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Abstract: In this paper, we provide the basic properties of (semi)simple hypermodules. We show
that if a hypermodule M is simple, then (End(M), ·) is a group, where End(M) is the set of all
normal endomorphisms of M. We prove that every simple hypermodule is normal projective with a
zero singular subhypermodule. We also show that the class of semisimple hypermodules is closed
under internal direct sums, factor hypermodules, and subhypermodules. In particular, we give a
characterization of internal direct sums of subhypermodules of a hypermodule.
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1. Introduction

Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of H. The
function ◦ : H × H −→ P∗(H) is called a hyperoperation on H. The image of the element
(a, b) ∈ H × H under this operation is not a single element, but a non-empty subset of the
set H. Thanks to this idea, the theory of hyperstructures was introduced by Marty in [1] as
a natural and interesting generalization of the theory of algebraic structures. Following [1],
Marty defines hypergroups using the hyperoperation on a set. Let H be a non-empty set
and a function + : H × H −→ P∗(H) be a hyperoperation on H. Then, (H, +) is called a
hypergroupoid. Moreover, for any non-empty subsets X and Y of H, define

X + Y =
⋃
{x + y | x ∈ X and y ∈ Y}.

We simply write a + X and X + a instead of {a}+ X and X + {a}, respectively, for
any a ∈ H and any non-empty subset X of H. A hypergroupoid (H,+) is called a

(1) Semihypergroup if for every a, b, c ∈ H, we have a + (b + c) = (a + b) + c;
(2) Quasihypergroup if for every x ∈ H, x + H = H = H + x.

If the hypergroupoid (H,+) is a semihypergroup and quasihypergroup, then it is
called a hypergroup. A non-empty subset S of a hypergroup (H,+) is called a subhypergroup
of H if for every a ∈ S, a + S = S = S + a.

Another generalization of algebraic structures was made by V. M. Buchstaber as
follows: Let H be a non-empty set and n ∈ Z+. By (H)n we denote the symmetric nth
power of the set H. An n-valued multiplication on H is a map

µ : H × H −→ (H)n,
µ(a, b) = [c1, c2, ..., cn], ck = (µ(a, b))k.

The map µ defines an n-valued group structure on H if it is associative, and has a unit and an
inverse [2]. The properties of this n-valued group structure and its applications to other
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branches of mathematics were studied in the same paper. Also, the algebraic 2-valued group
structure on Kummer varieties and its relationship with integrable billiard systems within
pencils of quadrics was studied in [3]. Studies on n-valued algebraic structures continue.
Now, let us show two generalizations of the group structure in the diagram below:

group

ww &&
n − valuedgroup hypergroup

When generalizations of the group structure are obtained, it is not difficult to think of
concepts of other algebraic structures according to this concept. Motivated by this, Krasner
introduced hyperfields, hyperrings, and hypermodules in his papers [4,5]. In the liter-
ature, hyperring structures (respectively, hyperfield) are known as Krasner hyperrings
(respectively, Krasner hyperfields). Krasner [5] solves a problem in the approximation of a
complete valued field by a sequence of such fields by using hyperfields. Recently, as more
general structures of Krasner hyperrings and Krasner hyperfields, these notions of general
hyperrings and general hypermodules have been introduced and studied by many authors
in a series of papers [6–9].

Let p ∈ P, where P is the set of all positive prime integers. Consider the group
Zp = {0, 1, ..., p − 1}. It is well known that Zp is cyclic and has only trivial subgroups. The
group Zp has a very special place in the category of Abelian groups and has applications in
all branches of mathematics. In particular, very important studies have been carried out on
groups that can be written as direct sums of Z′

ps. When module theory is considered as an
abstract generalization of Abelian groups, the definition of a simple module is given with
the help of the structure of the group Zp. A module M is called simple if it has only trivial
submodules. Since every Abelian group is a Z-module, simple Z-modules are completely
the groups Zp for all p ∈ P. The direct sum of simple modules is semisimple modules.
For detailed information about (semi)simple modules, refer to [10,11]. The place and
importance of “simple modules” in module theory, and especially in the theory of Abelian
groups, is undisputed, as can be seen in the studies carried out so far. Therefore, it is a
natural result to study the concept of simplicity in hypermodules.

The main purpose of this paper is to develop similar results in (semi)simple hyper-
modules motivated by the works on (semi)simple modules, which are one of the most
important concepts of module theory, and thus, concepts of ring theory. We give examples
of (semi)simple hypermodules and focus on the basic properties of (semi)simple hyper-
modules. We show that if a hypermodule M is simple, then (End(M), ·) is a group, where
End(M) is the set of all normal endomorphisms of M. We define the annihilator concept,
which is the starting point of the notion of singularity in module theory, for hypermodules
and prove that every simple hypermodule is normal projective with the help of this. We
also show that the class of semisimple hypermodules is closed under internal direct sums,
factor hypermodules, and subhypermodules. In particular, we characterize internal direct
sums of subhypermodules of a hypermodule.

2. Preliminaries

This section briefly recalls the main concepts and results related to types of hyperrings
and hypermodules. To better understand the topic, we start with some fundamental
definitions of hypercompositional algebra presented in the books [12,13] and overview
articles [8,14–17].

A hypergroup (H,+) is called a canonical hypergroup if

(1) For every a, b ∈ H, a + b = b + a, that is, it is commutative;
(2) There exists a unique 0 ∈ H such that for each a ∈ H there exists a unique element a

′

in H, denoted by −a, such that 0 ∈ a + (−a);
(3) For every a, b, c ∈ H, if c ∈ a + b, then a ∈ c + (−b) := c − b.
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As is proved in [18], if (H, +) is a canonical hypergroup, then a + 0 = a for all a ∈ H.
Let (R,+, .) be a hyperstructure. (R,+, .) called a (Krasner) hyperring if

(1) (R,+) is a canonical hypergroup.
(2) (R, .) is a monoid with a bilaterally absorbing element 0, i.e.,

(a) a.b ∈ R for all a, b ∈ R;
(b) a.(b.c) = (a.b).c for all a, b, c ∈ R;
(c) a.0 = 0.a = 0 for all a ∈ R;
(d) There exists an identity element 1R ∈ R such that a = a.1R = 1R.a for every a ∈ R.

(3) The multiplication distributes over the addition on both sides.

A hyperring (R,+, .) is called commutative if it is commutative concerning the multi-
plication.

Let (R,+, ·) be a hyperring and I be a non-empty subset of R. I is called a left
hyperideal (respectively, right hyperideal) of R provided (I, +) is a subhypergroup and
r.a ∈ I (respectively, a.r ∈ I) for all a ∈ I, and r ∈ R. I is said to be hyperideal of R if it is
both a right and a left hyperideal of R.

A left Krasner hypermodule over a hyperring R (or left Krasner R-hypermodule) is a
canonical hypergroup (M,+) together with a map R × M −→ M such that to every (r, m),
where r ∈ R and m ∈ M, there corresponds a uniquely determined element rm ∈ M and
the following conditions are satisfied:

(1) r(m1 + m2) = rm1 + rm2;
(2) (r + s)m = rm + sm;
(3) (r.s)m = r(sm);
(4) 1Rm = m and r0M = 0Rm = 0M.

for any m, m1, m2 ∈ M and r, s ∈ R.
Throughout this paper, for a simple explanation, when we say hypermodule, we mean

the left Krasner hypermodule. A non-empty subset N of an R-hypermodule M is called
a subhypermodule of M, denoted by N ≤ M if N is an R-hypermodule under the same
hyperoperations of M. It is clear that M and {0M} are trivial subhypermodules of M. It is
known that a non-empty subset N of an R-hypermodule M is a subhypermodule of M if
and only if a − b ⊆ M and ra ∈ M for all a, b ∈ M and r ∈ R.

Let R be a hyperring. It follows from Lemma 3.1 in [19] that R is an R-hypermodule.
We will denote this hypermodule with RR in this study. Then, a non-empty subset I of R is
a left hyperideal of R if and only if it is a subhypermodule of the hypermodule RR.

Let M be a hypermodule over a hyperring R and K be a subhypermodule of M.
Consider the set M

K = { a + K | a ∈ M }. Then, M
K is a hypermodule over the hyperring R

under the hyperoperation defined as + : M
K × M

K −→ P∗(M
K ) and the external operation ⊙ :

R× M
K −→ M

K defined as (a+K)+ (a
′
+K) = { b+K | b ∈ a+ a

′ } and r⊙ (a+K) = ra+K
for every a, a

′
, b ∈ M and r ∈ R. The hypermodule M

K is called the quotient hypermodule of
the hypermodule M.

Let M and N be R-hypermodules. A function f : M −→ P∗(N) is called an R-
homomorphism if

(1) f (m1 +M m2) ⊆ f (m1) +N f (m2) for all m1, m2 ∈ M;
(2) f (rm) = r f (m) for all r ∈ R and m ∈ M.

f is called a strong homomorphism whenever f (m1 +M m2) = f (m1) +N f (m2) for all
m1, m2 ∈ M. A single-valued function f : M −→ N is called a normal homomorphism if

(1) f (m1 +M m2) = f (m1) +N f (m2) for all m1, m2 ∈ M;
(2) f (rm) = r f (m) for all r ∈ R and m ∈ M.

3. Direct Sums of Hypermodules

Let R be a hyperring and M be an R-hypermodule. For a family of subhypermodules
{Mi}i∈I of M, the sum of this family is denoted by ∑i∈I Mi and it is the set of these elements
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x ∈ M where x is an element of the set ∑i∈I0
mi with finite subset I0 ⊆ I for every i ∈ I0,

mi ∈ Mi. That is,

∑i∈I Mi = {x ∈ M| x ∈ ∑i∈I0
mi, mi ∈ Mi and I0 is a f inite subset o f I}.

It is well known that ∑i∈I Mi is a subhypermodule of M.
In [20], the direct sum of the family of subhypermodules of a hypermodule is defined.

Here, for this direct sum definition, similar to the direct sum of modules, we will define it
as the internal direct sum as follows.

Definition 1. Let M be a hypermodule and {Mi}i∈I be a non-empty collection of subhypermodules
of M. The hypermodule M is said to be an internal direct sum of the subhypermodules {Mi}i∈I
and denoted by

⊕
i∈I Mi if the following conditions are satisfied:

(1) M = ∑i∈I Mi;
(2) Mi

⋂
(∑i ̸=k Mk) = {0M}.

Condition (2) means that a nonzero element in Mi is not a member of the sets which
are a sum of elements in the other Mk’s. According to [21], {Mi}i∈I is called independent
if it satisfies condition (2). We now give the following theorem as the main conclusion of
this section.

Theorem 1. Let M be a hypermodule and {Mi}i∈I be a non-empty collection of subhypermodules
of M. Then, M is an internal direct sum of the subhypermodules {Mi}i∈I if and only if every
element m ∈ M belongs to the set mi1 + mi2 + ... + min , which is uniquely determined by distinct
elements mij ∈ Mij for every j ∈ {1, 2, ..., n}.

Proof. (⇒) Assume that m ∈ mi1 + mi2 + ... + min and m ∈ mi∗1
+ mi∗2

+ ... + mi∗t , where
miu ∈ Miu and mi∗v ∈ Mi∗v for every 1 ≤ u ≤ n and 1 ≤ v ≤ t. If n ≤ t, then we obtain
min+1 = min+2 = ... = mit = 0M and so we can assume that n = t. Now, let us show the
number of hypermodules with Miu = Mi∗v by p. We can take it as being

Mi1 = Mi∗1
, Mi2 = Mi∗2

, ..., Mip = Mi∗p

without the restriction of generality. Therefore,

0M ∈ m − m
⊆ (mi1 + mi2 + ... + min)− (mi∗1

+ mi∗2
+ ... + mi∗n)

= (mi1 − mi∗1
) + (mi2 − mi∗2

) + ... + (mip − mi∗p) + mip+1 + mip+2 ... + min
(−mi∗p+1

) + (−mi∗p+2
) + ... + (−mi∗n)

and so there exist elements (1 ≤ u ≤ p) xu ∈ miu − mi∗u such that

0M ∈ x1 + x2 + ... + xp + mip+1 + mip+2 + ... + min + (−mi∗p+1
) + (−mi∗p+2

)... + (−mi∗n).

Put x∗1 = x2 + ... + xp + mip+1 + mip+2 + ... + min + (−mi∗p+1
) + (−mi∗p+2

)... + (−mi∗n). It
follows that x∗1 ∈ Mi2 + Mi3 + ... + Min + ... + Mi∗n . Thus, 0 ∈ x1 + x∗1 and then

x1 = −x∗1 ∈ Mi1
⋂
(Mi2 + Mi3 + ... + Min + ... + Mi∗n) = 0M.

We have 0M = x1 ∈ mi1 − mi∗1
and then 0M ∈ mi1 − mi∗1

. So we can write mi1 = mi∗1
. By

continuing with the same method, these equations miu = mi∗u (2 ≤ u ≤ n) are obtained,
and therefore, m ∈ M belongs to the set mi1 + mi2 + ...+ min , which is uniquely determined
by distinct elements miu ∈ Miu for every u ∈ {1, 2, ..., n}.

(⇐) The equality M = ∑i∈I Mi is clear. Let m ∈ Mj
⋂
(∑i ̸=j Mi). Then, there exists

a set mi1 + mi2 + ... + min ⊆ Mi1 + Mi2 + ... + Min such that m is an element of the set
mi1 + mi2 + ... + min . On the other hand, m ∈ {m} ⊆ Mj and so m = 0M by assumption.
This means that the sum M = ∑i∈I Mi is an internal direct sum.
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More specifically, a hypermodule M is an internal direct sum of subhypermodules
M1 and M2, that is, M = M1 ⊕ M2 if and only if, for every element m ∈ M, there exists a
unique element m1 ∈ M1 and a unique element m2 ∈ M2 such that m is an element of the
set m1 + m2.

Remark 1. Krasner gave a method for the construction of hyperrings (see [4]). Let (S, +, .) be a
commutative ring with unity and (H, .) be a subgroup of the monoid (S, .). Then, {aH}a∈S is a
partition of S and so this partition defines an equivalence relation on S as follows:

“a ∼ b ⇐⇒ aH = bH”.

Let R := S
H be the set of all equivalence classes aH. Define

aH + bH = {cH|cH ⊆ {x + y|x ∈ aH and y ∈ bH}} ⊆ P∗(R)

and

aH · bH = abH.

Then, (R, +, .) is a commutative hyperring. In particular, if (S, +, .) is a field, then (R, +, .) is
a hyperfield.

Example 1. Let G = {−1, 1} be the multiplicative group of the ring (Z, +, .). By Remark 1,
( ZG , +, .) is a commutative and unity hyperring. Since G = {−1, 1}, we can write

aG + bG = {(a + b)G, (a − b)G}.

It follows that Z
G is a Z

G -hypermodule. It is easy to see that the subhypermodules (hyperideals) of Z
G

are of the form < aG >. In particular, Z
G =< 1G > and so Z

G =< 0G > ⊕ < 1G >.
Now, let us show that the hypermodule Z

G has no direct summands other than < 0G > and
< 1G >. Assume that Z

G =< aG > ⊕ < bG >, where a, b ̸= 0, 1. Let d be the greatest common
divisor of integers a and b. Then, there exist integers u, v ∈ Z such that d = ua + vb. It follows
that dG ∈ u(aG) + v(bG) and dG ∈ (−u)(aG) + (−v)(bG). Thus, the element dG belongs to
these sets u(aG) + v(bG) and (−u)(aG) + (−v)(bG), a contradiction by Theorem 1.

Example 2. Given the hyperring Z
G in Example 1, let us denote by M the factor hypermodule of the

Z
G -hypermodule Z

G according to subhypermodule < 6G >. Put a = aG+ < 6G >, where aG ∈ Z
G .

Then, we have the following table:

+6G 0 1 2 3 4 5
0 {0} {1} {2} {3} {4} {5 }
1 {1} {0, 2} {1, 3} {2, 4} {3, 5} {0, 4}
2 {2} {1, 3} {0, 4} {1, 5} {0, 2} {1, 3}
3 {3} {2, 4} {1, 5} {0} {1} {2}
4 {4} {3, 5} {2} {1} {0, 2} {1, 3}
5 {5} {0, 4} {1, 3} {2} {1, 3} {0, 4}

It follows that M is the direct sum of these subhypermodules {0, 3} and {0, 2, 4}.

Let M be an R-hypermodule. In [22], M is called normal projective if for every surjective
g ∈ HomR(K, N) and every f ∈ HomR(M, N) there exists f ∈ HomR(M, K) such that
g f = f .

Theorem 2. Let R be a hyperring. Then, R is a normal projective R-hypermodule.

Proof. Let A and B be R-hypermodules and f : R −→ B be a normal homomorphism. In
addition, suppose that g : A −→ B be a surjective normal homomorphism of hypermodules
A and B.
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R

A B 0

f
∃ψ

g

Since g is surjective, there exists an element a ∈ A such that f (1R) = g(a). Consider
the function ψ : R −→ A such that ψ(r) = ψ(r1R) = r · a for all r ∈ R. Then, ψ is a normal
homomorphism. Let s be an element of R. Then, (gψ)(s) = g(ψ(s)) = g(s · a) = s · g(a) =
s · f (1R) = f (s1R) = f (s) and so gψ = f , which means that R is a normal projective
R-hypermodule.

4. Simple Hypermodules

In module theory and homological algebra, simple modules are one of the basic
concepts of these theories and are studied by many researchers. By using the concept of
simple modules some notions of module theory are defined and characterizations of the
classes of rings are given. For example, a module M is semisimple if and only if it is a
sum of simple submodules. A module M is Artinian if and only if it is linear compact and
its factor modules have a simple submodule. A module M is semi-Artinian if and only
if its factor modules have a simple submodule. A module M is a V-module if and only
every simple module is M-injective. A ring R is semisimple if and only if its modules are
injective (projective). A ring R is a left SSI-ring if and only if every semisimple module is
injective. Many more of these examples could be given by a researcher working in modules
and rings theory. Moreover, in recent years, types of injectivity and projectivity have been
studied with the help of (semi)simple modules. Refer to the books [10,11,23–25] and the
papers [26–34] for detailed information.

In this section, we obtain the basic properties of simple hypermodules and give some
examples of these hypermodules. In particular, we prove that every simple hypermodule
is normal projective with a zero singular subhypermodule.

Definition 2 ([35]). Let R be a hyperring and M be a nonzero R-hypermodule. M is called simple
if M has only the subhypermodules {0M} and M.

Example 3. Given the set M = {0, 1, 2}, define the hyperoperation “+” and the multiplication
“·” by the following tables:

+ 0 1 2
0 {0} {1} {2}
1 {1} {0, 2} {0, 1}
2 {2} {0, 1} {0, 1}

and
· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then, M is a hypermodule over the hyperring M. Therefore, <1> = <2> = M and so M is a
simple hypermodule.

Lemma 1. A nonzero hypermodule M is simple if and only if the zero subhypermodule {0M} is a
maximal subhypermodule of M.

Proof. (⇒) By definition.
(⇐) Let N be a subhypermodule of M. Therefore, {0M} ≤ N ≤ M. Since 0M is

a maximal subhypermodule of M, N = {0M} or N = M, it means that M is a simple
hypermodule.
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Let M and N be hypermodules and f : M −→ N be a normal homomorphism. The
set {m ∈ M| f (m) = 0N} is called the kernel of f and denoted by Ker( f ). Then, it is easy to
see that Ker( f ) is a subhypermodule of M and the normal homomorphism f is injective if
and only if Ker( f ) = {0M}.

Lemma 2. Let f : M −→ N be a nonzero normal homomorphism of hypermodules and M be a
simple hypermodule. Then,

(1) f is injective;
(2) f (M) is a simple subhypermodule of N.

Proof. (1) Since M is simple and ker( f ) is a subhypermodule of M, we conclude that
Ker( f ) = M or Ker( f ) = {0M}. From the hypothesis that f is a nonzero normal homomor-
phism, it is clear that Ker( f ) = {0M}. Thus, f is injective.

(2) Let A be a subhypermodule of f (M). Therefore, f−1(A) is a subhypermodule of
M. Since M is a simple hypermodule, we can write f−1(A) = {0M} or f−1(A) = M.

If f−1(A) = {0M}, then f−1(A) ⊆ Ker( f ) = {0M} by (1). It follows that f ( f−1(A)) =
A = {0N}. In addition, if f−1(A) = M, then A = f ( f−1(A)) = f (M), which means that
f (M) is a simple hypermodule.

The next result is a direct consequence of Lemma 2.

Corollary 1. Let f : M −→ N be a nonzero surjective normal homomorphism of hypermodules. If
M is simple, then N is too.

Now, we give a characterization of a simple hypermodule in the following theorem.
This theorem completely determines the structure of a simple hypermodule.

Theorem 3. Let R be a hyperring and M be an R-hypermodule. Then, the following statements
are equivalent:

(1) M is simple.
(2) If there exist hypermodules B ≤ A such that M is isomorphic to A

B , then B is a maximal
subhypermodule of A.

(3) There exists an R-hypermodule A and a maximal subhypermodule B of A such that M is
isomorphic to A

B .
(4) There exists a maximal left hyperideal I of R such that M is isomorphic to R

I .

Proof. (1) ⇒ (2) Let Ψ : A
B −→ M be a normal isomorphism of hypermodules. Since

M is simple, 0M is a maximal subhypermodule of M and so B = Ψ−1(0M) is a maximal
subhypermodule of A.

(2) ⇒ (3) Consider the isomorphism M ∼= M
{0M} . It follows from (2) that 0M is a

maximal subhypermodule M.
(3) ⇒ (1) By Corollary 1, it is enough to show that A

B is simple, where B is a maxi-
mal subhypermodule of A. Since B is a maximal subhypermodule of A, A

B has the only
subhypermodules {0M} and A

B . Thus, A
B is simple.

(1) ⇒ (4) Let 0 ̸= m ∈ M. Therefore, Rm = {r · m| r ∈ R} is a subhypermodule of M.
Consider the normal epimorphism λ : R −→ Rm via λ(r) = rm for all r ∈ R. It follows that
Ker(λ) is a left hyperideal of R and M = Rm ∼= R

Ker(λ) . Since M is simple, by Corollary 1,

we obtain that R
Ker(λ) is simple. This means that Ker(λ) is a maximal left ideal of R.

(4) ⇒ (3) It is clear.

Now, we give other examples of simple hypermodules.

Example 4. Let R = {0, 1, 2} and A = {0, 2}. Define the hyperaddition “+” and multiplication
“·” by the following:
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+ 0 1 2
0 {0} {1} {2}
1 {1} R {1}
2 {2} {1} A

and

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Then, R is a hyperring and A is the only left maximal hyperideal of R. So, Theorem 3, R
A =

{A, 1 + A, 2 + A} is a simple R-hypermodule with the following hyperaddition “⊎”

⊎ A 1+A 2+A
A A 1+A 2+A
1+A 1+A 1+A 1+A
2+A 2+A 1+A {A, 2+A }

and the external operation ⊙ : R × R
A −→ R

A via r ⊙ (a + A) = ra + A for all r ∈ R and
a + A ∈ R

A . Also, if M is any simple hypermodule over the hyperring, it is seen that the M is
isomorphic to R

A by using Theorem 3 again.

Example 5. Given the ring Z4 = {0, 1, 2, 3} and Z∗
4 = {1, 3}. Using Remark 1, we obtain that

Z4
Z∗

4
= {{0}, {2}, Z∗

4}. As in Remark 1, we consider the following tables:

+ {0} {2} Z∗
4

{0} {0} {2} Z∗
4

{2} {2} {0} Z∗
4

Z∗
4 Z∗

4 Z∗
4 {{0}, {2}}

and

. {0} {2} Z∗
4

{0} {0} {0} {0}
{2} {0} {0} {2}
Z∗

4 {0} {2} Z∗
4

Then, (Z4
Z∗

4
, +, .) is a commutative hyperring with unity. Let R = Z4

Z∗
4

and M = {{0}, {2}}.

Therefore, M is a maximal hyperideal of R and then R
M = {M, Z∗

4 + M}. It follows that M and R
M

are simple R-hypermodules.

Example 6. Let F be a field with zero characteristic and G be the set of all nth roots of unity in F,
where n is a positive integer. It is well known that G is a cyclic subgroup of (F\{0}, ·). Following
Remark 1 and Lemma 1, the F

G -hypermodule F
G is simple.

Recall from [6,36] that a subhypermodule N of a hypermodule M is small and denoted
by N ≪ M if whenever K ≤ M, N + K = M or K + N = M implies that K = M, or
equivalently N + K ̸= M and K + N ̸= M for every proper subhypermodule K of M.

Proposition 1. Let R be a hyperring. Then, every simple R-hypermodule has only one small
subhypermodule.

Proof. The proof is straightforward.

Let M be an R-hypermodule. In [7], a subhypermodule N of M is called essential in
M and denoted by N ⊵ M if N ∩ L = {0M} implies L = {0M} for every proper subhyper-
module L of M.
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Proposition 2. Let M be a simple hypermodule. Then,

(1) M ⊵ M.
(2) M and {0M} are the only direct summands of M.

Proof. It is clear by definition.

Let M and N be two hypermodules over a hyperring R. The set of all normal homo-
morphisms from M to N is denoted by HomR(M, N). For f , g ∈ HomR(M, N) and m ∈ M,
as in [37], define

f ⊕ g = {h ∈ Hom(M, N)| h(m) ∈ f (m) + g(m)}.

Then, (HomR(M, N),⊕) is a canonical hypergroup. Let M = N and so HomR(M, M) =
EndR(M). For any element m ∈ M and f , g ∈ EndR(M), we consider the operation
on EndR(M) by ( f · g)(m) = f (g(m)). It follows from lemma 2 in [37] that EndR(M) is
a hyperring.

Theorem 4. Let M be a simple R-hypermodule. Then, (EndR(M), ·) is a group.

Proof. Clearly, the identity map IM : M −→ M is a normal homomorphism and so IM is
the identity element of (EndR(M), ·). Therefore, by lemma 2 in [37], it will suffice to show
every nonzero element of EndR(M) has an inverse. Let 0 ̸= f ∈ EndR(M). It follows from
Lemma 2 that f is injective and f (M) = M. So f is invertible. This means that (EndR(M), ·)
is a group.

Now, we will investigate when simple hypermodules are normal projective. Let M be
an R-hypermodule, K ≤ M, and L be a non-empty subset of M. Consider the set

(K : L) = {r ∈ R | rL ⊆ K, that is, r · a ∈ K f or all a ∈ L}.

Lemma 3. Let R be a hyperring, M be an R-hypermodule, K ≤ M, and L be a non-empty subset
of M. Then, (K : L) is a left hyperideal of R. In particular, (K : L) is a hyperideal of R in the case
that L is a subhypermodule of M.

Proof. Since L is a non-empty subset of M, we obtain m ∈ L, and so, 0R · m = 0M ∈ K.
Therefore, 0R ∈ (K : L) ̸= ∅. Let u, v ∈ (K : L) and r ∈ R. Now, for all a ∈ L,
(u − v) · a = u · a − v · a ∈ K and (ru) · a = r(u · a) ∈ K. It follows that u − v, ru ∈ (K : L).
Thus, (K : L) is a left hyperideal of R.

Next, we suppose that L is a subhypermodule of M. Let r ∈ R, u ∈ (K : L) and a ∈ L
be any elements. Then, (ur)a = u(ra) ∈ K and so (K : L) is a hyperideal of R.

Now, set K = {0M} and let L be a subhypermodule of an R-hypermodule M. Then,
by Lemma 3, (0M : L) is a hyperideal of R. We say (0M : L) is the annihilator of L in R and
is written by (0M : L) = Ann(L).

Let R be a hyperring, M be an R-hypermodule, S be a non-empty set of R, and K be a
subhypermodule of M. Consider the set

(K :M S) = {m ∈ M| Sm ⊆ K, that is, s · m ∈ K f or all s ∈ S}.

Lemma 4. Let R be a hyperring, M be an R-hypermodule, K ≤ M, and S be a right hyperideal of
R. Then, (K :M S) is a subhypermodule of M containing K.

Proof. For every s ∈ S, s · 0M = 0M ∈ K, and so, 0M ∈ (K :M S) ̸= ∅. Let m1, m2 ∈
(K :M S) and r ∈ R. For all s ∈ S, s · (m1 − m2) = s · m1 − s · m2 ∈ K because K is a
subhypermodule of K. Moreover, s · (rm1) = (sr) · m1 ∈ K. This means that (K :M S) is a
subhypermodule of M.

Let k ∈ K. Then, sk ∈ K for all s ∈ S. It follows that k ∈ (K :M S)S, and so,
K ⊆ (K :M S). This completes the proof.
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Let M be an R-hypermodule and m ∈ M. Then, by Lemma 3, (0M : m) = ann(m) is a
left hyperideal of R. The left hyperideal (0M : m) is called the annihilator of m in R.

Theorem 5. Let M1 and M2 be two R-hypermodules. If M1
∼= M2, then Ann(M1) = Ann(M2).

In particular, if the elements m1 ∈ M1 and m2 ∈ M2 are connected under this isomorphism, then
Ann(m1) = Ann(m2).

Proof. Let f : M1 −→ M2 be a normal isomorphism, r ∈ Ann(M1) and m2 ∈ M2. Since f
is surjective, there exists an element m1 of M1 such that m2 = f (m1). Now,

r · m2 = r · f (m1) = f (r · m1) = f (0M1) = 0M2

that is, r ∈ Ann(M2). So, Ann(M1) ⊆ Ann(M2). If a similar method is applied, Ann(M2) ⊆
Ann(M1). This means that Ann(M2) = Ann(M1), as required.

It is well known that a ring (R,+, .) with identity is a division ring, that is, (R\{0R}, .)
is a group if and only if RR is a simple module. We give an analogous characterization of
this fact for hyperrings.

Theorem 6. Let R be a hyperring. Then, the R-hypermodule R is simple if and only if (R\{0R}, ·)
is a group.

Proof. The proof is straightforward.

Let M be an R-hypermodule. Consider the set

Z(M) = {m ∈ M | I · m = 0M f or some essential le f t hyperideal I o f R}.

Now, we prove the following theorem.

Theorem 7. Let M be an R-hypermodule. Then, Z(M) is a subhypermodule of M.

Proof. Obviously, 0M ∈ Z(M). Let m1, m2 ∈ Z(M) and m ∈ m1 + m2. Firstly, we will
show that m ∈ Z(M). Since m1, m2 ∈ Z(M), we have Ann(m1)⊵ R and Ann(m2)⊵ R, and
so, Ann(m1) ∩ Ann(m2)⊵ R. Now, we consider the annihilator of the set m1 + m2, that is,

Ann(m1 + m2) = (0M : (m1 + m2)) = {r ∈ R | r · x = 0M f or all x ∈ m1 + m2}.

If r ∈ Ann(m1) ∩ Ann(m2), then we can write r · (m1 + m2) = r · m1 + r · m2 = 0M + 0M =
0M. Because of this, we obtain r · m ∈ r · (m1 + m2) = {r · a ∈ M | a ∈ m1 + m2} = {0M},
and so, r · m = 0M. It follows that Ann(m1) ∩ Ann(m2) ⊆ Ann(m)⊵ R. Hence, m1 + m2 ⊆
Z(M).

Let r ∈ R and m ∈ Z(M). Suppose that s ∈ R\Ann(m). Therefore, s · (r · m) =
(sr) · m ̸= 0M, and then, sr /∈ Ann(m). Since Ann(m)⊵ R, we can write 0M ̸= t(sr) ∈
Ann(m) for some element t ∈ R. Note that ts ̸= 0R. Now, (ts) · (r · m) = 0M, and so,
ts ∈ Ann(m). This means that Ann(rm) is an essential left hyperideal of R. Hence, Z(M)
is a subhypermodule of M.

Let M be a hypermodule. We say the subhypermodule Z(M) is a singular subhyper-
module of M.

Lemma 5. Let M be an R-hypermodule and N ⊵ M. Then, M
N = Z(M

N ).

Proof. Let m + N ∈ M
N \Z(M

N ). Therefore, there exists an element r ∈ R such that r · (m +
N) = r · m + N ̸= N, and so, r · m /∈ N. This is a contradiction by assumption.

By Theorem 2, a hyperring R is normal projective. It can be seen that every direct
summand of R is normal projective. Using this fact we give the next result:
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Theorem 8. Let M be a simple R-hypermodule with zero singular subhypermodule. Then, M is
normal projective.

Proof. By Theorem 3, there exists a left maximal hypermodule I of R such that M is
isomorphic to R

I . If I is essential in R, it follows from Lemma 5 that Z( R
I ) = R

I . By
Theorem 5, we can write R

I = Z( R
I )

∼= Z(M) = 0, a contradiction. Therefore, there exists a
left hyperideal J of R with I ∩ J = {0R}. Since I is a maximal left hyperideal of R, we obtain
that R = I ⊕ J, and so, J is normal projective. Hence, J ∼= M is normal projective.

Corollary 2. Let M be a simple hypermodule. Then, M = Z(M) or M is normal projective.

Proof. By Theorem 8.

Example 7. Consider the hyperring R = {0, 1, 2, 3} with the following tables:

+ 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {0, 2} {1, 3} {0, 2}
2 {2} {1, 3} {0} {1}
3 {3} {0, 2} {1} {0, 2}

and

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

It follows that N = {0, 2} is a simple R-hypermodule and Z(N) = N. Thus, N is singular.

Example 8. Let R be the set of real numbers and H be a subgroup of the multiplicative group of
R. Since R is a field, by Remark 1, R

H is a hyperfield, and so, 0 R
H

is a maximal hyperideal of R
H .

Therefore, the R
H -hypermodule R

H is simple by Lemma 1. Hence, R
H is normal projective according to

Theorem 2.

5. Semisimple Hypermodules

Let R be a hyperring and M be an R-hypermodule. By Soc(M) we denote the sum of
all simple subhypermodules of M.

Example 9. Let us take the hyperring R as the hyperring in Example 4. Assume that M is the
R-hypermodule R. Then, Soc(M) = {0, 2} ̸= M.

In this section, we introduce the concept of semisimple hypermodules. We show
that the class of semisimple hypermodules is closed under internal direct sums, factor
hypermodules, and subhypermodules.

Definition 3. Let R be a hyperring and M be an R-hypermodule. M is called semisimple if
M = Soc(M), that is, it is the sum of simple R-subhypermodules of M.

Example 10. Let R = {0, 1, 2, 3} with hyperoperation “+” and operation “.”:

+ 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {0,1} {3} {2,3}
2 {2} {3} {0} {1}
3 {3} {2,3} {1} {0,1}
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and

· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

Then, R is an R-hypermodule. It is easy to see that the only proper subhypermodules of R are
M0 = {0}, M1 = {0, 1}, and M2 = {0, 2}. Therefore, M1 and M2 are simple subhypermodules
of M, and so we can write R = M1 + M2. This means that the R-hypermodule R is semisimple.

Now, we will prove the main theorem that gives the characterization of semisimple
hypermodules. Firstly we need the following key lemmas.

Lemma 6. Assume that M = ∑k∈K Mk is a semisimple hypermodule, where each Mk is a simple
subhypermodule of M for every k ∈ K. Let A be any subhypermodule of M. Then, there exists an
index set J ⊆ K such that M = A ⊕ (

⊕
j∈J Mj).

Proof. Let A be any subhypermodule of M. Now, we consider the following set:

Γ = {L ⊆ K | A + (∑l∈L Ml) = A ⊕ (
⊕

l∈L)Ml}.

Then, ∅ ∈ Γ, and so, Γ ̸= ∅. Therefore, Γ is an ordered set by “⊆”. For any chain Λ ⊆ Γ, let
L0 =

⋃
L∈Λ L. Now, we show that L0 ∈ Γ. Suppose that 0 ∈ a + mi1 + mi2 + ... + min , where

a ∈ A, i1, i2, ..., in ∈ L, and mi1 ∈ Mi1 , mi2 ∈ Mi1 , ..., Min . Since Λ is chain, there exists L
′

in Γ with i1, i2, ..., in ∈ L′ . It follows that the sum a + mi1 + mi2 + ... + min belongs to the
direct sum A ⊕ (

⊕
l∈L Ml), and so, a = mi1 = mi2 = ... = min = 0. Let B = A ⊕ (

⊕
j∈J Mj).

If k ∈ K, then A + Mk ̸= A ⊕ Mk since J is maximal. So, Mk ⊆ B. This implies that
M = ∑k∈K Mk = B. Hence, M = A ⊕ (

⊕
j∈J Mj), as required.

Lemma 7. Let M be an R-hypermodule and m be a nonzero element of M. Then, Rm contains a
maximal subhypermodule.

Proof. Let A be a proper subhypermodule of Rm. Now, we consider the set:

Ω = {B ⊂ Rm | A ⊆ B}.

Then, Ω is an ordered set by “⊆”. If a similar method to that used in the proof of Lemma 6
is applied, the set Ω has a maximal element, say U. It is obvious that U is a maximal
subhypermodule of Rm.

Theorem 9. The following conditions are equivalent for a hypermodule M.

(1) M is semisimple.
(2) M is a direct sum of simple subhypermodules.
(3) Every subhypermodule of M is a direct summand of M.

Proof. (1) ⇒ (2) If M = ∑k∈K Mk, where Mk is a simple subhypermodule of M for every
k ∈ K, there exists an index set J ⊆ K such that M = {0M} ⊕ (

⊕
j∈J Mj) =

⊕
j∈J Mj by

Lemma 6.
(2) ⇒ (3) Suppose that M =

⊕
k∈K Mk, where each Mk is a simple subhypermodule

of M for every k ∈ K. Let A be any submodule of M. It follows from Lemma 6 that
M = A ⊕ (

⊕
j∈J Mj) for some subset J ⊆ K. This completes the proof of (2) ⇒ (3).

(3) ⇒ (1) By the hypothesis, there exists a submodule A of M with M = Soc(M)⊕ A.
Let m be a nonzero element of A. It follows from Lemma 7 that Rm has a maximal
submodule, say U. Again applying the hypothesis, U is a direct summand of M, and
so, we can write M = U ⊕ V for some submodule V of M. Clearly, V is simple, and
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then, V ⊆ Soc(M) ∩ A = {0M}, a contradiction. Hence, M = Soc(M), that is, it is
semisimple.

Corollary 3. Every subhypermodule of a semisimple hypermodule is semisimple.

Proof. Let M be a semisimple hypermodule and A be any subhypermodule of M. If B is
a subhypermodule of A, then it follows from Theorem 9 that M has the decomposition
M = B ⊕ B

′
for some subhypermodule B

′
of M. By modularity, we can write A =

A ∩ M = A ∩ (B ⊕ B
′
) = B ⊕ (A ∩ B

′
). Again applying Theorem 9, we obtain that A

is semisimple.

Proposition 3. Let M be a hypermodule. Then, Soc(M) =
⋂{N | N ⊵ M} and Soc(M) is the

largest semisimple subhypermodule of M.

Proof. Let N be an essential subhypermodule of M. If S is a simple subhypermodule
of M, then 0 ̸= S ∩ N = S ⊆ N. It follows that Soc(M) ⊆ N, and so, we can write
Soc(M) ⊆ ⋂{N | N ⊵ M}.

Set N0 =
⋂{N | N ⊵ M} and let A be any submodule of N0. By Zorn’s lemma, we

choose a subhypermodule B of M such that it is maximal in the set of all subhypermodules
E ⊆ M with A ∩ E = 0. By Proposition 3.11-(1) in [21], we can write A ⊕ B ⊵ M. It follows
from the definition of N0 that A ⊆ N0 ⊆ A ⊕ B. Now, let us apply the modular law

N0 = N0 ∩ (A ⊕ B)
= A ⊕ (N0 ∩ B).

This means that A is a direct summand of N0, and so, N0 is a semisimple subhypermodule
of M according to Theorem 9. Hence, we obtain Soc(M) = N0 =

⋂{N | N ⊵ M}.

The next result is crucial.

Corollary 4. Let M be an R-hypermodule. Then, M is semisimple if and only if N ⊵ M implies
that N = M.

Proof. By Proposition 3.

Lemma 8. Let f : M −→ N be a normal homomorphism of hypermodules. Then, f (Soc(M)) ⊆
Soc(N).

Proof. It follows from Corollary 1.

Observe from Lemma 8 that for every f ∈ End(M) f (Soc(M)) ⊆ Soc(M).

Corollary 5. Every factor hypermodule of a semisimple hypermodule is semisimple.

Proof. Let M be a semisimple hypermodule and U be any subhypermodule of M. Consider
the normal epimorphism ϕ : M −→ M

U via ψ(m) = m + U for all m ∈ M. Therefore,
M
U = ψ(M) = ψ(Soc(M)) ⊆ Soc(M

U ) according to Lemma 8. This implies that M
U is a

semisimple hypermodule.

Now, we shall prove the next result.

Theorem 10. Let R be a hyperring. Then, Soc(RR) is a hyperideal of R.

Proof. Since any intersection of left hyperideals of R is a left hyperideal of R, it follows
from Proposition 3 that Soc(RR) is a left hyperideal of R. Let r ∈ R and let f :R R −→R R
by f (s) = sr for all s ∈ R. Then, for any elements u, v, s ∈ R,
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f (u + v) = (u + v)s = us + vs = f (u) + f (v)

and

f (us) = (us)r = u(sr) = u f (s).

This means that f is a normal homomorphism of hypermodules. By Lemma 8, we have
f (Soc(RR)) = Soc(RR)r ⊆ Soc(RR), and so, Soc(RR)R ⊆ Soc(RR), that is, Soc(RR) is a
right hyperideal of R. Hence, Soc(RR) is a hyperideal of R.

Proposition 4. Let M be a hypermodule and K be a subhypermodule of M. Then, Soc(K) =
K ∩ Soc(M).

Proof. The inclusion Soc(K) ⊆ K ∩ Soc(M) is clear by definition. Let m ∈ K ∩ Soc(M).
By Corollary 3, Rm is semisimple, and so, m = 1R · m ∈ Rm ⊆ Soc(K). Therefore,
K ∩ Soc(M) ⊆ Soc(K). So, we deduce that Soc(K) = K ∩ Soc(M).

Theorem 11. Let {Mi}i∈I be a family of subhypermodules of an R-hypermodule M. If the sum
∑i∈I Mi is an internal direct sum, then Soc(

⊕
i∈I Mi) =

⊕
i∈I Soc(Mi).

Proof. Let ∑i∈I Mi =
⊕

i∈I Mi. For every i ∈ I, it is clear that Soc(Mi) ⊆ Soc(
⊕

i∈I Mi),
and so,

⊕
i∈I Soc(Mi) ⊆ Soc(

⊕
i∈I Mi). Let m = (mi)i∈I ∈ Soc(

⊕
i∈I Mi). Consider the

normal homomorphism πk :
⊕

i∈I Mi −→ Mk via πk((mi)i∈I) = mk for all (mi)i∈I ∈⊕
i∈I Mi. By Lemma 8, we obtain πk(m) = πk((mi)i∈I) = mk ∈ Soc(Mk). It follows that

m = (mi)i∈I ∈
⊕

i∈I Soc(Mi). This completes the proof.

The following is a direct consequence of Theorem 11.

Corollary 6. Every direct sum of semisimple subhypermodules of a hypermodule is semisimple.

Lemma 9. If an R-hypermodule M is semisimple, then Rad(M) = {0M}.

Proof. Let M be a semisimple Krasner R-hypermodule and m be a nonzero element of M.
By Theorem 9, Rm is a direct summand of M, and so, there exists a proper subhypermodule
K of M such that M = Rm + K. This means that Rm is not small in M. Hence, Rad(M) =
{0M}.

Proposition 5. Let M be an R-hypermodule and N be a semisimple subhypermodule of M. If
N ⊆ Rad(M), then N is small in M.

Proof. Given a subhypermodule K with M = N + K, since N is semisimple, by Theorem 9
N has a decomposition N = (N ∩ K)⊕ V for some subhypermodule V of N. Now, we
can write

M = N + K = [(N ∩ K)⊕ V] + K = V + K.

Note that {0M} = (N ∩K)∩V = K ∩V, and thus, M = V ⊕K. Using Lemma 9, Rad(M) =
Rad(V)⊕ Rad(K) = Rad(K), and then, V ⊆ N ⊆ Rad(M) = Rad(K) ⊆ K. Since {0M} =
V ∩ K = V, it follows that N is a small subhypermodule of M.

6. Discussion

The basic properties of (semi)simple hypermodules have been provided. We have
shown that if a hypermodule M is simple, then (End(M), ·) is a group, where End(M) is
the set of all normal endomorphisms of M. We have proved that every simple hypermodule
is normal projective with a zero singular subhypermodule. We have shown that the class
of semisimple hypermodules is closed under internal direct sums, factor hypermodules,
and subhypermodules. In particular, we have given a characterization of internal direct
sums of subhypermodules of a hypermodule.
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7. Conclusions

In this study, the properties of the (semi)simple module concept, which is among the
most fundamental topics of module theory, in the hypermodule structure were investigated.
The connection of (semi)simple hypermodules with other subjects could be studied and
their results in multivalued groups could be studied. In addition, the properties of the
(semi)simple concept in weak hypermodules could be examined, and the results it provides
that are different from (semi)simple hypermodules could be obtained.
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