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Abstract: Count data consists of both observed and unobserved events. The analysis of count data
often encounters overdispersion, where traditional Poisson models may not be adequate. In this
paper, we introduce a tractable one-parameter mixed Poisson distribution, which combines the
Poisson distribution with the improved second-degree Lindley distribution. This distribution, called
the Poisson-improved second-degree Lindley distribution, is capable of effectively modeling standard
count data with overdispersion. However, if the frequency of the unobserved events is unknown,
the proposed distribution cannot be directly used to describe the events. To address this limitation,
we propose a modification by truncating the distribution to zero. This results in a tractable zero-
truncated distribution that encompasses all types of dispersions. Due to the unknown frequency of
unobserved events, the population size as a whole becomes unknown and requires estimation. To
estimate the population size, we develop a Horvitz–Thompson-like estimator utilizing truncated
distribution. Both the untruncated and truncated distributions exhibit desirable statistical properties.
The estimators for both distributions, as well as the population size, are asymptotically unbiased and
consistent. The current study demonstrates that both the truncated and untruncated distributions
adequately explain the considered medical datasets, which are the number of dicentric chromosomes
after being exposed to different doses of radiation and the number of positive Salmonella. Moreover,
the proposed population size estimator yields reliable estimates.

Keywords: discrete distributions; Horvitz–Thompson estimator; mixed Poisson; simulation; zero
truncation; medical data

MSC: 60E05; 62F10; 62P10

1. Introduction

Unobserved events in count data are events that were not recorded. For example,
the unobserved events in insurance claims refer to the events where the policyholders do
not claim. In some cases, even these events are not identified. For example, the number
of times a motorist gets stopped by the police. The number of motorists that did not get
stopped cannot be identified, which is known as unobserved events. Modeling count data
by examining the observed events or both the observed and unobserved events is typical
in statistical modeling. This study would like to explore this area by introducing a mixed
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Poisson–Lindley distribution and extending it to its zero-truncated version, as well as
population size estimation.

The Lindley distribution was originally introduced in Bayesian analysis as a mixture
of an exponential distribution and a gamma distribution [1]. Ghitany et al. [2] conducted
a comprehensive examination of its statistical characteristics. Subsequent research has
expanded the Lindley distribution into both two-parameter [3–11] and three-parameter
variants [12–14], each offering innovative enhancements and broader applications. These
distributions have been particularly useful in the fields of survival analysis and reliabil-
ity assessments.

Sankaran [15] pioneered the use of the Lindley distribution as a mixing distribution
with the Poisson distribution, thus creating the Poisson–Lindley (PL) distribution. This
model, and the methods to estimate its parameters, were studied extensively in later re-
search [16]. Various mixed PL distributions have been proposed as alternatives to the
traditional Poisson and negative binomial models for fitting count data [17–19]. These
new distributions share the overdispersion characteristic common to mixed Poisson dis-
tributions [20]. Other notable mixed Poisson models include the Poisson Inverse Pareto
distribution [21] and the Poisson-transmuted record-type exponential distribution [22],
among others.

When count data exclusively contain positive numbers, zero truncation is a common
technique used to adjust distributions accordingly. Examples include the zero-truncated
Poisson [23], zero-truncated negative binomial [24], and zero-truncated PL [25] distribu-
tions. In fields such as criminology, accurately estimating the size of a population when the
frequency of non-events is not observable is a significant challenge [26–33]. Rossmo and
Routledge [30] highlighted the necessity of understanding the size of a criminal population
to inform the creation of effective laws and policies. Such estimations are still relatively
rare in medical research but are equally needed.

The current study aims to introduce a new, practical mixed PL distribution by com-
bining an improved second-degree Lindley (ISDL) distribution [7] with a Poisson variable,
resulting in what we name the Poisson-improved second-degree Lindley (PISDL) distribu-
tion. This constitutes the first aim of this research. Given the ISDL distribution’s superior
modeling performance [7], we anticipate that the PISDL distribution may outperform
the original PL distribution. To accommodate strictly positive data, we also introduce a
zero-truncated version of the PISDL (ZTPISDL) distribution, which represents the second
aim of this research. Furthermore, we propose an innovative estimator for population size
in relation to the ZTPISDL distribution, detailed in Section 5.3, marking the third and most
original objective of the paper. Understanding the population size is critical for develop-
ing comprehensive policies. This study uses data from epidemiology and cytogenetics to
demonstrate the applications of the proposed distributions and estimator.

This paper is structured as follows. Section 1 outlines the study’s objectives, building
upon previous research on mixed PL distributions, their truncations, and population
size estimations. Section 2 presents the PISDL distribution, its statistical properties, and
estimation techniques. Section 3 introduces and investigates the zero-truncated PISDL
distribution. Section 4 describes the development of a new population size estimator,
assuming a PISDL distribution, accompanied by simulation studies in Sections 2–4 to
evaluate estimator performance. Section 5 applies the proposed models to medical dataset
analyses. Finally, Section 6 concludes with a discussion of the implications, limitations, and
future research directions of this study.

2. Poisson-Improved Second-Degree Lindley Distribution
2.1. Probability Mass Function of the PISDL Distribution

Definition 1. A random variable X is said to follow a Poisson-improved second-degree Lind-
ley (PISDL) distribution with parameter θ if it obeys X|θ ∼ Poisson(θ) and θ ∼ ISDL(λ),
where θ, λ > 0.
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Theorem 1. Let X be a random variable that follows PISDL with parameter λ; then, the probability
mass function (pmf) of X is given as

f (x) =
λ3

λ2 + 2λ + 2

[
x(x + 5) + 2λ(x + 2) + λ2 + 5

(λ + 1)x+3

]
; x = 0, 1, 2, . . . , λ > 0. (1)

Proof. Using Definition 1, the pmf of X|θ is

f (x|θ) = θx exp(−θ)

x!
; x = 0, 1, 2, . . . , θ > 0.

The probability density function of θ|λ is

g(θ) =
λ3

λ2 + 2λ + 2
(1 + θ)2 exp(−λθ); λ > 0, θ > 0.

The resulting marginal distribution f (x) for the PISDL distribution with parameter λ
is obtained as follows:

f (x) =
∞∫
0

f (x|θ)g(θ)dθ

=
λ3

(λ2 + 2λ + 2)x!

∞∫
0

θx(1 + θ)2 exp[−θ(λ + 1)]dθ

=
λ3

λ2 + 2λ + 2

[
x(x + 5) + 2λ(x + 2) + λ2 + 5

(λ + 1)x+3

]
.

□

Figure 1 shows the pmf plot for the PISDL distribution. In Figure 1, the distribution
is skewed to the right, unimodal, and decreasing, which is further supported by the
decreasing ratio of probability given as

f (x + 1)
f (x)

=
1

λ + 1

[
1 +

2(x + λ + 3)
x(x + 5) + 2λ(x + 2) + λ2 + 5

]
.

It is worth noting that the PISDL distribution is actually a three-component mixture
distribution that can be written as f (x) = p1 f1(x) + p2 f2(x) + p3 f3(x), where fi(x) is the
pmf of the negative binomial distribution with a parameter number of successes i and
proportion λ/(λ + 1). When i = 1, fi(x) is the pmf of the geometric distribution, which
is a special case for the negative binomial distribution. The formulae for pi and fi(x) for
i = 1, 2, 3 are given as

p1 =
λ2

λ2 + 2λ + 2
; p2 =

2λ

λ2 + 2λ + 2
; p3 = 1 − p1 − p2;

f1(x) =
λ

(λ + 1)x+1 ; f2(x) =
λ2(x + 1)

(λ + 1)x+2 ; f3(x) =
λ3(x + 1)(x + 2)

2(λ + 1)x+3 .

Even though the PISDL distribution is a three-component mixture negative binomial
distribution, the existence of three modes cannot be seen in any of the plots in Figure 1
for the selected values of λ. This insinuates that the three modes, which come from the
three sub-populations, must be located very close to each other. As mentioned in [34], if
the modes of the sub-populations are located very close to each other, then the population
will have a single mode. As such, if the existence of the modes of the sub-populations, each
with very close mode values, can be certain, then this distribution can be considered as one
of the candidates for model fittings.
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Figure 1. The pmf plot for the PISDL distribution when λ = 0.5, 1.0, 2.5, 5.0.

The cumulative distribution function (cdf) for the PISDL distribution is given in
Equation (2) and visualized in Figure 2. In Figure 2, it is clear that the PISDL distribution
has a valid cdf since F(x) → 1 as x → ∞ .

F(x) = 1 −
λ4 + 2λ3(x + 3) + λ2(x2 + 7x + 13

)
+ 2λ(x + 4) + 2

(λ2 + 2λ + 2)(λ + 1)x+3 . (2)

Based on Equation (2), the survival function S(x) can be obtained and given as

S(x) =
λ4 + 2λ3(x + 3) + λ2(x2 + 7x + 13

)
+ 2λ(x + 4) + 2

(λ2 + 2λ + 2)(λ + 1)x+3 . (3)

The plot for the survival function of the PISDL distribution is given in Figure 3.
The hazard rate function h(x) is defined by taking the ratio of the pmf to the survival

function, i.e., h(x) = f (x)/S(x), and is given as

h(x) =
λ3[x(x + 5) + 2λ(x + 2) + λ2 + 5

]
λ4 + 2λ3(x + 3) + λ2(x2 + 7x + 13) + 2λ(x + 4) + 2

. (4)

The hazard rate function plot is given in Figure 4. In Figure 4, it can be noted that
the hazard rate functions show an increasing pattern with a limiting value of λ, meaning
lim

x→∞
h(x) = λ.
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2.2. Some Statistical Properties of the PISDL Distribution

The kth moment in the origin of the PISDL distribution can be written by the following
generic expression:

E
(

Xk
)
=

∞

∑
x=0

xk f (x). (5)

In particular, the first two moments in the origin using Equation (5) are obtained,
respectively, as

E(X) =
λ2 + 4λ + 6

λ(λ2 + 2λ + 2)
, E
(

X2
)
=

(λ + 2)
(
λ2 + 4λ + 6

)
+ 4(λ + 3)

λ2(λ2 + 2λ + 2)
.

Hence, the index of dispersion (IODX) can be written as

IODX =
Var(X)

E(X)
=

E
(
X2)− [E(X)]2

E(X)
=

E
(
X2)

E(X)
− E(X)

= 1 + 1
λ

(
λ4 + 2

(
4λ3 + 12λ2 + 12λ + 6

)
λ4 + 6λ3 + 16λ2 + 20λ + 12

)
.

(6)

Since the IODX > 1, the PISDL distribution is overdispersed for all λ.
The mode of the PISDL distribution can be obtained by maximizing the log pmf of the

PISDL distribution or equivalently by solving the quadratic equation Axm
2 + Bxm + C = 0,
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where xm ≥ 0 is the mode of the distribution, where A = ln(λ + 1), B = (2λ + 5)ln (λ + 1)− 2,
and C = (5+ λ(λ + 4))ln(λ + 1)− 2λ − 5. As a result, the solution for the equation is

xm =
2 − (5 + 2λ) ln(1 + λ) +

√
4 + (5 + 4λ)[ln(1 + λ)]2

2 ln(1 + λ)
.

It can be shown from Figure 1 that xm > 0, for 0 < λ < 1 and when λ ≥ 1, then
xm = 0. The moment, the probability and the cumulant generating functions are given,
respectively, is

MX(t) =
λ3

λ2 + 2λ + 2

(
s + 2s2 + 2s3

)
; s = s(t) = [λ + 1 − exp(t)]−1,

GX(t) =
λ3

λ2 + 2λ + 2

(
r + 2r2 + 2r3

)
; r = s(ln t) = (λ + 1 − t)−1,

CX(t) = ln MX(t) = 3 ln λ − ln
(

λ2 + 2λ + 2
)
+ ln

(
s + 2s2 + 2s3

)
.

2.3. Parameter Estimation of the PISDL Distribution

The parameter of the PISDL distribution needs to be estimated before modeling real-
world datasets. Here, parameter estimation is based on the two commonly used estimation
methods, which are the methods of moments and maximum likelihood.

2.3.1. Method of Moments Estimator

The method of moments estimator can be obtained by equating the sample mean to

the population mean. Therefore, the moment estimator of λ, hereby denoted as
∼
λ, can be

obtained by solving the following equation:

x =

∼
λ

2
+ 4

∼
λ + 6

∼
λ

(∼
λ

2
+ 2

∼
λ + 2

) , (7)

or equivalently solving the cubic equation A
∼
λ

3
+ B

∼
λ

2
+ C

∼
λ + D = 0, where A = x,

B = 2x − 1, C = 2x − 4, and D = −6.

2.3.2. Maximum Likelihood Estimator

Note that the log-likelihood function can be written as l = ln L = ∑n
i=1 ln f (xi) =

∑∞
x=0 nxln[ f (x)], where nx is the frequency of x-valued data. Hence, l is given as

l = 3n ln λ − n ln
(
λ2 + 2λ + 2

)
− n(x + 3) ln(λ + 1)

+
∞
∑

x=0
nx ln

[
x(x + 5) + 2λ(x + 2) + λ2 + 5

]
.

By differentiating l with respect to λ, we obtain

dl
dλ

=
3n
λ

− 2n(λ + 1)
λ2 + 2λ + 2

− n(x + 3)
λ + 1

+
∞

∑
x=0

nx
2(λ + x + 2)

x(x + 5) + 2λ(x + 2) + λ2 + 5
, (8)

in which equating it to zero and solving it yields the maximum likelihood estimator (MLE)
for λ, which is abbreviated as λ̂. Equivalently, one can directly maximize the l to obtain a
similar result. To estimate the variance of λ̂, Fisher’s information about λ and I(λ) needs
to be obtained, and it is given as
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I(λ) = −4λ6 + 7λ5 − 7λ4 − 40λ3 − 52λ2 − 36λ − 12

λ2(λ + 1)2(λ2 + 2λ + 2)2

+
4λ3

(λ + 1)3(λ2 + 2λ + 2)

∞
∑

x=0

(λ + x + 2)2

[x(x + 5) + 2λ(x + 2) + λ2 + 5](λ + 1)x .
(9)

The summation term cannot be written in a closed form, but one may use several Lerch
Transcendent [35] functions for it. However, it is only practical to leave the summation term
as is. So, the variance of λ̂ can be written as I−1(λ)/n and, subsequently, the (1 − α)100%
confidence interval can be written as λ̂ ∓ zα I−1/2(λ)/

√
n. If α = 0.025, and then the 95%

confidence interval will be obtained. The summation term reduces considerably to a simple
form when λ̂ is substituted, thus resulting in a constant. This will eventually give an
estimated variance of λ̂. For example, for n = 100 and when λ̂ = 1.8793, the summation
equates to 1.4284, which then results in the estimated variance of 0.0145.

2.4. Simulation Study

A simulation study is conducted to assess the performance of the two earlier estimators
in estimating the parameter of the PISDL distribution. The algorithm for the simulation
study is as follows:

Step 1: Generate N = 1000, 2000, . . . , 10, 000 random data that follows the PISDL distri-
bution with λ = 0.5.

Step 2: Obtain the estimated λ using MLE and moment estimator.
Step 3: Repeat Steps 1–2 for a total of 2000 iterations and obtain the estimates.
Step 4: Calculate the mean absolute deviation, MAD, and the mean squared error values,

MSEs, given, respectively, as MAD = ∑2000
i=1
∣∣λ̌ − λ

∣∣/2000 and MSE = ∑2000
i=1
(
λ̌ − λ

)2
/

2000, where λ̌ can be the MLE or moment estimator for λ.
Step 5: Repeat Steps 3–4 for λ = 2.0, 5.0.

Generally, if the MAD and MSE approach zero as N increases, then the estimate is
asymptotically unbiased and consistent. For the simulation study, R software version 3.0.2
is used, and the estimated parameter using MLE is obtained using the optim command
to optimize the log-likelihood value. The results of the simulation study are presented in
Figure 5. In Figure 5, for any value of λ, as N increases, the MAD and the MSE of the MLE
and the moment estimator decrease, suggesting that both estimates are asymptotically
unbiased and consistent.
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Figure 5. The MAD and the MSE of the MLE and moment estimator for the PISDL distribution
when λ = 0.5, 2.0, 5.0 and N = 1000, 2000, . . . , 10, 000.

3. Zero-Truncated Poisson-Improved Second-Degree Lindley Distribution

Truncation is a widely used trait in real-world situations in a variety of domains,
including industry [23–25], medicine [23,24], and many more. The progression of a disease
that is not an increasing function but will stabilize after a certain period is an example
of truncation. Therefore, a flexible truncated count data distribution is introduced by
truncating the PISDL distribution at zero, yielding a zero-truncated Poisson-improved
second-degree Lindley distribution (ZTPISDL). It was observed that the PISDL and the
PL distributions are equally competent based on the two datasets considered in Section 5.
Therefore, it is expected that the ZTPISDL distribution to be as competent as the zero-
truncated PL (ZTPL) distribution. The development and the statistical properties of the
ZTPISDL distribution are discussed in the following sections.

3.1. Probability Mass Function of the ZTPISDL Distribution

Definition 2. A random variable Y is said to follow a ZTPISDL distribution if it obeys X|λ ∼ PISDL(λ)
and p(y) = f (y)/[1 − f (0)], where p(y) is the pmf of Y.

Theorem 2. Let Y be a random variable that follows the ZTPISDL with parameter λ, and then the
pmf of Y is given as

p(y) =
λ3

λ4 + 6λ3 + 13λ2 + 8λ + 2

[
y(y + 5) + 2λ(y + 2) + λ2 + 5

(λ + 1)y

]
, y = 1, 2, 3, . . . (10)

Proof. Using Definition 2, the pmf of Y is obtained. □

Figure 6 shows the pmf plot for the ZTPISDL distribution that follows similar shapes
as the pmf plot for the PISDL distribution, which is skewed to the right, unimodal, and
decreasing. Using the log of p(y) defined in (10), the mode ymod of the distribution can be
obtained by solving the following formula:

ymod =
−D +

√
D2 − 4AE

2A
,

where A = ln(λ + 1), D = A(2λ + 5)− 2, and E = A
(
λ2 + 4λ + 5

)
− 2λ − 5.
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3.2. Some Statistical Properties of the ZTPISDL Distribution

If Y ∼ ZTPISDL for y = 1, 2, 3, . . ., then the kth moment for Y can be easily obtained
because it satisfies E

(
Yk) = E

(
Xk)/[1 − f (0)]. The first two moments in the origin are

obtained and can be, respectively, written as

E(Y) =
(λ + 1)3(λ2 + 4λ + 6

)
λ(λ4 + 6λ3 + 13λ2 + 8λ + 2)

,

E
(
Y2) = (1 + λ)3((λ + 2)

(
λ2 + 4λ + 6

)
+ 4(3 + λ)

)
λ2(2 + λ(1 + λ)(8 + λ(5 + λ)))

.

Using a similar approach as the IODX for X, the index of dispersion for Y (IODY) can
be written as

IODY =
Var(Y)

E(Y)
=

1
λ
− 2(2 + λ)

6 + λ(4 + λ)
+

4 + 2λ(8 + λ(5 + λ))

2 + λ(1 + λ)(8 + λ(5 + λ))
.

Based on the IODY, the ZTPISDL distribution is underdispersed (overdispersed) when
λ > (<)1.51494. The ZTPISDL distribution is only equidispersed when λ = 1.51494. The
recurrence probability for Y is similar for X, except the x is substituted with y because

p(y + 1)
p(y)

=
f (y + 1)/[1 − f (0)]

f (y)/[1 − f (0)]
=

f (y + 1)
f (y)

.

The generating functions for both ZTPISDL and PISDL distributions can be related
since their pmfs are related as well. Therefore, their relationships are given, respectively, be-
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low so that the moment generating, the cumulant generating, and the probability generating
functions for Y can be worked out as follows:

MY(t) =
MX(t)− f (0)

1 − f (0)
,

CY(t) = ln[MY(t)] = ln[MX(t)− f (0)]− ln[1 − f (0)],

GY(t) = MY(ln t) =
MX(ln t)− f (0)

1 − f (0)
=

GX(t)− f (0)
1 − f (0)

.

3.3. Parameter Estimation of the ZTPISDL Distribution

The parameter of the ZTPISDL distribution can be estimated using the moment and

MLE techniques. The moment estimator of λ, hereby denoted as
∼
λ, can be obtained by

solving the following equation:

y =

(∼
λ + 1

)3(∼
λ

2
+ 4

∼
λ + 6

)
∼
λ

(∼
λ

4
+ 6

∼
λ

3
+ 13

∼
λ

2
+ 8

∼
λ + 2

) , (11)

or equivalently solving the quintic equation A
∼
λ

5
+ B

∼
λ

4
+ C

∼
λ

3
+ D

∼
λ

2
+ E

∼
λ + F = 0, such

that A = 1 − y, B = 7 − 6y, C = 21 − 13y, D = 31 − 8y, E = 22 − 2y, and F = 6. For MLE,
the log-likelihood function l is given as

l = 3n ln λ − n ln
(
λ4 + 6λ3 + 13λ2 + 8λ + 2

)
− ny ln(λ + 1)

+
∞
∑

y=1
ny ln

[
y(y + 5) + 2λ(y + 2) + λ2 + 5

]
.

By differentiating l with respect to λ, we obtain

dl
dλ

=
3n
λ

−
n
(
4λ3 + 18λ2 + 26λ + 8

)
λ4 + 6λ3 + 13λ2 + 8λ + 2

− ny
λ + 1

+
∞

∑
y=1

ny
2(λ + y + 2)

y(y + 5) + 2λ(y + 2) + λ2 + 5
, (12)

in which equating it to zero and solving it implies the MLE for λ, which is denoted as λ̂.
Equivalently, one can directly maximize the l directly to obtain a similar result.

3.4. Simulation Study

A simulation study is conducted to assess the performance of the obtained estimators
for the parameter of the ZTPISDL distribution. The algorithm for the simulation study
is similar to the one in Section 2.4, except that the data are generated using the ZTPISDL
distribution. Similarly, R software is used, and the estimated parameter using MLE is
obtained using the optim command to optimize the log-likelihood value. The findings of
the simulation study are shown in Figure 7. Figure 7 shows that for any value of λ, as
N increases, the MAD and the MSE of both estimates fall, indicating that they are both
asymptotically unbiased and consistent.

When dealing with a truncated distribution, the population size is usually unknown
and needs to be estimated. Assuming that a population follows the ZTPISDL distribution,
a population size estimator is developed and studied. The discussion on the population
size is provided in the next section.
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4. Population Size Estimation
4.1. Horvitz–Thompson Estimator under ZTPISDL Distribution (HT-ZTPISDL)

A popular estimator for the population size is the Horvitz–Thompson estimator [36],
which includes information from both truncated and untruncated distributions. A Horvitz–
Thompson estimator has the following form:

N̂ =
n

1 − Pr(X = 0|ω̂)
,

where ω̂ is the estimator for ω for a distribution and n is the sample size. Basically, the
estimated parameter of the truncated distribution is substituted into the probability mass
function of the untruncated distribution for the unobserved events. The estimator for
the population size N̂, which follows a ZTPISDL distribution in the form of the Horvitz–
Thompson estimator (HT-ZTPISDL), is given as

N̂ =
n
(
λ̂ + 1

)3(
λ̂2 + 2λ̂ + 2

)
λ̂4 + 6λ̂3 + 13λ̂2 + 8λ̂ + 2

, (13)

where λ̂ is the MLE for λ in the ZTPISDL distribution.
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4.2. Variance and Confidence Interval for HT-ZTPISDL

Böhning [37] has provided a simple yet informative method for obtaining a variance
for any population size estimator using the conditional expectation technique. The variance
of HT-ZTPISDL can be written as

Var
(

N̂
)
= Varλ̂,n

[
n

g
(
λ̂
)] = Varn

{
Eλ̂|n

[
n

g
(
λ̂
)]}+ En

{
Varλ̂|n

[
n

g
(
λ̂
)]}, (14)

where g(λ) = 1 − f (0). Observe that the variation in estimating the population size comes
from two sources of variation. The first term in Equation (14) explains the binomial variation
involved in sampling n units of data with population size N and probability g(λ) [37]. The
second term in Equation (14) explains the variation that occurs when estimating parameter
λ using n observed data [37]. Using the delta method for the first term of Equation (14),
we obtain

Eλ̂|n

[
n

g
(
λ̂
)] =

n
g(λ)

.

As n ∼ binomial(N, g(λ)), we obtain

Varn

{
Eλ̂|n

[
n

g
(
λ̂
)]} = Varn

[
n

g(λ)

]
=

Ng(λ)[1 − g(λ)]
g(λ)2 .

The equation above is further estimated by substituting Ng(λ) with n and λ with
λ̂, yielding

V̂arn

{
Eλ̂|n

[
n

g
(
λ̂
)]} ≈

n
[
1 − g

(
λ̂
)]

g
(
λ̂
)2 .

For the ZTPISDL distribution, we obtain

g(λ) =
λ4 + 6λ3 + 13λ2 + 8λ + 2

(λ + 1)3(λ2 + 2λ + 2)
.

Therefore,

V̂arn

{
Eλ̂|n

[
n

g
(
λ̂
)]} ≈

nλ̂3(λ̂ + 1
)3(

λ̂2 + 2λ̂ + 2
)(

λ̂2 + 4λ̂ + 5
)(

λ̂4 + 6λ̂3 + 13λ̂2 + 8λ̂ + 2
)2 . (15)

Now, consider the second term of Equation (14), and assume that

En

{
Varλ̂|n

[
n

g
(
λ̂
)]} ≈ Varλ̂|n

[
n

g
(
λ̂
)].

Using the delta method, we obtain

Varλ̂|n

[
n

g
(
λ̂
)] = n2Varλ̂|n

[
1

g
(
λ̂
)] ≈ n2

[
g′(λ)
g(λ)2

]2

Var
(
λ̂
)
,

where Var
(
λ̂
)
= I−1(λ)/n and I(λ) is given in Equation (9). Therefore,

Varλ̂|n

[
n

g
(
λ̂
)] =

nλ4(λ + 1)4(λ4 + 10λ3 + 37λ2 + 52λ + 30
)2

(λ4 + 6λ3 + 13λ2 + 8λ + 2)4 I−1(λ).
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By substituting λ with λ̂, the second term of Equation (14) can be estimated as

Ên

{
Varλ̂|n

[
n

g
(
λ̂
)]} =

nλ̂4(λ̂ + 1
)4(

λ̂4 + 10λ̂3 + 37λ̂2 + 52λ̂ + 30
)2(

λ̂4 + 6λ̂3 + 13λ̂2 + 8λ̂ + 2
)4 I−1(λ̂). (16)

By combining Equations (15) and (16), the variance of the HT-ZTPISDL can be esti-
mated as

V̂ar
(

N̂
)
=

nλ̂3(λ̂ + 1
)3(

λ̂2 + 2λ̂ + 2
)(

λ̂2 + 4λ̂ + 5
)(

λ̂4 + 6λ̂3 + 13λ̂2 + 8λ̂ + 2
)2

+
nλ̂4(λ̂ + 1

)4(
λ̂4 + 10λ̂3 + 37λ̂2 + 52λ̂ + 30

)2(
λ̂4 + 6λ̂3 + 13λ̂2 + 8λ̂ + 2

)4 I−1(λ̂).
(17)

Therefore, the 95% confidence interval for the estimator can be written as N̂ ∓ z0.025√
ˆVar
(

N̂
)
, where z0.025 = 1.96.

4.3. Simulation Study

A simulation study is conducted to assess the performance of the HT-ZTPISDL esti-
mator in estimating the population size when the data are generated from the ZTPISDL
distribution. The algorithm for the simulation study is as follows:

Step 1: Generate N = 1000, 2000, . . . , 10, 000 random data, which follow the ZTPISDL
distribution with λ = 0.5.

Step 2: Obtain λ̂ using the MLE and use λ̂ to obtain N̂.
Step 3: Repeat Steps 1–2 for a total of 2000 iterations and obtain the estimates.
Step 4: Calculate the relative absolute error, RAB values, and the relative standard de-

viation, RSd values, given, respectively, as RAB =
∣∣∣N̂ − N

∣∣∣/N and RSd =
1
N√

∑2000
i=1

(
N̂ − N̂

)2
/2000, where N̂ = ∑2000

i=1 N̂/2000.

Step 5: Repeat Steps 3–4 for λ = 2.0, 5.0.

R software is used to obtain λ̂ using the optim command, and N̂ is obtained by plugging
in λ̂ in Equation (10). The results of the simulation study are presented in Figure 8. In this
figure, for any value of λ, as N increases, the MAD and the MSE of N̂ decreases, suggesting
that N̂ is asymptotically unbiased and consistent.
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5. Medical Data Applications

The applications in the medical datasets are segregated into three subsections with
respect to the PISDL distribution, the ZTPISDL distribution, and the estimation of the
population size. For a comparison of the model fittings, Akaike’s information criterion,
AIC [38], and Bayesian information criterion, BIC [39], are used.

5.1. Model Fittings Using the PISDL Distribution

Two datasets on the number of dicentric chromosomes after being exposed to different
doses of radiation (0.405 and 0.600) that were studied by Puig and Barquinero [40] are
considered in fitting using the PISDL distribution. The two datasets are overdispersed
with dispersion values of 1.2704 and 1.2178, respectively. Since the PISDL distribution is
closely related to the Poisson and the PL distributions, the model fittings from the PISDL
distribution are compared with those from the Poisson and the PL distributions. The results
of the model fittings for the two datasets using the three distributions are summarized in
Tables 1 and 2.

Table 1. Model fittings of the number of dicentric chromosomes after being exposed to a 0.405
radiation dose using Poisson, PL, and PISDL distributions.

x nx

Distributions

Poisson PL PISDL
(MLE)

PISDL
(Moment)

0 437 426.55 433.87 433.73 433.64
1 66 84.50 72.04 72.30 72.36
2 15 8.37 11.81 11.75 11.77
3 1 0.55 1.91 1.87 1.88
4 1 0.03 0.37 0.35 0.37

Total 520 520.00 520.00 520.00 520.00

Parameter
λ̂ 0.1981 - 6.5464 6.5392
θ̂ - 5.7953 - -

Max log-likelihood −285.14 −279.40 −279.45
AIC 572.27 560.80 560.90 -
BIC 576.52 565.05 565.15 -
χ2 11.55 1.13 1.23 1.22
df 1 1 1 1

p-value 0.0007 0.2878 0.2674 0.2694
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Table 2. Model fittings of the number of dicentric chromosomes after being exposed to a 0.600
radiation dose using Poisson, PL, and PISDL distributions.

x nx

Distributions

Poisson PL PISDL
(MLE)

PISDL
(Moment)

0 473 456.69 475.79 474.91 475.07
1 119 147.65 117.81 118.96 118.88
2 34 23.87 28.53 28.55 28.50
3 3 2.57 6.79 6.64 6.62
4 2 0.22 2.08 1.94 1.93

Total 631 631.00 631.00 631.00 631.00

Parameter
λ̂ 0.3233 - 4.4001 4.4046
θ̂ - 3.7420 - -

Max log-likelihood −469.65 −464.09 −463.96
AIC 941.30 930.17 929.91 -
BIC 945.75 934.61 934.36 -
χ2 11.85 2.77 2.54 2.54
df 1 2 2 2

p-value 0.0006 0.2503 0.2808 0.2808

In both tables, the Poisson distribution does not fit the data based on the p-value. On
the other hand, the model fittings based on both PL and PISDL distributions gave similar
AIC and BIC values, as well as non-significant p-values, indicating that both distributions
can be used for describing the number of dicentric chromosomes after being exposed to
radiation of different doses. However, the first dataset was fitted better by the PL distribu-
tion, whereas the second dataset was fitted better by the PISDL distribution. Therefore, it is
reasonable to suggest that both PL and PISDL distributions are equally competent and can
be selected as the best distributions in explaining the number of dicentric chromosomes
after being exposed to two different doses of radiation.

The comparison between the empirical plots of the data and the fitted values based
on Equation (1) in Theorem 1 for the considered datasets, (i) the number of dicentric
chromosomes after being exposed to a 0.405 radiation dose, and (ii) the number of dicentric
chromosomes after being exposed to a 0.600 radiation dose are presented in Figure 9.

5.2. Model Fittings Using ZTPISDL Distribution

A dataset on the number of positive samples of Salmonella data, which was initially
given in a survey study by Snow et al. [41] and later summarized by Arnold et al. [42], is
considered in model fitting using the zero-truncated Poisson (ZTP), the zero-truncated PL
(ZTPL), and the ZTPISDL distributions. The data refer to the number of farms with at least
one positive sample of Salmonella. The dataset is overdispersed with a dispersion value of
1.4381. The results of the model fittings are given in Table 3.

In Table 3, the ZTP distribution does not provide a good fit to the data based on the
p-value. On the contrary, the ZTPISDL and the ZTPL distributions provide a good fit to
the data based on the AIC and BIC values, as well as the non-significant p-value. However,
the dataset was fitted better by the ZTPISDL distribution. Therefore, this suggests that the
ZTPISDL is the best distribution in describing the number of positive samples of Salmonella
data. The comparison between the empirical plots of the data and the fitted value based on
Equation (10) in Theorem 2 for the above dataset is presented in Figure 10.
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Figure 9. Plots of the empirical (vertical black line) and the fitted (blue line) for (i) the number of
dicentric chromosomes after being exposed to a 0.405 radiation dose and (ii) the number of dicentric
chromosomes after being exposed to a 0.600 radiation dose.

Table 3. Model fittings of the number of positive samples of Salmonella using the ZTP, ZTPL, and
ZTPISDL distributions.

y ny

Distributions

ZTP ZTPL ZTPISDL
(MLE)

ZTPISDL
(Moment)

1 17 7.88 15.06 14.01 14.00
2 9 12.12 11.55 11.62 11.62
3 5 12.44 8.45 8.82 8.82
4 6 9.57 5.99 6.32 6.32
5 5 5.89 4.15 4.34 4.34
6 5 3.02 2.83 2.89 2.89
7 6 2.08 4.97 5.00 5.01

Total 53 53.00 53.00 53.00 53.00

Parameter
λ̂ 3.0778 - 0.8932 0.8928
θ̂ - 0.6660 - -

Max log-likelihood −110.64 −105.28 −105.10
AIC 223.27 212.55 212.19 -
BIC 225.24 214.53 214.16 -
χ2 24.10 3.61 4.16 4.16
df 4 3 4 4

p-value <0.0001 0.3068 0.3848 0.3848
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Figure 10. A plot of the empirical (vertical black line) and the fitted values (blue line) for the number
of positive samples of Salmonella.

5.3. Estimating Population Size

The dataset studied in Section 5.2 on the number of positive samples of Salmonella
data is considered to estimate the population size of the sample. The Horvitz–Thompson
estimator based on the proposed ZTPISDL distribution is compared with those based
on the ZTP and the ZTPL distributions. The Horvitz–Thompson estimators based on the
ZTP [43,44] and the ZTPL [32] distributions are, respectively, given as

N̂ZTP =
n

1 − exp
(
−λ̂ZTP

) ,

and

N̂ZTPL =
n
(
θ̂ + 1

)3

θ̂2 + 3θ̂ + 1
,

where λ̂ZTP refers to the MLE of λ for the ZTP distribution and θ̂ refers to the MLE of θ for
the ZTPL distribution. The estimated population sizes and their corresponding standard
deviations, as well as the lower and upper limits for the 95% confidence interval, are
presented in Table 4. Based on Table 4, the estimated population size based on the ZTPISDL
distribution using the MLE is 66.64 with a 95% confidence interval between 57.04 and 76.24.
Since the ZTPISDL distribution based on the MLE provides the best fit for the data (refer to
Table 3), the resulting estimated population size is acceptable.
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Table 4. The estimated population size, the standard deviation, and the lower and upper limits
for the 95% confidence interval of the population size estimator based on the ZTP, ZTPL, and
ZTPISDL distributions.

Distributions Estimated N̂ SD 95% Lower
Limit

95% Upper
Limit

ZTP 55.56 1.761 52.11 59.01
ZTPL 71.21 4.045 63.28 79.14

ZTPISDL (MLE) 66.64 4.896 57.04 76.24
ZTPISDL (Moment) 63.10 4.961 53.38 72.82

6. Conclusions, Limitations, and Future Research

A tractable one-parameter Poisson-improved second-degree Lindley (PISDL) distribu-
tion has been proposed to address the need for modeling count data exhibiting overdisper-
sion. This distribution is composed of three negative binomial distributions, each with fixed
mixing proportions and parameters, allowing for the fitting of datasets originating from
three sub-populations whose modes are proximal. However, if the three modes are far from
each other and clearly visible from the plots of the datasets, the PISDL distribution may not
be a good candidate for model fittings. The hazard rate function for the PISDL distribution
showed an increasing shape. Parameters of the PISDL distribution have been estimated
using maximum likelihood estimation (MLE) and moment methods, and both were found
to be asymptotically unbiased and consistent. It has been observed from model fittings that
the PISDL distribution performs on par with the PL distribution and surpasses the standard
Poisson distribution in describing the number of dicentric chromosomes post-exposure to
various radiation doses.

Given that data may not always present the frequency of unobserved events and
exhibit dispersion, methodologies like zero truncation or the size-biased approach are
employed. Zero truncation is a commonly favored method for handling datasets lacking
frequencies of non-observed events. Hence, a zero-truncated version of the proposed
distribution, named the zero-truncated PISDL (ZTPISDL) distribution, has been proposed to
accommodate data exhibiting either over- or underdispersion. Parameters of the ZTPISDL
distribution estimated by the MLE and moment methods have also been shown to be
asymptotically unbiased and consistent. When applied to datasets, the MLE technique for
estimating parameters of the ZTPISDL distribution has provided the best fit in comparison
with zero-truncated Poisson and zero-truncated PL distributions.

When the population size is unknown due to the absence of frequencies for non-
observed events in positive count data, estimation has been conducted using the Horvitz–
Thompson estimator based on the ZTPISDL distribution. Since the ZTPISDL distribution
has provided the best fit for the dataset considered in this study, the acceptance of the
resulting estimated population size for the number of positive Salmonella samples is
justified. It is suggested that this population size estimate may serve as a lower bound to
the actual population size, especially when the ZTPISDL distribution is extended to linear
models with the inclusion of relevant covariates. Moreover, the derivation of the variance
and confidence interval for the population size estimator is intended to assist policymakers
in revising rules and guidelines pertaining to the population, which will, in turn, benefit
the population at large.

Despite its flexibility, the PISDL distribution’s mixing proportion is solely dependent
on λ, which consequently limits its flexibility. By introducing a new parameter (denoted as
α) to influence the mixing proportion alongside λ, greater flexibility is achieved, resulting
in a more adaptable PISDL distribution. This would, in turn, lead to a more versatile
ZTPISDL distribution and improved estimates for population size.

Further research is anticipated to explore additional modifications and applications
of the PISDL distribution. These include, but are not limited to, actuarial measures, such
as value-at-risk and tail value-at-risk, reliability measures, like hazard rate and entropy,
various forms of inflated models, including zero-inflated, k-inflated, and zero-one-inflated
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distributions, and weighted models, like size-biased and area-biased distributions. These
enhancements are expected to broaden the utility of the PISDL distribution, making it a
competitive model in the realm of the statistical literature.
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