(t),
$$

which implies

$$
\lim _{n \rightarrow \infty} F_{*}\left(t_{n}\right)=\lim _{n \rightarrow \infty} F_{*}\left(s_{n}\right)=F_{*}\left(l^{+}\right)
$$

Since $F_{*}(t)=F(t) \forall t \in(0, \infty)$, we have the desired result.
Lemma 2 ([28]). Let (E, ρ) be a metric space. If $\left\{x_{n}\right\}$ is not a Cauchy sequence, then there exists $\epsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $m(k)$ is the smallest index for which

$$
\begin{equation*}
m(k)>n(k)>k, \rho\left(x_{m(k)}, x_{n(k)}\right) \geq \epsilon \text { and } \rho\left(x_{m(k)-1}, x_{n(k)}\right)<\epsilon . \tag{1}
\end{equation*}
$$

Further, if

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, x_{n+1}\right)=0,
$$

then we have that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \rho\left(x_{n(k)}, x_{m(k)}\right)=\lim _{k \rightarrow \infty} \rho\left(x_{n(k)+1}, x_{m(k)}\right) \\
=\lim _{k \rightarrow \infty} \rho\left(x_{n(k)}, x_{m(k)+1}\right)=\lim _{k \rightarrow \infty} \rho\left(x_{n(k)+1}, x_{m(k)+1}\right)=\epsilon . \tag{2}
\end{gather*}
$$

Lemma 3. Let (E, ρ) be a metric space, and let $A, B \in C L(E)$. If $a \in A$ and $\rho(a, B)<c$, then there exists $b \in B$ such that $\rho(a, b)<c$.

Proof. Let $\epsilon=c-\rho(a, B)$. It follows from the definition of infimum that there exists $b \in B$ such that $\rho(a, b)<\rho(a, B)+\epsilon$. Hence, $\rho(a, b)<c$.

Lemma 4. Let (E, ρ) be a metric space, and let $A, B \in C L(E)$ and $\phi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function. If $a \in A$ and $\rho(a, B)+\phi(\rho(a, B))<c$, then there exists $b \in B$ such that $\rho(a, b)+\phi(\rho(a, b))<c$.

Proof. Since ϕ is strictly increasing,

$$
\rho(a, B)<\phi^{-1}(c-\rho(a, B)) .
$$

By Lemma 3, there exists $b^{\prime} \in B$ such that

$$
\rho\left(a, b^{\prime}\right)<\phi^{-1}(c-\rho(a, B))
$$

which yields

$$
\rho(a, B)<c-\phi\left(\rho\left(a, b^{\prime}\right)\right) .
$$

Again, by applying Lemma 3, there exists $b^{\prime \prime} \in B$ such that

$$
\rho\left(a, b^{\prime \prime}\right)<c-\phi\left(\rho\left(a, b^{\prime}\right)\right) .
$$

Let $\min \left\{\rho\left(a, b^{\prime}\right), \rho\left(a, b^{\prime \prime}\right)\right\}=\rho(a, b)$. Then, we have that

$$
\rho(a, b)+\phi(\rho(a, b))<c .
$$

Lemma 5. If (E, ρ) is a metric space, then $K(E) \subset C L(E)$, where $K(E)$ is the family of nonempty compact subsets of E.

2. Fixed Point Results

Let (E, ρ) be a metric space, and let $F:(0, \infty) \rightarrow(-\infty, \infty)$ be a strictly increasing function. A set-valued map $T: E \rightarrow C L(E)$ is called a Wardowski-type contraction if the following condition holds:

There exists a constant $\tau>0$ such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{equation*}
\tau+F(H(T x, T y)) \leq F(m(x, y)) \tag{3}
\end{equation*}
$$

where $m(x, y)=\max \left\{\rho(x, y), \rho(x, T x), \rho(y, T y), \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right\}$.
We now prove our main result.
Theorem 2. Let (E, ρ) be a complete metric space. If $T: E \rightarrow C L(E)$ is a Wardowski-type set-valued contraction, then T possesses a fixed point.

Proof. Let $x_{0} \in E$ be a point, and let $x_{1} \in T x_{0}$.
If $x_{1} \in T x_{1}$, then the proof is completed.
Assume that $x_{1} \notin T x_{1}$. Then, $\rho\left(x_{1}, T x_{1}\right)>0$, because $T x_{1} \in C L(X)$. Hence, $H\left(T x_{0}, T x_{1}\right) \geq d\left(x_{1}, T x_{1}\right)>0$. From (3) we have that

$$
\begin{equation*}
\tau+F\left(H\left(T x_{0}, T x_{1}\right)\right) \leq F\left(m\left(x_{0}, x_{1}\right)\right) \tag{4}
\end{equation*}
$$

We infer that

$$
\begin{aligned}
& m\left(x_{0}, x_{1}\right)=\max \left\{\rho\left(x_{0}, x_{1}\right), \rho\left(x_{0}, T x_{0}\right), \rho\left(x_{1}, T x_{1}\right), \frac{1}{2}\left[\rho\left(x_{0}, T x_{1}\right)+\rho\left(x_{1}, T x_{0}\right)\right]\right\} \\
= & \max \left\{\rho\left(x_{0}, x_{1}\right), \rho\left(x_{1}, T x_{1}\right)\right\}, \text { because that } \rho\left(x_{0}, T x_{0}\right) \leq \rho\left(x_{0}, x_{1}\right) \text { and } \\
& \frac{1}{2}\left[\rho\left(x_{0}, T x_{1}\right)+\rho\left(x_{1}, T x_{0}\right)\right] \leq \frac{1}{2}\left[\rho\left(x_{0}, x_{1}\right)+\rho\left(x_{1}, T x_{1}\right)\right] .
\end{aligned}
$$

If $m\left(x_{0}, x_{1}\right)=\rho\left(x_{1}, T x_{1}\right)$, then from (4) we obtain that

$$
F\left(\rho\left(x_{1}, T x_{1}\right)\right)<\tau+F\left(H\left(T x_{0}, T x_{1}\right)\right) \leq F\left(\rho\left(x_{1}, T x_{1}\right)\right)
$$

which is a contradiction. Thus, $m\left(x_{0}, x_{1}\right)=\rho\left(x_{0}, x_{1}\right)$. It follows from (4) that

$$
\begin{equation*}
\frac{1}{2} \tau+F\left(\rho\left(x_{1}, T x_{1}\right)\right)<\tau+F\left(H\left(T x_{0}, T x_{1}\right)\right) \leq F\left(\rho\left(x_{0}, x_{1}\right)\right) \tag{5}
\end{equation*}
$$

Since (F1) is satisfied, we obtain that

$$
\rho\left(x_{1}, T x_{1}\right)<F^{-1}\left(\frac{1}{2} \tau+F\left(H\left(T x_{0}, T x_{1}\right)\right)\right) .
$$

Applying Lemma 3, there exists $x_{2} \in T x_{1}$ such that

$$
\rho\left(x_{1}, x_{2}\right)<F^{-1}\left(\frac{1}{2} \tau+F\left(H\left(T x_{0}, T x_{1}\right)\right)\right)
$$

which implies

$$
\begin{equation*}
F\left(\rho\left(x_{1}, x_{2}\right)\right)<\frac{1}{2} \tau+F\left(H\left(T x_{0}, T x_{1}\right)\right) \leq F\left(\rho\left(x_{0}, x_{1}\right)\right)-\frac{1}{2} \tau . \tag{6}
\end{equation*}
$$

Again from (3) we have that

$$
\begin{equation*}
\frac{1}{2} \tau+F\left(\rho\left(x_{2}, T x_{2}\right)\right)<\tau+F\left(H\left(T x_{1}, T x_{2}\right)\right) \leq F\left(\rho\left(x_{1}, x_{2}\right)\right) \tag{7}
\end{equation*}
$$

which implies

$$
\rho\left(x_{2}, T x_{2}\right)<F^{-1}\left(\frac{1}{2} \tau+F\left(H\left(T x_{1}, T x_{2}\right)\right)\right) .
$$

By Lemma 3, there exists $x_{3} \in T x_{2}$ such that

$$
\rho\left(x_{2}, x_{3}\right)<F^{-1}\left(\frac{1}{2} \tau+F\left(H\left(T x_{1}, T x_{2}\right)\right)\right) .
$$

Hence, we obtain that

$$
\begin{equation*}
F\left(\rho\left(x_{2}, x_{3}\right)\right)<\frac{1}{2} \tau+F\left(H\left(T x_{1}, T x_{2}\right)\right) \leq F\left(\rho\left(x_{1}, x_{2}\right)\right)-\frac{1}{2} \tau \tag{8}
\end{equation*}
$$

Inductively, we have that for all $n \in \mathbb{N}$,

$$
x_{n} \in T x_{n-1}
$$

and

$$
\begin{equation*}
F\left(\rho\left(x_{n}, x_{n+1}\right)\right)<\frac{1}{2} \tau+F\left(H\left(T x_{n-1}, x_{n}\right)\right) \leq F\left(\rho\left(x_{n-1}, x_{n}\right)\right)-\frac{1}{2} \tau \tag{9}
\end{equation*}
$$

Because F is a strictly increasing function,

$$
\rho\left(x_{n}, x_{n+1}\right)<\rho\left(x_{n-1}, x_{n}\right), \forall n \in \mathbb{N} .
$$

Hence, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, x_{n+1}\right)=r .
$$

Assume that $r>0$. By Lemma 1, we have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(\rho\left(x_{n}, x_{n+1}\right)\right)=\lim _{n \rightarrow \infty} F\left(\rho\left(x_{n-1}, x_{n}\right)\right)=\lim _{t \rightarrow r^{+}} F(t)=F\left(r^{+}\right) \geq F(r) \tag{10}
\end{equation*}
$$

Taking limit $n \rightarrow \infty$ in (9) and using (10), we obtain that

$$
F\left(r^{+}\right) \leq F\left(r^{+}\right)-\frac{1}{2} \tau,
$$

which is a contradiction, because $\tau>0$. Thus, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho\left(x_{n}, x_{n+1}\right)=0 . \tag{11}
\end{equation*}
$$

Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Assume that $\left\{x_{n}\right\}$ is not a Cauchy sequence. Then, there exists $\epsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $m(k)$ is the smallest index for which (1) holds. That is, the following are satisfied:

$$
m(k)>n(k)>k, \rho\left(x_{m(k)}, x_{n(k)}\right) \geq \epsilon \text { and } \rho\left(x_{m(k)-1}, x_{n(k)}\right)<\epsilon .
$$

It follows from (3) that

$$
\begin{align*}
& F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right)<\tau+F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right)\right.\right. \\
& \leq \tau+F\left(H\left(T x_{n(k)}, T x_{m(k)}\right) \leq F\left(m\left(x_{n(k)}, x_{m(k)}\right)\right) .\right. \tag{12}
\end{align*}
$$

We infer that

$$
\begin{align*}
& \epsilon \leq \rho\left(x_{n(k)}, x_{m(k)}\right) \leq m\left(x_{n(k)}, x_{m(k)}\right) \\
= & \max \left\{\rho\left(x_{n(k)}, x_{m(k)}\right), \rho\left(x_{n(k)}, T x_{n(k)}\right), \rho\left(x_{m(k)}, T x_{m(k)}\right),\right. \\
& \left.\frac{1}{2}\left[\rho\left(x_{n(k)}, T x_{m(k)}\right)+\rho\left(x_{m(k)}, T x_{n(k)}\right)\right]\right\} \tag{13}\\
\leq & \max \left\{\rho\left(x_{n(k)}, x_{m(k)}\right), \rho\left(x_{n(k)}, x_{n(k)+1}\right), \rho\left(x_{m(k)}, x_{m(k)+1}\right),\right. \\
& \left.\frac{1}{2}\left[\rho\left(x_{n(k)}, x_{m(k)+1}\right)+\rho\left(x_{m(k)}, x_{n(k)+1}\right)\right]\right\}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ on both sides of (13) and using (2), we obtain that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} m\left(x_{n(k)}, x_{m(k)}\right)=\epsilon . \tag{14}
\end{equation*}
$$

Since F is strictly increasing, from (12) we have that

$$
\rho\left(x_{n(k)+1}, T x_{m(k)}\right)<F^{-1}\left(\tau+F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right)\right) .\right.
$$

By applying Lemma 3, there exists $y_{m(k)} \in T x_{m(k)}$ such that

$$
\rho\left(x_{n(k)+1}, y_{m(k)}\right)<F^{-1}\left(\tau+F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right)\right)\right.
$$

Hence,

$$
F\left(\rho\left(x_{n(k)+1}, y_{m(k)}\right)\right)<\tau+F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right) .\right.
$$

Thus, it follows from (12) that

$$
\begin{align*}
& F\left(\rho\left(x_{n(k)+1}, y_{m(k)}\right)\right) \\
< & \tau+F\left(\rho\left(x_{n(k)+1}, y_{m(k)}\right)\right)<\tau+F\left(\rho\left(x_{n(k)+1}, T x_{m(k)}\right)\right. \tag{15}\\
\leq & \tau+F\left(H\left(T x_{n(k)}, T x_{m(k)}\right)\right. \\
\leq & F\left(m\left(x_{n(k)}, x_{m(k)}\right)\right)
\end{align*}
$$

which leads to

$$
\begin{equation*}
\rho\left(x_{n(k)+1}, y_{m(k)}\right)<m\left(x_{n(k)}, x_{m(k)}\right), \forall k=1,2,3, \cdots . \tag{16}
\end{equation*}
$$

By taking lim sup as $k \rightarrow \infty$ in (16) and using (14), we have that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sup \rho\left(x_{n(k)+1}, y_{m(k)}\right) \leq \epsilon \tag{17}
\end{equation*}
$$

Since

$$
\begin{align*}
& \rho\left(x_{n(k)+1}, T x_{m(k)}\right) \leq \rho\left(x_{n(k)+1}, y_{m(k)}\right), \\
& \rho\left(x_{n(k)+1}, x_{m(k)}\right) \\
\leq & \rho\left(x_{n(k)+1}, T x_{m(k)}\right)+\rho\left(T x_{m(k)}, x_{m(k)}\right) \tag{18}\\
\leq & \rho\left(x_{n(k)+1}, y_{m(k)}\right)+\rho\left(x_{m(k)+1}, x_{m(k)}\right) .
\end{align*}
$$

Taking liminf as $k \rightarrow \infty$ in (18) and using (2), we obtain that

$$
\begin{equation*}
\epsilon \leq \lim _{k \rightarrow \infty} \inf \rho\left(x_{n(k)+1}, y_{m(k)}\right) \tag{19}
\end{equation*}
$$

It follows from (17) and (19) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \rho\left(x_{n(k)+1}, y_{m(k)}\right)=\epsilon \tag{20}
\end{equation*}
$$

By applying Lemma 1 to (15) with (14), (16) and (20), we obtain that

$$
F\left(\epsilon^{+}\right) \leq \tau+F\left(\epsilon^{+}\right) \leq F\left(\epsilon^{+}\right)
$$

which leads to a contradiction. Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence. From the completeness of E, there exists

$$
x_{*}=\lim _{n \rightarrow \infty} x_{n} \in E .
$$

It follows from (3) that

$$
\begin{align*}
& F\left(\rho\left(x_{n+1}, T x_{*}\right)\right)<\tau+F\left(\rho\left(x_{n+1}, T x_{*}\right)\right) \\
& \leq \tau+F\left(H\left(T x_{n}, T x_{*}\right)\right) \leq F\left(m\left(x_{n}, x_{*}\right)\right), \tag{21}
\end{align*}
$$

where $m\left(x_{n}, x_{*}\right)=\max \left\{\rho\left(x_{n}, x_{*}\right), \rho\left(x_{n}, x_{n+1}\right), \rho\left(x_{*}, T x_{*}\right), \frac{1}{2}\left[\rho\left(x_{*}, x_{n+1}\right)+\rho\left(x_{n}, T x_{*}\right)\right]\right\}$.
Since F is strictly increasing, from (21) we have that

$$
\begin{equation*}
\rho\left(x_{n+1}, T x_{*}\right)<m\left(x_{n}, x_{*}\right) \tag{22}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho\left(x_{n+1}, T x_{*}\right)=\lim _{n \rightarrow \infty} m\left(x_{n}, x_{*}\right)=\rho\left(x_{*}, T x_{*}\right) . \tag{23}
\end{equation*}
$$

Assume that $\rho\left(x_{*}, T x_{*}\right)>0$. By Lemma 1, we have that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} F\left(\rho\left(x_{n+1}, T x_{*}\right)\right)=\lim _{n \rightarrow \infty} F\left(m\left(x_{n}, x_{*}\right)\right) \\
= & \lim _{t \rightarrow \rho\left(x_{*}, T x_{*}\right)^{+}} F(t)=F\left(\rho\left(x_{*}, T x_{*}\right)^{+}\right) . \tag{24}
\end{align*}
$$

Applying (24) to (21), we obtain that

$$
F\left(\rho\left(x_{*}, T x_{*}\right)^{+}\right) \leq \tau+F\left(\rho\left(x_{*}, T x_{*}\right)^{+}\right) \leq F\left(\rho\left(x_{*}, T x_{*}\right)^{+}\right)
$$

which leads to a contradiction. Hence, $\rho\left(x_{*}, T x_{*}\right)=0$, and $x_{*} \in T x_{*}$.
The following example interprets Theorem 2.

Example 1. Let $E=[0,1]$ and $\rho(x, y)=|x-y|, \forall x, y \in E$. Then (E, ρ) is a complete metric space. Define a set-valued map $T: E \rightarrow C L(E)$ by

$$
T x= \begin{cases}\{1\}, & (x=0) \\ \left\{\frac{2}{5}, \frac{1}{2}\right\}, & (0<x \leq 1)\end{cases}
$$

Let $\tau=\ln \frac{2.1}{2}$ and $F(t)=\ln t, \forall t>0$. We show that T is a Wardowski-type set-valued contraction. We now consider the following two cases.

First, let $x=0$ and $0<y \leq 1$.
Then, $H(T x . T y)=\frac{3}{5}$. We obtain that

$$
\begin{aligned}
& \tau+F(H(T x, T y))-F(\rho(x, T x)) \\
= & \tau+F\left(\frac{3}{5}\right)-F(1) \\
= & \ln \frac{2.1}{2}+\ln \frac{3}{5}-\ln 1 \\
= & \ln 6.3-\ln 10 \approx-0.46<0 .
\end{aligned}
$$

Thus,

$$
\tau+F(H(T x, T y))<F(\rho(x, T x))
$$

which implies

$$
\tau+F(H(T x, T y))<F(m(x, y))
$$

Second, let $0 \leq x<1$ and $y=1$.
Then $H(T x, T y)=\frac{4}{5}$. We infer that

$$
\begin{aligned}
& \tau+F(H(T x, T y))-F(\rho(y, T y)) \\
= & \tau+F\left(\frac{4}{5}\right)-F(1) \\
= & \ln \frac{2.1}{2}+\ln \frac{4}{5}-\ln 1 \\
= & \ln 8.4-\ln 10 \approx-0.17<0 .
\end{aligned}
$$

Thus,

$$
\tau+F(H(T x, T y))<F(\rho(y, T y))
$$

which leads to

$$
\tau+F(H(T x, T y))<F(m(x, y))
$$

Hence, T is a Wardowski-type set-valued contraction. The assumptions of Theorem 2 are satisfied. By Theorem 2, T possesses two fixed points, $\frac{2}{5}$ and $\frac{1}{2}$.

Remark 1. Theorem 2 is a positive answer to Question 4.3 of [25].
Remark 2. Theorem 2 is an extention of Theorem 2.2 [13] to set-valued maps without conditions (F2) and (F3).

By Theorem 2, we have the following results.
Corollary 1. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{equation*}
\tau+F(H(T x, T y)) \leq F(l(x, y)) \tag{25}
\end{equation*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function, and

$$
l(x, y)=\max \left\{\rho(x, y), \frac{1}{2}[\rho(x, T x)+\rho(y, T y)], \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right\}
$$

If (F1) is satisfied, then T possesses a fixed point.
Proof. Since $l(x, y) \leq m(x, y), F(l(x, y)) \leq F(m(x, y))$. Thus, (25) implies (2). By Theorem 2, T possesses a fixed point.

Corollary 2. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{equation*}
\tau+F(H(T x, T y)) \leq F(\rho(x, y)) \tag{26}
\end{equation*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function. If $(F 1)$ is satisfied, then T possesses a fixed point.

Proof. Since $\rho(x, y) \leq m(x, y)$ and (F1) holds, (26) implies (2). By Theorem 2, T possesses a fixed point.

Corollary 3. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{align*}
& \tau+F(H(T x, T y)) \\
\leq & F(a \rho(x, y)+b \rho(x, T x)+c \rho(y, T y)+e[\rho(x, T y)+\rho(y, T x)]) \tag{27}
\end{align*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function, and $a, b, c, e \geq 0$ and $a+b+c+2 e=1$. If (F1) is satisfied, then T possesses a fixed point.

Proof. It follows from (27) that

$$
\begin{aligned}
& \tau+F(H(T x, T y)) \\
\leq & F(a \rho(x, y)+b \rho(x, T x)+c \rho(y, T y)+e[\rho(x, T y)+\rho(y, T x)]) \\
= & \left.F(a \rho(x, y)+b \rho(x, T x)+c \rho(y, T y)]+2 e \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right) \\
\leq & F\left((a+b+c+2 e) \max \left\{\rho(x, y), \rho(x, T x), \rho(y, T y), \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right\}\right) \\
= & F(m(x, y))
\end{aligned}
$$

By Theorem 2, T possesses a fixed point.
Corollary 4. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{align*}
& \tau+F(H(T x, T y)) \\
\leq & F(a \rho(x, y)+b[\rho(x, T x)+\rho(y, T y)]+c[\rho(x, T y)+\rho(y, T x)]) \tag{28}
\end{align*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function, and $a, b, c \geq 0$ and $a+2 b+2 c=1$. If (F1) is satisfied, then T possesses a fixed point.

Proof. It follows from (28) that

$$
\begin{aligned}
& \tau+F(H(T x, T y)) \\
\leq & F(a \rho(x, y)+b[\rho(x, T x)+\rho(y, T y)]+c[\rho(x, T y)+\rho(y, T x)]) \\
= & F\left(a \rho(x, y)+2 b \frac{1}{2}[\rho(x, T x)+\rho(y, T y)]+2 c \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right) \\
\leq & F\left((a+2 b+2 c) \max \left\{\rho(x, y), \frac{1}{2}[\rho(x, T x)+\rho(y, T y)], \frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right\}\right) \\
= & F(l(x, y)) .
\end{aligned}
$$

By Corollary 1, T possesses a fixed point.
Corollary 5. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{equation*}
\tau+F(H(T x, T y)) \leq F\left(\frac{1}{2}[\rho(x, T x)+\rho(y, T y)]\right) \tag{29}
\end{equation*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function. If $(F 1)$ is satisfied, then T possesses a fixed point.

Proof. Since $\frac{1}{2}[\rho(x, T x)+\rho(y, T y)] \leq l(x, y)$ and (F1) holds, (29) implies (25). By Corollary 1, T possesses a fixed point.

Corollary 6. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for all $x, y \in E$ with $H(T x, T y)>0$,

$$
\begin{equation*}
\tau+F(H(T x, T y)) \leq F\left(\frac{1}{2}[\rho(x, T y)+\rho(y, T x)]\right) \tag{30}
\end{equation*}
$$

where $\tau>0$ and $F:(0, \infty) \rightarrow(-\infty, \infty)$ is a function. If $(F 1)$ is satisfied, then T possesses a fixed point.

Proof. Since $\frac{1}{2}[\rho(x, T y)+\rho(y, T x)] \leq l(x, y)$ and (F1) holds, implies (25). By Corollary $1, T$ possesses a fixed point.

Remark 3. Corollary 4 is a generalization of the main theorem of [29]. Indeed, if $F(t)=\ln t, \forall t>0$ and we take T to be the self-mapping of E, then Corollary 4 becomes the main theorem of [29].

Nadler [30] extended Banach's fixed point theorem to set-valued maps. We are calling it Nadler's fixed point theorem. We now prove the following theorem, which is a generalization of Nadler's fixed point theorem.

Theorem 3. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is an Işik-type set-valued contraction, i.e., for each $x, y \in E$ and each $u \in T x$, there exists $v \in T y$ such that

$$
\begin{equation*}
\rho(u, v) \leq \phi(\rho(x, y))-\phi(\rho(u, v)) \tag{31}
\end{equation*}
$$

where $\phi:[0, \infty) \rightarrow[0, \infty)$ is a function such that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \phi(t)=0 \tag{32}
\end{equation*}
$$

Then, T possesses a fixed point.
Proof. Let $x_{0} \in E$, and let $x_{1} \in T x_{0}$. Then there exits $x_{2} \in T x_{1}$ such that

$$
\rho\left(x_{1}, x_{2}\right) \leq \phi\left(\rho\left(x_{0}, x_{1}\right)\right)-\phi\left(\rho\left(x_{1}, x_{2}\right)\right) .
$$

Again, there exists $x_{3} \in T x_{2}$ such that

$$
\rho\left(x_{2}, x_{3}\right) \leq \phi\left(\rho\left(x_{1}, x_{2}\right)\right)-\phi\left(\rho\left(x_{2}, x_{3}\right)\right) .
$$

Inductively, we have a sequence $\left\{x_{n}\right\} \subset E$ such that for all $n=1,2,3, \cdots$,

$$
\begin{equation*}
x_{n} \in T x_{n-1} \text { and } \rho\left(x_{n}, x_{n+1}\right) \leq \phi\left(\rho\left(x_{n-1}, x_{n}\right)\right)-\phi\left(\rho\left(x_{n}, x_{n+1}\right)\right) . \tag{33}
\end{equation*}
$$

It follows from (33) that $\left\{\phi\left(\rho\left(x_{n-1}, x_{n}\right)\right)\right\}$ is a non-increasing sequence and bounded below by 0 . Hence, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \phi\left(\rho\left(x_{n-1}, x_{n}\right)\right)=r .
$$

We show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Let m, n be any positive integers such that $m>n$. Then we have that

$$
\begin{align*}
& \rho\left(x_{n}, x_{m}\right) \\
\leq & \rho\left(x_{n}, x_{n+1}\right)+\rho\left(x_{n+1}, x_{n+2}\right)+\cdots+\rho\left(x_{m-1}, x_{m}\right) \\
\leq & \phi\left(\rho\left(x_{n-1}, x_{n}\right)\right)-\phi\left(\rho\left(x_{m-1}, x_{m}\right)\right) \tag{34}\\
\leq & \phi\left(\rho\left(x_{n-1}, x_{n}\right)\right)-r .
\end{align*}
$$

Letting $m, n \rightarrow \infty$ in (34), we obtain that

$$
\lim _{n, m \rightarrow \infty} \rho\left(x_{n}, x_{m}\right)=0
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence. It follows from the completeness of E that

$$
\begin{equation*}
x_{*}=\lim _{n \rightarrow \infty} x_{n} \text { exists. } \tag{35}
\end{equation*}
$$

Now, we show that x_{*} is a fixed point for T.
It follows from (31) that for $x_{n} \in T x_{n-1}$, there exists $v \in T x_{*}$ such that

$$
\begin{equation*}
\rho\left(x_{n}, v\right) \leq \phi\left(\rho\left(x_{n-1}, x_{*}\right)\right)-\phi\left(\rho\left(x_{n}, v\right)\right) \leq \phi\left(\rho\left(x_{n-1}, x_{*}\right)\right) . \tag{36}
\end{equation*}
$$

Taking limit $n \rightarrow \infty$ in Equation (36) and using (32), we infer that

$$
\lim _{n \rightarrow \infty} \rho\left(x_{n}, v\right)=0
$$

which implies

$$
x_{*}=v \in T x_{*} .
$$

Example 2. Let $E=\left\{x_{n}: x_{n}=\sum_{k=1}^{n}, n \in \mathbb{N}\right\}$ and $\rho(x, y)=|x-y|, \forall x, y \in E$. Then (E, ρ) is a complete metric space.

Define a map $T: E \rightarrow C L(E)$ by

$$
T x= \begin{cases}\left\{x_{1}\right\}, & \left(x=x_{1}\right) \\ \left\{x_{1}, x_{2}, x_{3}, \cdots x_{n-1}\right\}, & \left(x=x_{n}\right) .\end{cases}
$$

Let $\phi(t)=\frac{1}{2} t, \forall t \geq 0$.
We show that condition (31) is satisfied.
Consider the following two cases.
First, let $x=x_{1}$ and $y=x_{n}, n=2,3,4, \cdots$.

Then, for $u=x_{1} \in T x$, there exists $v=x_{1} \in T y$ such that

$$
\rho(u, v)=0<\frac{1}{2} \rho\left(x_{1}, x_{n}\right)=\phi\left(\rho\left(x_{1}, x_{n}\right)\right)=\phi\left(\rho\left(x_{1}, x_{n}\right)\right)-\phi(\rho(u, v)) .
$$

Second, let $x=x_{n}$ and $y=x_{m}, m>n, n=2,3,4, \cdots$.
For $u=x_{k} \in \operatorname{Tx}(k=1,2,3, \cdots, n-1)$, there exists $v=x_{k} \in$ Ty such that

$$
\rho(u, v)=0<\frac{1}{2} \rho\left(x_{n}, x_{m}\right)=\phi\left(\rho\left(x_{n}, x_{m}\right)\right)=\phi\left(\rho\left(x_{n}, x_{m}\right)\right)-\phi(\rho(u, v)) .
$$

This show that T satisfies condition (31). Thus, all conditions of Theorem 3 hold. From Theorem 3, T possesses a fixed point, $x_{*}=x_{1}$.

Corollary 7. Let (E, ρ) be a complete metric space. Suppose that $T: E \rightarrow C L(E)$ is a set-valued map such that for each $x, y \in E$,

$$
H(T x, T y)<\phi(\rho(x, y))-\phi(H(T x, T y))
$$

where $\phi:[0, \infty) \rightarrow[0, \infty)$ is a strictly increasing function such that

$$
\lim _{t \rightarrow 0^{+}} \phi(t)=0
$$

Then, T possesses a fixed point.
Proof. Let $x, y \in E$ and let $u \in T x$. As ϕ is strictly increasing,

$$
\rho(u, T y)+\phi(\rho(u, T y))<\phi(\rho(x, y)) .
$$

Applying Lemma 4, there exists $v \in T y$ such that

$$
\rho(u, v)+\phi(\rho(u, v))<\phi(\rho(x, y)) .
$$

By Theorem 3, T possesses a fixed point.
From Theorem 3 we have the following result.
Corollary 8 ([31]). Let (E, ρ) be a complete metric space. Suppose that $f: E \rightarrow E$ is a map such that for each $x, y \in E$,

$$
\rho(f x, f y) \leq \phi(\rho(x, y))-\phi(\rho(f x, f y))
$$

where $\phi:[0, \infty) \rightarrow[0, \infty)$ is a function such that

$$
\lim _{t \rightarrow 0^{+}} \phi(t)=0 .
$$

Then, f possesses a fixed point.

3. Application

In this section, we give an application of our result to integral inclusion. Let $[a, b] \subset$ $(-\infty, \infty)$ be a closed interval, and let $C([a, b],(-\infty, \infty))$ be the family of continuous mapping from $[a, b]$ into $(-\infty, \infty)$. Let $E=C([a, b],(-\infty, \infty))$ and $\rho(x, y)=\sup _{t \in[a, b]}|x(t)-y(t)|$ for all $x, y \in E$. Then, (E, ρ) is a complete metric space.

Consider the Fredholm type integral inclusion:

$$
\begin{equation*}
x(t) \in \int_{a}^{b} K(t, s, x(s)) d s+f(t), t \in[a, b] \tag{37}
\end{equation*}
$$

where $f \in E, K:[a, b] \times[a, b] \times(-\infty, \infty) \rightarrow C B((-\infty, \infty))$, and $x \in E$ is the unknown function.

Suppose that the following conditions are satisfied:
(1st) For each $x \in E, K(\cdot, \cdot, x(s))=K_{x}(\cdot, \cdot)$ is continuous;
(2nd) There exists a continuous function $Z:[a, b] \times[a, b] \rightarrow[0, \infty)$ such that for all $t, s \in[a, b]$ and all $u, v \in E$,

$$
\left|k_{u}(t, s)-k_{v}(t, s)\right| \leq Z(t, s) \rho(u(s), v(s))
$$

where $k_{u}(t, s) \in K_{u}(t, s), k_{v}(t, s) \in K_{v}(t, s)$;
(3rd) There exists $\alpha>1$ such that

$$
\sup _{t \in[a, b]} \int_{a}^{b} Z(t, s) d s \leq \frac{1}{2+\alpha}
$$

We apply the following theorem, known as Michael's selection theorem, to the proof of Theorem 5.

Theorem 4 ([32]). Let X be a paracompact space, and let B be a Banach space. Suppose that $F: X \rightarrow B$ is a lower semicontinuous set-valued map such that for all $x \in X, F(x)$ is a nonempty closed and convex subset of B. Then $F: X \rightarrow B$ admits a continuous single valued selection.

Note that $(-\infty, \infty)$ with absolute value norm is a Banach space and closed intervals and singleton of real numbers are a convex subset of $(-\infty, \infty)$.

Theorem 5. Let (E, ρ) be a complete metric space. If conditions (1st), ($2 n d$) and ($3 r d$) are satisfied, then the integral inclusion (37) has a solution.

Proof. Define a set-valued map $T: E \rightarrow C B(E)$ by

$$
T x=\left\{y \in E: y(t) \in \int_{a}^{b} K(t, s, x(s)) d s+f(t), t \in[a, b]\right\}
$$

Let $x \in E$ be given. For the set-valued map $K_{x}(t, s):[a, b] \times[a, b] \rightarrow C B((-\infty, \infty))$, by applying Michael's selection theorem, there exists a continuous map $k_{x}(t, s):[a, b] \times$ $[a, b] \rightarrow(-\infty, \infty)$ such that

$$
k_{x}(t, s) \in K_{x}(t, s), \forall t, s \in[a, b] .
$$

Thus,

$$
\int_{a}^{b} k_{x}(t, s) d s+f(t) \in T x
$$

and so $T x \neq \varnothing$.
Since f and k_{x} are continuous, $T x \in C B(E)$ for each $x \in E$.
Let $y_{1} \in T x_{1}$. Then,

$$
y_{1}(t) \in \int_{a}^{b} K\left(t, s, x_{1}(s)\right) d s+f(t), t \in[a, b] .
$$

Hence, there exists $k_{x_{1}}(t, s) \in K_{x_{1}}(t, s), \forall t, s \in[a, b]$ such that

$$
y_{1}(t)=\int_{a}^{b} k_{x_{1}}(t, s) d s+f(t), \forall t, s \in[a, b] .
$$

It follows from (2nd) that there exists $z(t, s) \in K_{x_{2}}(t, s)$ such that

$$
\left|k_{x_{1}}(t, s)-z(t, s)\right| \leq Z(t, s) \rho\left(x_{1}(s), x_{2}(s)\right), \forall t, s \in[a, b] .
$$

Let $U:[a, b] \times[a, b] \rightarrow C B((-\infty, \infty))$ be defined by

$$
U(t, s)=K_{x_{2}}(t, s) \cap\left\{u \in(-\infty, \infty): \rho\left(k_{x_{1}}(t, s), u\right) \leq \rho\left(x_{1}(s), x_{2}(s)\right)\right\} .
$$

From (1st) U is continuous. Hence, it follows that there exists a continuous map $k_{x_{2}}:[a, b] \times[a, b] \rightarrow(-\infty, \infty)$ such that

$$
k_{x_{2}}(t, s) \in U(t, s), \forall t, s \in[a, b] .
$$

Let

$$
y_{2}(t)=\int_{a}^{b} k_{x_{2}}(t, s) d s+f(t), \forall t, s \in[a, b] .
$$

Then,

$$
y_{2}(t) \in \int_{a}^{b} K_{x_{2}}(t, s) d s+f(t)=\int_{a}^{b} K\left(t, s, x_{2}(s)\right) d s+f(t), \forall t, s \in[a, b]
$$

and so $y_{2} \in T x_{2}$.
Thus, we obtain that

$$
\begin{aligned}
& \rho\left(y_{1}, y_{2}\right)=\left|\int_{a}^{b} k_{x_{1}}(t, s)-k_{x_{2}}(t, s) d s\right| \\
\leq & \sup _{t \in[a, b]} \int_{a}^{b}\left|k_{x_{1}}(t, s)-k_{x_{2}}(t, s)\right| d s \\
\leq & \sup _{t \in[a, b]} \int_{a}^{b} Z(t, s) d s \rho\left(x_{1}(s), x_{2}(s)\right) \\
\leq & \frac{1}{2+\alpha} \rho\left(x_{1}(s), x_{2}(s)\right) .
\end{aligned}
$$

Thus, we have that

$$
\left(1+\frac{1}{2} \alpha\right) \delta\left(T x_{1}, T x_{2}\right) \leq \frac{1}{2} \rho\left(x_{1}, x_{2}\right)
$$

which implies

$$
\left(1+\frac{1}{2} \alpha\right) H\left(T x_{1}, T x_{2}\right) \leq \frac{1}{2} \rho\left(x_{1}, x_{2}\right)
$$

Hence, we obtain that

$$
\begin{aligned}
& \left.H\left(T x_{1}, T x_{2}\right)\right) \leq \phi\left(\rho\left(x_{1}, x_{2}\right)\right)-\phi\left(\alpha H\left(T x_{1}, T x_{2}\right)\right) \\
< & \phi\left(\rho\left(x_{1}, x_{2}\right)\right)-\phi\left(H\left(T x_{1}, T x_{2}\right)\right) \text { where } \phi(t)=\frac{1}{2} t, \forall t \geq 0
\end{aligned}
$$

By Corollary 7, T possesses a fixed point, and hence the integral inclusion (37) has a solution.

4. Conclusions

Our results are generalizations and extensions of F-contractions and Işik contractions to set-valued maps on metric spaces. We give a positive answer to Question 4.3 of [25] and an application to integral inclusion.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.
Acknowledgments: The author express his gratitude to the referees for careful reading and giving variable comments.

Conflicts of Interest: The author declares that he has no competing interest.

References

1. Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spacs. Fixed Point Theory Appl. 2012, 2012, 94. [CrossRef]
2. Ahmad, J.; Al-Rawashdeh, A.; Azam, A. Some new fixed point theorems for generalized F-contractions in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 80. [CrossRef]
3. Alfaqih,W.M.; Imdad, M.; Gubran, R. An observation on F-weak contractions and discontinuity at the fixed point with an applications. J. Fixed Point Theory Appl. 2020, 22, 66. [CrossRef]
4. Arshad, M.; Khan, S.; Ahmad, J. Fixed point results for F-contractions involving some new rational expressions. JP J. Fixed Point Theory Appl. 2016, 11, 79-97. [CrossRef]
5. Bedre, S.V. Remarks on F-weak contractions and discontinuity at the fixed point. Adv. Theory Nonlinear Anal. Appl. 2020, 4, 260-265. [CrossRef]
6. Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy Rogers-Type. Filomat 2014, 28, 715-722. [CrossRef]
7. Dung, N.V.; Hang, V.L. A fixed point theorem for generalized F-contractions on complete metric spaces. Vietnam J. Math. 2015, 43, 743-753. [CrossRef]
8. Huang, H.; Mitrović, Z.D.; Zoto, K.; Radenović, S. On convex F-contraction in b-metric spaces. Axioms 2021, 10, 71. [CrossRef]
9. Hussain, A. Ćirić type $\alpha-\psi F$-contraction involving fixed point on a closed ball. Honam Math. J. 2019, 41, 19-34.
10. Hussain, A.; Arshad, M. New type of multivalued F-Contraction involving fixed Point on Closed Ball. J. Math. Comp. Sci. 2017, 10, 246-254. [CrossRef]
11. Hussain, N.; Salimi, P. Suzuki-wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 2014, 18, 1879-1895. [CrossRef]
12. Konwar, N.; Debnath, P. Fixed point results for a family of Interpolative F-contractions in b-metric spaces. Axioms 2022, 11, 621. [CrossRef]
13. Minak, G.; Halvaci, A.; Altun, I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results. Filomat 2014, 28, 1143-1151. [CrossRef]
14. Piri, H.; Kumam, P. Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces. Fixed Point Theory Appl. 2016, 2016, 90. [CrossRef]
15. Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [CrossRef]
16. Stephen, T.; Rohen, Y.; Singh, M.K.; Devi, K.S. Some rational F-contractions in b-metric spaces and fixed points. Nonlinear Funct. Anal. Appl. 2022, 27, 309-322.
17. Wardowski, D.; Dung, N.V. Fixed points f-weak contractions on complete metric spaces. Demonstr. Math. 2014, 1, 146-155 [CrossRef]
18. Younis, M.; Mirkov, N.; Savić, A.; Pantović, M.; Radenović, S. Some critical remarks on recent results concerning F-contractions in b-metric spaces. Cubo 2023, 25,57-66. [CrossRef]
19. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [CrossRef]
20. Nazam, M.; Arshad, M.; Postolache, M. Coincidence and common fixed point theorems for four mappings satisfying $\left(\alpha_{s}, F\right)$ contraction. Nonlinear Anal. Model. Control 2018, 23, 664-690. [CrossRef]
21. Younis, M.; Singh, D.; Radenović, S.; Imdad, M. Convergence Theorems for generalized contractions and applications. Filomat 2020, 34, 945-964. [CrossRef]
22. Younis, M.; Singh, D. On the existence of the solution of Hammerstein integral equations and fractional differential equations. J. Appl. Math. Comp. 2022, 68, 1087-1105. [CrossRef]
23. Abbas, M.; Ali, B.; Rizzo, O.; Vetro, C. Fuzzy fixed points of generalized F_{2}-Geraghty type fuzzy mappings and complementary results. Nonlinear Anal. Model. Control 2016, 21, 274-292. [CrossRef]
24. Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, 2013, 243. [CrossRef]
25. Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Čavić, V.Š.; Radenović, S. On F-contractions: A Survey. Contemp. Math. 2022, 3, 327-342. [CrossRef]
26. Berinde, V.; Păcurar, M. The role of the Pompeiu-Hausdorff metric in fixed point theory. Creat. Math. Inform. 2013, 22, 142-150. [CrossRef]
27. Rudin, W. Principles of Mathematical Analysis; McGraw-Hill Book Company: New York, NY, USA; San Francisco, CA, USA; Toronto, ON, Canada; London, UK, 1964.
28. Cho, S.H.; Bae, J.S. Fixed points of weak α-contraction type maps. Fixed Point Theory Appl. 2014, 2014, 175. [CrossRef]
29. Bogin, J. A generalization of a fixed point theorem of Goebel, Kirk and Shimi. Canad. Math. Bull. 1976, 19, 7-12. [CrossRef]
30. Nadler, C.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475-488. [CrossRef]
31. Işik, H.; Mohammadi, B.; Haddadi, M.R.; Parvaneh, V. On a new generalization of Banach contraction principle with application. Mathematics 2019, 7, 862. [CrossRef]
32. Michael, E.A. Continuous selections, I. Ann. Math. 1956, 63, 361-382. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

