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1. Introduction and Preliminaries

Wardowski [1] introduced the notion of F-contraction mappings and the generalized
Banach contraction principle by proving that every F-contractions on complete metric
spaces have only one fixed point, where F: (0, ∞) → (−∞, ∞) is a function such that

(F1) F is strictly increasing;
(F2) for all sequence {sn} ⊂ (0, ∞),

lim
n→∞

sn = 0 ⇐⇒ lim
n→∞

F(sn) = −∞;

(F3) there exists a point q ∈ (0, 1) : limt→0+ tqF(t) = 0.

Among several results ([2–18]) generalizing Wardowski’s result, Piri and Kumam [19]
introduced the concept of Suzuki-type F-contractions and obtained related fixed point
results in complete metric spaces, where F : (0, ∞) → (−∞, ∞) is a strictly increasing
function such that

(F4) inf F = −∞;
(F5) F is continuous on (0, ∞).

Nazam [20] generalized Wardowski’s result to four maps defined on b-metric spaces
and proved the existence of a common fixed point by using conditions (F2), (F3) and

(F6) τ + F(rsn) ≤ F(sn) =⇒ τ + F(rnsn) ≤ F
(
rn−1sn−1

)
for each r > 0, n ∈ N, where

τ > 0.

Younis et al. [18] generalized Nazam’s result in b-metric spaces using only condition
(F1). That is, they only used the strictly growth of F : (0, ∞) → (−∞, ∞) and distinguished
two cases: s = 1 and s > 1, where s is the coefficient of b-metric spaces. Younis et al. [21]
introduced the notion of Suzuki–Geraghty-type generalized (F, ψ)-contractions and gen-
eralized the result of [14] in partial b-metric spaces along with Geraghty-type contraction
with conditions (F1), (F4) and (F5), and they gave applications to graph the theory and
solution of some integral equations. Younis and Singh [22] extended Wardowski’s result to
b-metric-like spaces and obtained the sufficient conditions for the existence of solutions of
some class of Hammerstein integral equations and fractional differential equations.
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On the other hand, Abbas et al. [23] and Abbas et al. [24] extended and general-
ized Wadorski’s result to two self mappings on partially ordered metric space and fuzzy
mappings on metric spaces, respectively, and proved the existence of a fixed point using
conditions (F1), (F2) and (F3).

Note that for a function F : (0, ∞) → (−∞, ∞), the following are equivalent:

(1) (F2) is satisfied;
(2) (F4) is satisfied;
(3) limt→0+ F(t) = −∞.

Hence, we have that

lim
n→∞

sn = 0 ⇒ lim
n→∞

F(sn) = −∞

whenever (F4) holds.

Very recently, Fabiano et al. [25] gave a generalization of Wardowski’s result [1] by
reducing the condition on function F : (0, ∞) → (−∞, ∞) and by using the right limit of
function F : (0, ∞) → (−∞, ∞). They proved the following Theorem 1.

Theorem 1 ([25]). Let (E, ρ) be a complete metric space. Suppose that T : E → E is a map such
that for all x, y ∈ E with ρ(Tx, Ty) > 0,

τ + F(ρ(Tx, Ty)) ≤ F(ρ(x, y))

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses only
one fixed point.

In [25], Fabiano et al. asked the following question:

Question ([25]). Can conditions for the function F be reduced to (F1) and (F2), and can the
proof be made simpler in some results for multivalued mappings in the same way as it was
presented in [25] for single-valued mappings?

In this paper, we give a positive answer to the above question by extending the
above theorem to set-valued maps and obtain a fixed point result for Işik-type set-valued
contractions. We give examples to interpret main results and an application to integral
inclusion.

Let (E, ρ) be a metric space. We denote by CL(E) the family of all nonempty closed
subsets of E, and by CB(E) the set of all nonempty closed and bounded subsets of E.

Let H(·, ·) be the generalized Pompeiu–Hausdorff distance [26] on CL(E), i.e., for all
A, B ∈ CL(E),

H(A, B) =

{
max{supa∈A ρ(a, B), supb∈B ρ(b, A)}, if the maximum exists,
∞, otherwise,

where ρ(a, B) = inf{ρ(a, b) : b ∈ B} is the distance from the point a to the subset B.
Let δ(A, B) = sup{ρ(a, b) : a ∈ A, b ∈ B}. When A = {x}, we denote δ(A, B)

by δ(x, B).

For A, B ∈ CL(E), let D(A, B) = supx∈A d(x, B) = supx∈A infy∈B d(x, y).
Then, we have that for all A, B ∈ CL(E)

D(A, B) ≤ H(A, B) ≤ δ(A, B).
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Note that the following Lemma 1 can be obtained by applying the assumptions of
Lemma 1 to Theorem 4.29 of [27]. In fact, let F : (0, ∞) → (−∞, ∞) be monotonically
increasing (x < y implies F(x) ≤ F(y)) and {pn} be a given sequence of (0, ∞) such that

lim
n→∞

pn = l, where l > 0.

Then, it follows from Theorem 4.28 of [27] that we obtain the conclusion of Lemma 1.
Here, we give another proof of Lemma 1.

Lemma 1. Let l > 0, and let {tn}, {sn} ⊂ (l, ∞) be non-increasing sequences such that

tn < sn, ∀n = 1, 2, 3, · · · and lim
n→∞

tn = lim
n→∞

sn = l.

If F : (0, ∞) → (−∞, ∞) is strictly increasing, then we have

lim
n→∞

F(tn) = lim
n→∞

F(sn) = F
(
l+

)
≥ F(l).

where F(l+) denotes limt→l+ F(t).

Proof. As F is strictly increasing, the function F∗ : (0, ∞) → F((0, ∞)) defined by
F∗(t) = F(t) ∀t ∈ (0, ∞), is bijective and continuous on (0, ∞). We infer that

lim
t→l+

F∗(t) ≥ F∗(l), lim
n→∞

F∗(tn) = lim
t→l+

F∗(t) and lim
n→∞

F∗(sn) = lim
t→l+

F∗(t).

Since {tn} and {sn} are non-increasing, it follows from the strict increasingness of
F that

F∗(tn+1) ≤ F∗(tn) < F∗(sn) ≤ F∗(sn−1).

Hence, we obtain that

lim
t→l+

F∗(t) = lim
n→∞

F∗(tn+1) ≤ lim
n→∞

F∗(tn) ≤ lim
n→∞

F∗(sn) ≤ lim
n→∞

F∗(sn−1) ≤ lim
t→l+

F∗(t),

which implies
lim

n→∞
F∗(tn) = lim

n→∞
F∗(sn) = F∗

(
l+

)
.

Since F∗(t) = F(t) ∀t ∈ (0, ∞), we have the desired result.

Lemma 2 ([28]). Let (E, ρ) be a metric space. If {xn} is not a Cauchy sequence, then there exists
ϵ > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that m(k) is the
smallest index for which

m(k) > n(k) > k, ρ(xm(k), xn(k)) ≥ ϵ and ρ(xm(k)−1, xn(k)) < ϵ. (1)

Further, if
lim

n→∞
ρ(xn, xn+1) = 0,

then we have that

lim
k→∞

ρ(xn(k), xm(k)) = lim
k→∞

ρ(xn(k)+1, xm(k))

= lim
k→∞

ρ(xn(k), xm(k)+1) = lim
k→∞

ρ(xn(k)+1, xm(k)+1) = ϵ.
(2)

Lemma 3. Let (E, ρ) be a metric space, and let A, B ∈ CL(E). If a ∈ A and ρ(a, B) < c, then
there exists b ∈ B such that ρ(a, b) < c.

Proof. Let ϵ = c − ρ(a, B). It follows from the definition of infimum that there exists b ∈ B
such that ρ(a, b) < ρ(a, B) + ϵ. Hence, ρ(a, b) < c.
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Lemma 4. Let (E, ρ) be a metric space, and let A, B ∈ CL(E) and ϕ : [0, ∞) → [0, ∞) be a
strictly increasing function. If a ∈ A and ρ(a, B) + ϕ(ρ(a, B)) < c, then there exists b ∈ B such
that ρ(a, b) + ϕ(ρ(a, b)) < c.

Proof. Since ϕ is strictly increasing,

ρ(a, B) < ϕ−1(c − ρ(a, B)).

By Lemma 3, there exists b′ ∈ B such that

ρ(a, b′) < ϕ−1(c − ρ(a, B))

which yields
ρ(a, B) < c − ϕ

(
ρ(a, b′)

)
.

Again, by applying Lemma 3, there exists b′′ ∈ B such that

ρ(a, b′′) < c − ϕ
(
ρ(a, b′)

)
.

Let min{ρ(a, b′), ρ(a, b′′)} = ρ(a, b). Then, we have that

ρ(a, b) + ϕ(ρ(a, b)) < c.

Lemma 5. If (E, ρ) is a metric space, then K(E) ⊂ CL(E), where K(E) is the family of nonempty
compact subsets of E.

2. Fixed Point Results

Let (E, ρ) be a metric space, and let F : (0, ∞) → (−∞, ∞) be a strictly increasing
function. A set-valued map T : E → CL(E) is called a Wardowski-type contraction if the
following condition holds:

There exists a constant τ > 0 such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(m(x, y)), (3)

where m(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 1
2 [ρ(x, Ty) + ρ(y, Tx)]}.

We now prove our main result.

Theorem 2. Let (E, ρ) be a complete metric space. If T : E → CL(E) is a Wardowski-type
set-valued contraction, then T possesses a fixed point.

Proof. Let x0 ∈ E be a point, and let x1 ∈ Tx0.
If x1 ∈ Tx1, then the proof is completed.
Assume that x1 /∈ Tx1. Then, ρ(x1, Tx1) > 0, because Tx1 ∈ CL(X). Hence,

H(Tx0, Tx1) ≥ d(x1, Tx1) > 0. From (3) we have that

τ + F(H(Tx0, Tx1)) ≤ F(m(x0, x1)). (4)

We infer that

m(x0, x1) = max{ρ(x0, x1), ρ(x0, Tx0), ρ(x1, Tx1),
1
2
[ρ(x0, Tx1) + ρ(x1, Tx0)]}

=max{ρ(x0, x1), ρ(x1, Tx1)}, because that ρ(x0, Tx0) ≤ ρ(x0, x1) and
1
2
[ρ(x0, Tx1) + ρ(x1, Tx0)] ≤

1
2
[ρ(x0, x1) + ρ(x1, Tx1)].
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If m(x0, x1) = ρ(x1, Tx1), then from (4) we obtain that

F(ρ(x1, Tx1)) < τ + F(H(Tx0, Tx1)) ≤ F(ρ(x1, Tx1)),

which is a contradiction. Thus, m(x0, x1) = ρ(x0, x1). It follows from (4) that

1
2

τ + F(ρ(x1, Tx1)) < τ + F(H(Tx0, Tx1)) ≤ F(ρ(x0, x1)). (5)

Since (F1) is satisfied, we obtain that

ρ(x1, Tx1) < F−1(
1
2

τ + F(H(Tx0, Tx1))).

Applying Lemma 3, there exists x2 ∈ Tx1 such that

ρ(x1, x2) < F−1(
1
2

τ + F(H(Tx0, Tx1))),

which implies

F(ρ(x1, x2)) <
1
2

τ + F(H(Tx0, Tx1)) ≤ F(ρ(x0, x1))−
1
2

τ. (6)

Again from (3) we have that

1
2

τ + F(ρ(x2, Tx2)) < τ + F(H(Tx1, Tx2)) ≤ F(ρ(x1, x2)) (7)

which implies

ρ(x2, Tx2) < F−1(
1
2

τ + F(H(Tx1, Tx2))).

By Lemma 3, there exists x3 ∈ Tx2 such that

ρ(x2, x3) < F−1(
1
2

τ + F(H(Tx1, Tx2))).

Hence, we obtain that

F(ρ(x2, x3)) <
1
2

τ + F(H(Tx1, Tx2)) ≤ F(ρ(x1, x2))−
1
2

τ. (8)

Inductively, we have that for all n ∈ N,

xn ∈ Txn−1

and
F(ρ(xn, xn+1)) <

1
2

τ + F(H(Txn−1, xn)) ≤ F(ρ(xn−1, xn))−
1
2

τ. (9)

Because F is a strictly increasing function,

ρ(xn, xn+1) < ρ(xn−1, xn), ∀n ∈ N.

Hence, there exists r ≥ 0 such that

lim
n→∞

ρ(xn, xn+1) = r.

Assume that r > 0. By Lemma 1, we have that

lim
n→∞

F(ρ(xn, xn+1)) = lim
n→∞

F(ρ(xn−1, xn)) = lim
t→r+

F(t) = F(r+) ≥ F(r). (10)
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Taking limit n → ∞ in (9) and using (10), we obtain that

F(r+) ≤ F(r+)− 1
2

τ,

which is a contradiction, because τ > 0. Thus, we obtain that

lim
n→∞

ρ(xn, xn+1) = 0. (11)

Now, we show that {xn} is a Cauchy sequence. Assume that {xn} is not a Cauchy
sequence. Then, there exists ϵ > 0 for which we can find subsequences {xm(k)} and {xn(k)}
of {xn} such that m(k) is the smallest index for which (1) holds. That is, the following
are satisfied:

m(k) > n(k) > k, ρ(xm(k), xn(k)) ≥ ϵ and ρ(xm(k)−1, xn(k)) < ϵ.

It follows from (3) that

F(ρ(xn(k)+1, Txm(k)) < τ + F(ρ(xn(k)+1, Txm(k))

≤ τ + F(H(Txn(k), Txm(k)) ≤ F(m(xn(k), xm(k))).
(12)

We infer that

ϵ ≤ ρ(xn(k), xm(k)) ≤ m(xn(k), xm(k))

=max{ρ(xn(k), xm(k)), ρ(xn(k), Txn(k)), ρ(xm(k), Txm(k)),

1
2
[ρ(xn(k), Txm(k)) + ρ(xm(k), Txn(k))]}

≤max{ρ(xn(k), xm(k)), ρ(xn(k), xn(k)+1), ρ(xm(k), xm(k)+1),

1
2
[ρ(xn(k), xm(k)+1) + ρ(xm(k), xn(k)+1)]}

(13)

Taking limit as k → ∞ on both sides of (13) and using (2), we obtain that

lim
k→∞

m(xn(k), xm(k)) = ϵ. (14)

Since F is strictly increasing, from (12) we have that

ρ(xn(k)+1, Txm(k)) < F−1(τ + F(ρ(xn(k)+1, Txm(k))).

By applying Lemma 3, there exists ym(k) ∈ Txm(k) such that

ρ(xn(k)+1, ym(k)) < F−1(τ + F(ρ(xn(k)+1, Txm(k))).

Hence,
F(ρ(xn(k)+1, ym(k))) < τ + F(ρ(xn(k)+1, Txm(k)).

Thus, it follows from (12) that

F(ρ(xn(k)+1, ym(k)))

<τ + F(ρ(xn(k)+1, ym(k))) < τ + F(ρ(xn(k)+1, Txm(k))

≤τ + F(H(Txn(k), Txm(k))

≤F(m(xn(k), xm(k)))

(15)

which leads to
ρ(xn(k)+1, ym(k)) < m(xn(k), xm(k)), ∀k = 1, 2, 3, · · · . (16)
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By taking lim sup as k → ∞ in (16) and using (14), we have that

lim
k→∞

sup ρ(xn(k)+1, ym(k)) ≤ ϵ. (17)

Since
ρ(xn(k)+1, Txm(k)) ≤ ρ(xn(k)+1, ym(k)),

ρ(xn(k)+1, xm(k))

≤ρ(xn(k)+1, Txm(k)) + ρ(Txm(k), xm(k))

≤ρ(xn(k)+1, ym(k)) + ρ(xm(k)+1, xm(k)).

(18)

Taking lim inf as k → ∞ in (18) and using (2), we obtain that

ϵ ≤ lim
k→∞

inf ρ(xn(k)+1, ym(k)). (19)

It follows from (17) and (19) that

lim
k→∞

ρ(xn(k)+1, ym(k)) = ϵ. (20)

By applying Lemma 1 to (15) with (14), (16) and (20), we obtain that

F(ϵ+) ≤ τ + F(ϵ+) ≤ F(ϵ+)

which leads to a contradiction. Hence, {xn} is a Cauchy sequence. From the completeness
of E, there exists

x∗ = lim
n→∞

xn ∈ E.

It follows from (3) that

F(ρ(xn+1, Tx∗)) < τ + F(ρ(xn+1, Tx∗))

≤τ + F(H(Txn, Tx∗)) ≤ F(m(xn, x∗)),
(21)

where m(xn, x∗) = max{ρ(xn, x∗), ρ(xn, xn+1), ρ(x∗, Tx∗), 1
2 [ρ(x∗, xn+1) + ρ(xn, Tx∗)]}.

Since F is strictly increasing, from (21) we have that

ρ(xn+1, Tx∗) < m(xn, x∗), (22)

and thus
lim

n→∞
ρ(xn+1, Tx∗) = lim

n→∞
m(xn, x∗) = ρ(x∗, Tx∗). (23)

Assume that ρ(x∗, Tx∗) > 0. By Lemma 1, we have that

lim
n→∞

F(ρ(xn+1, Tx∗)) = lim
n→∞

F(m(xn, x∗))

= lim
t→ρ(x∗ ,Tx∗)+

F(t) = F(ρ(x∗, Tx∗)+).
(24)

Applying (24) to (21), we obtain that

F(ρ(x∗, Tx∗)+) ≤ τ + F(ρ(x∗, Tx∗)+) ≤ F(ρ(x∗, Tx∗)+)

which leads to a contradiction. Hence, ρ(x∗, Tx∗) = 0, and x∗ ∈ Tx∗.

The following example interprets Theorem 2.
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Example 1. Let E = [0, 1] and ρ(x, y) = |x − y|, ∀x, y ∈ E. Then (E, ρ) is a complete metric
space. Define a set-valued map T : E → CL(E) by

Tx =

{
{1}, (x = 0)
{ 2

5 , 1
2}, (0 < x ≤ 1).

Let τ = ln 2.1
2 and F(t) = ln t, ∀t > 0. We show that T is a Wardowski-type set-valued

contraction. We now consider the following two cases.
First, let x = 0 and 0 < y ≤ 1.
Then, H(Tx.Ty) = 3

5 . We obtain that

τ + F(H(Tx, Ty))− F(ρ(x, Tx))

=τ + F
(

3
5

)
− F(1)

= ln
2.1
2

+ ln
3
5
− ln 1

= ln 6.3 − ln 10 ≈ −0.46 < 0.

Thus,
τ + F(H(Tx, Ty)) < F(ρ(x, Tx)),

which implies
τ + F(H(Tx, Ty)) < F(m(x, y)).

Second, let 0 ≤ x < 1 and y = 1.
Then H(Tx, Ty) = 4

5 . We infer that

τ + F(H(Tx, Ty))− F(ρ(y, Ty))

=τ + F
(

4
5

)
− F(1)

= ln
2.1
2

+ ln
4
5
− ln 1

= ln 8.4 − ln 10 ≈ −0.17 < 0.

Thus,
τ + F(H(Tx, Ty)) < F(ρ(y, Ty))

which leads to
τ + F(H(Tx, Ty)) < F(m(x, y)).

Hence, T is a Wardowski-type set-valued contraction. The assumptions of Theorem 2 are
satisfied. By Theorem 2, T possesses two fixed points, 2

5 and 1
2 .

Remark 1. Theorem 2 is a positive answer to Question 4.3 of [25].

Remark 2. Theorem 2 is an extention of Theorem 2.2 [13] to set-valued maps without conditions
(F2) and (F3).

By Theorem 2, we have the following results.

Corollary 1. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(l(x, y)) (25)
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where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and

l(x, y) =max{ρ(x, y),
1
2
[ρ(x, Tx) + ρ(y, Ty)],

1
2
[ρ(x, Ty) + ρ(y, Tx)]}.

If (F1) is satisfied, then T possesses a fixed point.

Proof. Since l(x, y) ≤ m(x, y), F(l(x, y)) ≤ F(m(x, y)). Thus, (25) implies (2). By Theorem 2,
T possesses a fixed point.

Corollary 2. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(ρ(x, y)) (26)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since ρ(x, y) ≤ m(x, y) and (F1) holds, (26) implies (2). By Theorem 2, T possesses a
fixed point.

Corollary 3. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty) + e[ρ(x, Ty) + ρ(y, Tx)])
(27)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and a, b, c, e ≥ 0 and a + b + c + 2e = 1.
If (F1) is satisfied, then T possesses a fixed point.

Proof. It follows from (27) that

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty) + e[ρ(x, Ty) + ρ(y, Tx)])

=F(aρ(x, y) + bρ(x, Tx) + cρ(y, Ty)] + 2e
1
2
[ρ(x, Ty) + ρ(y, Tx)])

≤F((a + b + c + 2e)max{ρ(x, y), ρ(x, Tx), ρ(y, Ty),
1
2
[ρ(x, Ty) + ρ(y, Tx)]})

=F(m(x, y)).

By Theorem 2, T possesses a fixed point.

Corollary 4. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + b[ρ(x, Tx) + ρ(y, Ty)] + c[ρ(x, Ty) + ρ(y, Tx)])
(28)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function, and a, b, c ≥ 0 and a + 2b + 2c = 1. If
(F1) is satisfied, then T possesses a fixed point.
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Proof. It follows from (28) that

τ + F(H(Tx, Ty))

≤F(aρ(x, y) + b[ρ(x, Tx) + ρ(y, Ty)] + c[ρ(x, Ty) + ρ(y, Tx)])

=F(aρ(x, y) + 2b
1
2
[ρ(x, Tx) + ρ(y, Ty)] + 2c

1
2
[ρ(x, Ty) + ρ(y, Tx)])

≤F((a + 2b + 2c)max{ρ(x, y),
1
2
[ρ(x, Tx) + ρ(y, Ty)],

1
2
[ρ(x, Ty) + ρ(y, Tx)]})

=F(l(x, y)).

By Corollary 1, T possesses a fixed point.

Corollary 5. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(
1
2
[ρ(x, Tx) + ρ(y, Ty)]) (29)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since 1
2 [ρ(x, Tx) + ρ(y, Ty)] ≤ l(x, y) and (F1) holds, (29) implies (25). By Corollary 1,

T possesses a fixed point.

Corollary 6. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for all x, y ∈ E with H(Tx, Ty) > 0,

τ + F(H(Tx, Ty)) ≤ F(
1
2
[ρ(x, Ty) + ρ(y, Tx)]) (30)

where τ > 0 and F : (0, ∞) → (−∞, ∞) is a function. If (F1) is satisfied, then T possesses a
fixed point.

Proof. Since 1
2 [ρ(x, Ty) + ρ(y, Tx)] ≤ l(x, y) and (F1) holds, implies (25). By Corollary 1, T

possesses a fixed point.

Remark 3. Corollary 4 is a generalization of the main theorem of [29]. Indeed, if F(t) = ln t, ∀t > 0
and we take T to be the self-mapping of E, then Corollary 4 becomes the main theorem of [29].

Nadler [30] extended Banach’s fixed point theorem to set-valued maps. We are call-
ing it Nadler’s fixed point theorem. We now prove the following theorem, which is a
generalization of Nadler’s fixed point theorem.

Theorem 3. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is an Işik-type
set-valued contraction, i.e., for each x, y ∈ E and each u ∈ Tx, there exists v ∈ Ty such that

ρ(u, v) ≤ ϕ(ρ(x, y))− ϕ(ρ(u, v)) (31)

where ϕ : [0, ∞) → [0, ∞) is a function such that

lim
t→0+

ϕ(t) = 0. (32)

Then, T possesses a fixed point.

Proof. Let x0 ∈ E, and let x1 ∈ Tx0. Then there exits x2 ∈ Tx1 such that

ρ(x1, x2) ≤ ϕ(ρ(x0, x1))− ϕ(ρ(x1, x2)).
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Again, there exists x3 ∈ Tx2 such that

ρ(x2, x3) ≤ ϕ(ρ(x1, x2))− ϕ(ρ(x2, x3)).

Inductively, we have a sequence {xn} ⊂ E such that for all n = 1, 2, 3, · · · ,

xn ∈ Txn−1 and ρ(xn, xn+1) ≤ ϕ(ρ(xn−1, xn))− ϕ(ρ(xn, xn+1)). (33)

It follows from (33) that {ϕ(ρ(xn−1, xn))} is a non-increasing sequence and bounded
below by 0. Hence, there exists r ≥ 0 such that

lim
n→∞

ϕ(ρ(xn−1, xn)) = r.

We show that {xn} is a Cauchy sequence.
Let m, n be any positive integers such that m > n. Then we have that

ρ(xn, xm)

≤ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · ·+ ρ(xm−1, xm)

≤ϕ(ρ(xn−1, xn))− ϕ(ρ(xm−1, xm))

≤ϕ(ρ(xn−1, xn))− r.

(34)

Letting m, n → ∞ in (34), we obtain that

lim
n,m→∞

ρ(xn, xm) = 0.

Thus, {xn} is a Cauchy sequence. It follows from the completeness of E that

x∗ = lim
n→∞

xn exists. (35)

Now, we show that x∗ is a fixed point for T.
It follows from (31) that for xn ∈ Txn−1, there exists v ∈ Tx∗ such that

ρ(xn, v) ≤ ϕ(ρ(xn−1, x∗))− ϕ(ρ(xn, v)) ≤ ϕ(ρ(xn−1, x∗)). (36)

Taking limit n → ∞ in Equation (36) and using (32), we infer that

lim
n→∞

ρ(xn, v) = 0

which implies
x∗ = v ∈ Tx∗.

Example 2. Let E = {xn : xn = ∑n
k=1, n ∈ N} and ρ(x, y) = |x − y|, ∀x, y ∈ E. Then (E, ρ) is

a complete metric space.
Define a map T : E → CL(E) by

Tx =

{
{x1}, (x = x1)

{x1, x2, x3, · · · xn−1}, (x = xn).

Let ϕ(t) = 1
2 t, ∀t ≥ 0.

We show that condition (31) is satisfied.
Consider the following two cases.
First, let x = x1 and y = xn, n = 2, 3, 4, · · · .
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Then, for u = x1 ∈ Tx, there exists v = x1 ∈ Ty such that

ρ(u, v) = 0 <
1
2

ρ(x1, xn) = ϕ(ρ(x1, xn)) = ϕ(ρ(x1, xn))− ϕ(ρ(u, v)).

Second, let x = xn and y = xm, m > n, n = 2, 3, 4, · · · .
For u = xk ∈ Tx (k = 1, 2, 3, · · · , n − 1) , there exists v = xk ∈ Ty such that

ρ(u, v) = 0 <
1
2

ρ(xn, xm) = ϕ(ρ(xn, xm)) = ϕ(ρ(xn, xm))− ϕ(ρ(u, v)).

This show that T satisfies condition (31). Thus, all conditions of Theorem 3 hold. From
Theorem 3, T possesses a fixed point, x∗ = x1.

Corollary 7. Let (E, ρ) be a complete metric space. Suppose that T : E → CL(E) is a set-valued
map such that for each x, y ∈ E,

H(Tx, Ty) < ϕ(ρ(x, y))− ϕ(H(Tx, Ty)),

where ϕ : [0, ∞) → [0, ∞) is a strictly increasing function such that

lim
t→0+

ϕ(t) = 0.

Then, T possesses a fixed point.

Proof. Let x, y ∈ E and let u ∈ Tx. As ϕ is strictly increasing,

ρ(u, Ty) + ϕ(ρ(u, Ty)) < ϕ(ρ(x, y)).

Applying Lemma 4, there exists v ∈ Ty such that

ρ(u, v) + ϕ(ρ(u, v)) < ϕ(ρ(x, y)).

By Theorem 3, T possesses a fixed point.

From Theorem 3 we have the following result.

Corollary 8 ([31]). Let (E, ρ) be a complete metric space. Suppose that f : E → E is a map such
that for each x, y ∈ E,

ρ( f x, f y) ≤ ϕ(ρ(x, y))− ϕ(ρ( f x, f y))

where ϕ : [0, ∞) → [0, ∞) is a function such that

lim
t→0+

ϕ(t) = 0.

Then, f possesses a fixed point.

3. Application

In this section, we give an application of our result to integral inclusion. Let [a, b] ⊂
(−∞, ∞) be a closed interval, and let C([a, b], (−∞, ∞)) be the family of continuous mapping
from [a, b] into (−∞, ∞). Let E = C([a, b], (−∞, ∞)) and ρ(x, y) = supt∈[a,b] |x(t)− y(t)| for
all x, y ∈ E. Then, (E, ρ) is a complete metric space.

Consider the Fredholm type integral inclusion:

x(t) ∈
∫ b

a
K(t, s, x(s))ds + f (t), t ∈ [a, b] (37)
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where f ∈ E, K : [a, b] × [a, b] × (−∞, ∞) → CB((−∞, ∞)), and x ∈ E is the un-
known function.

Suppose that the following conditions are satisfied:

(1st) For each x ∈ E, K(·, ·, x(s)) = Kx(·, ·) is continuous;
(2nd) There exists a continuous function Z : [a, b] × [a, b] → [0, ∞) such that for all

t, s ∈ [a, b] and all u, v ∈ E,

|ku(t, s)− kv(t, s)| ≤ Z(t, s)ρ(u(s), v(s))

where ku(t, s) ∈ Ku(t, s), kv(t, s) ∈ Kv(t, s);
(3rd) There exists α > 1 such that

sup
t∈[a,b]

∫ b

a
Z(t, s)ds ≤ 1

2 + α
.

We apply the following theorem, known as Michael’s selection theorem, to the proof
of Theorem 5.

Theorem 4 ([32]). Let X be a paracompact space, and let B be a Banach space. Suppose that
F : X → B is a lower semicontinuous set-valued map such that for all x ∈ X, F(x) is a nonempty
closed and convex subset of B. Then F : X → B admits a continuous single valued selection.

Note that (−∞, ∞) with absolute value norm is a Banach space and closed intervals
and singleton of real numbers are a convex subset of (−∞, ∞).

Theorem 5. Let (E, ρ) be a complete metric space. If conditions (1st), (2nd) and (3rd) are satisfied,
then the integral inclusion (37) has a solution.

Proof. Define a set-valued map T : E → CB(E) by

Tx = {y ∈ E : y(t) ∈
∫ b

a
K(t, s, x(s))ds + f (t), t ∈ [a, b]}.

Let x ∈ E be given. For the set-valued map Kx(t, s) : [a, b]× [a, b] → CB((−∞, ∞)),
by applying Michael’s selection theorem, there exists a continuous map kx(t, s) : [a, b]×
[a, b] → (−∞, ∞) such that

kx(t, s) ∈ Kx(t, s), ∀t, s ∈ [a, b].

Thus, ∫ b

a
kx(t, s)ds + f (t) ∈ Tx,

and so Tx ̸= ∅.
Since f and kx are continuous, Tx ∈ CB(E) for each x ∈ E.
Let y1 ∈ Tx1. Then,

y1(t) ∈
∫ b

a
K(t, s, x1(s))ds + f (t), t ∈ [a, b].

Hence, there exists kx1(t, s) ∈ Kx1(t, s), ∀t, s ∈ [a, b] such that

y1(t) =
∫ b

a
kx1(t, s)ds + f (t), ∀t, s ∈ [a, b].
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It follows from (2nd) that there exists z(t, s) ∈ Kx2(t, s) such that

|kx1(t, s)− z(t, s)| ≤ Z(t, s)ρ(x1(s), x2(s)), ∀t, s ∈ [a, b].

Let U : [a, b]× [a, b] → CB((−∞, ∞)) be defined by

U(t, s) = Kx2(t, s) ∩ {u ∈ (−∞, ∞) : ρ(kx1(t, s), u) ≤ ρ(x1(s), x2(s))}.

From (1st) U is continuous. Hence, it follows that there exists a continuous map
kx2 : [a, b]× [a, b] → (−∞, ∞) such that

kx2(t, s) ∈ U(t, s), ∀t, s ∈ [a, b].

Let

y2(t) =
∫ b

a
kx2(t, s)ds + f (t), ∀t, s ∈ [a, b].

Then,

y2(t) ∈
∫ b

a
Kx2(t, s)ds + f (t) =

∫ b

a
K(t, s, x2(s))ds + f (t), ∀t, s ∈ [a, b],

and so y2 ∈ Tx2.
Thus, we obtain that

ρ(y1, y2) =

∣∣∣∣∫ b

a
kx1(t, s)− kx2(t, s)ds

∣∣∣∣
≤ sup

t∈[a,b]

∫ b

a
|kx1(t, s)− kx2(t, s)|ds

≤ sup
t∈[a,b]

∫ b

a
Z(t, s)dsρ(x1(s), x2(s))

≤ 1
2 + α

ρ(x1(s), x2(s)).

Thus, we have that

(1 +
1
2

α)δ(Tx1, Tx2) ≤
1
2

ρ(x1, x2)

which implies

(1 +
1
2

α)H(Tx1, Tx2) ≤
1
2

ρ(x1, x2).

Hence, we obtain that

H(Tx1, Tx2)) ≤ ϕ(ρ(x1, x2))− ϕ(αH(Tx1, Tx2))

<ϕ(ρ(x1, x2))− ϕ(H(Tx1, Tx2)) where ϕ(t) =
1
2

t, ∀t ≥ 0.

By Corollary 7, T possesses a fixed point, and hence the integral inclusion (37) has
a solution.

4. Conclusions

Our results are generalizations and extensions of F-contractions and Işik contractions
to set-valued maps on metric spaces. We give a positive answer to Question 4.3 of [25] and
an application to integral inclusion.
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18. Younis, M.; Mirkov, N.; Savić, A.; Pantović, M.; Radenović, S. Some critical remarks on recent results concerning F-contractions in

b-metric spaces. Cubo 2023, 25, 57–66. [CrossRef]
19. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014,

2014, 210. [CrossRef]
20. Nazam, M.; Arshad, M.; Postolache, M. Coincidence and common fixed point theorems for four mappings satisfying (αs, F)-

contraction. Nonlinear Anal. Model. Control 2018, 23, 664–690. [CrossRef]
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