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Abstract: HX-groups are a natural generalization of groups that are similar in construction to
hypergroups. However, they do not have to be considered as hypercompositional structures like
hypergroups; instead, they are classical groups. After clarifying this difference between the two
algebraic structures, we review the main properties of HX-groups, focusing on the regularity property.
An HX-group G on a group G with the identity e is called regular whenever the identity E of G
contains e. Any regular HX-group may be characterized as a group of cosets, and equivalent
conditions for describing this property are established. New properties of HX-groups are discussed
and illustrated by examples. These properties are uniformity and essentiality. In the second part of
the paper, we introduce a new algebraic structure, that of HX-polygroups on a polygroup. Similarly
to HX-groups, we propose some characterizations of HX-polygroups as polygroups of cosets or
double cosets. We conclude the paper by proposing several lines of research related to HX-groups.

Keywords: HX-group; hypercompositional structure; coset; double coset; polygroup; regularity;
uniformity; essentiality
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1. Introduction

The term hypergroup has appeared in the mathematical history in different periods
(unfortunately) for defining different generalizations of the classical algebraic concept of
groups. This might create some confusion in terminology. The term has been used in a
variety of contexts; however, all definitions share some common features, such as the use
of a binary operation or a multivalued operation satisfying certain axioms. First, it was
introduced in 1934 by the French mathematician F. Marty to define a new algebraic structure
that represents the key element of hypercompositional algebra. A hypergroup in the sense
of Marty [1] is a non-empty set H endowed with a hyperoperation (this is a multivalued
function) ◦ : H × H −→ P∗(H), where P∗(H) denotes the collection of all non-empty
subsets of H, satisfying two properties: associativity and reproducibility (a formal definition
is given in the preliminaries). It is worth mentioning here that the hyperoperation “◦” of
the hypergroup H can be extended to a binary operation on P∗(H) for any two arbitrary
non-empty subsets A and B of H as follows: A ◦ B =

⋃{a ◦ b | a ∈ A, b ∈ B}. In the same
period, more exactly between 1937 and 1939, a group of American mathematicians, led
by O. Ore, M. Dresher and J.E. Eaton, studied “the grouplike systems with non-unique
multiplication” [2], calling them multigroups [2–5]. Despite this variation in terminology,
these multigroups are in fact Marty’s hypergroups and there was no further continuation
of these studies.

The name hypergroup has been used also to refer to other different algebraic objects.
One belongs to McMullen [6], who defined hypergroups through commutative rings, while
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the second notion of a hypergroup was introduced by Sunder et al. [7], as distinguished
linear bases of a complex unital associative algebra satisfying particular conditions. Hy-
pergroups in harmonic analysis date back to 1973, when C. Dunkl [8] introduced them
as locally compact spaces on a convolution structure on their measures. The theories of
these hypergroups has been developed nowadays in parallel and separately from that of
Marty’s hypergroups.

A third moment in the past when the term “hypergroup” was used was around
1985, when three Chinese mathematicians, HongXing Li, QinZhi Duan and PeizHuang
Wang, defined an “upgrade structure of a group” [9]. Two years later, Li [10] renamed
this algebraic object with the term HX-group. Starting from a group (G, ·), a non-empty
subset G of P∗(G) is called an HX-group on G if it is a group with respect to the binary
operation ◦ : P∗(G)×P∗(G) −→ P∗(G) defined by A ◦ B = {a · b | a ∈ A, b ∈ B}. Notice
the similarity between this operation and the one extending from a hyperoperation, that,
on one hand, led to some confusion, that have already been clarified by Cristea et al. [11].
On the other hand, this similarity was a source of inspiration for P. Corsini, the leader of
the Italian school of hypergroup theory and the author of the pioneering book [12] on this
topic, who noticed a natural link between HX-groups and algebraic hypercompositional
structures. To any HX-group (G, ◦) with the underlying set G, Corsini [13] associated a
hypergroupoid (G∗, ◦̂), where G∗ = ∪A∈G A and x◦̂y = ∪A,B∈G{x ◦ y | x ∈ A, y ∈ B}. He
called this structure a Chinese hypergroupoid and studied it for the group Z/nZ [14], finding
a condition under which it is a hypergroup. HX-groups with the underlying set being the
dihedral group Dn have been investigated by Sonea [15], who has calculated the fuzzy
grade [16,17] and the commutativity degree [18] of their associated Chinese hypergroups.

One of the most important types of hypergroups is represented by polygroups, intro-
duced by Comer [19] in 1984 in relation to color schemes and relation algebras. He proved
that the algebra associated with a color scheme is in fact a polygroup and that the system
formed with the double cosets of a group G modulo an arbitrary subgroup H is again
a polygroup (see the construction at the end of Section 2). He also presented a method
to obtain polygroups from cogroups [20]. Polygroups can be obtained also from groups,
as Jafarpour et al. showed in [21]. The same term, polygroup, appeared also in [22], but
without a future development. Polygroups are regular, reversible hypergroups with a
unique scalar identity. The same structure had already appeared in the literature but with
a different name, i.e., quasicanonical hypergroups [23,24]. Its commutative version, i.e., the
canonical hypergroup, dates back to the beginning of 1970s, when Mittas [25] studied it as an
independent structure in the framework of valuation theory, and not just as the additive
structure of a hyperfield. In fact, this was the way that canonical hypergroups appeared
in the first studies of Krasner [26] and have continued to be investigated as the additive
structure of the Krasner hyperfields and the hypercompositional structure with the most
applications in different areas, e.g., valuation theory [27–29], algebraic geometry [30], num-
ber theory, affine algebraic group schemes [31], matroids theory [32], tropical geometry [33],
and hypermodules [34]. The state of the art in hyperfield theory was included in an article
recently published by Ch. Massouros and G. Massouros [35], with many detailed answers
to several fundamental questions emerging in recent decades about Krasner hyperfields.
The foundations of hypergroup theory are excellently recalled in the review paper of the
previously mentioned two authors, where a lot of examples and constructions of hyper-
groups are proposed and explained to “highlight the particularity of the hypergroup theory
versus the abstract group theory” [36]. The article also contains a well-documented bibli-
ography that can be used to obtain an in-depth insight into hypercompositional algebra.
Both manuscripts, refs. [35,36], are a good resource for someone who wants to start to
learn about hypergroups and hyperfield theories, since they are open access and contain
the fundamental notions and results of these theories, supported by plenty of interesting
examples and comments related to their meaning, origins and applications.

The main characteristic of HX-groups is the one of being (under some conditions)
groups of cosets, and thus quotient groups, and this property is called regularity. After
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a brief preliminary section where we fix the terminology and recall the fundamental
concepts related to HX-groups and polygroups, Section 3 discusses in depth the equivalent
conditions under which an HX-group is regular, presenting also examples of HX-groups
not satisfying the regularity property. The study continues then with the investigation
of the other two properties of HX-groups, uniformity and essentiality, concluding that
any uniform regular HX-group can be written as a group of cosets (see Corollary 2). In
addition, any regular HX-group satisfying the essentiality condition is called strong and
any strong HX-group (G,G) is a quotient group, if G∗ = ∪{A | A ∈ G} is a subgroup
of G (see Corollary 3). The second part of the paper, covered in Section 4, is dedicated to
the introduction of the concept of HX-polygroups, having a polygroup as a support. We
characterize the HX-polygroups as polygroups of double cosets in the sense of Dresher–
Ore [4] (more details to follow in the next section). The paper ends with some conclusive
ideas and three concrete proposals for future work: connections with soft set theory, analysis
of the properties of the direct product of two HX-groups, and extension to HX-rings.

2. Preliminaries

In this section, we will briefly review the theory of HX-groups and that of polygroups
by recalling the main definitions and theorems and presenting several nontrivial exam-
ples. For more details, the readers are referred to the pioneering articles [9,10,37] and the
fundamental book [38] on polygroup theory.

2.1. HX-Groups

Since the first results on the theory of HX-groups were not consistent in terms of
notation, this problem was solved in [11], and here we will use the same terminology and
notation proposed there. From the beginning, we clarify that “·” represents a mapping
G × G −→ G on an arbitrary set G, while “◦” is used to define a mapping P∗(G)×P∗(G)
on the set P∗(G) = P(G) \ {∅}, representing the set of all non-empty subsets of G. Thus,
both mappings are binary operations and the second one should not be confused with a
multivalued operation that we will use to define (in the next subsection) a hypergroup or
a polygroup.

Definition 1 ([9,11]). Consider an arbitrary group (G, ·) and the set P∗(G) of all non-empty
subsets of G on which we define an operation by the law A ◦ B = {a · b | a ∈ A, b ∈ B} for any
A, B ∈ P∗(G). A non-empty subset G of P∗(G) is called an HX-group on G if (G, ◦) is a group,
with the neutral element denoted by E.

We will denote by e the neutral element of the group G and, as mentioned before, by E
the neutral element of the the group G. Similarly, the inverse of the element g in the group
G is denoted by g−1 and A−1 stays for the inverse of the element A in the group G, while
A⊖ = {a−1 | a ∈ A} is the inverse set of A. Moreover, we define G∗ = ∪{A | A ∈ G} and
it is easy to see that E and G∗ are both subsemigroups of the group G, as stated in [10].

Let us now illustrate these notions in the following examples.

Example 1 ([9]). Consider the additive finite group

G = Z2 ×Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)},

with the neutral element e = (0, 0). Set B0 = {(0, 0), (1, 0)}; B1 = {(0, 0), (0, 1), (0, 2)};
B2 = {(0, 0), (0, 2)}; B3 = {(0, 1), (1, 1)}; B4 = {(0, 2), (1, 2)}; B5 = {(1, 0), (1, 1), (1, 2)}.
Then, we obtain the following HX-groups:

B1,5 B1 B5

B1 B1 B5

B5 B5 B1



Axioms 2024, 13, 7 4 of 15

with the neutral element E = B1, where B5
−1 = B5 = B⊖

5 , and

B0,3,4 B0 B3 B4

B0 B0 B3 B4

B3 B3 B4 B0

B4 B4 B0 B3

Its neutral element is E = B0, while B3
−1 = B4 = B⊖

3 .

As we can see in the next example, the property A−1 = A⊖ does not hold for any
subset A of G.

Example 2 ([11]). Let (G, ·) = (R+, ·) be the multiplicative group of positive reals. For any
positive rational number a, take Ga = [a, ∞). Then, G = {Ga | a ∈ Q+} is a regular HX-
group on G with the neutral element E = [1, ∞). We immediately notice that E−1 = E, while
E⊖ = (0, 1].

These examples motivate the introduction of the following type of HX-group.

Definition 2 ([37]). An HX-group G on G is called uniform if for any subset A ∈ G the equality
A−1 = A⊖ holds.

The class of uniform HX-groups is characterized as follows.

Theorem 1 ([37]). An HX-group on G is uniform if and only if its neutral element E is a subgroup
of G.

The regularity property of HX-groups, introduced in [9], was then studied in [10]. We
recall that an HX-group (G,G) is called regular whenever e ∈ E. Moreover, if E is finite,
then (G,G) is a regular HX-group.

One of the main problems in the theory of HX-groups is the construction of the
HX-groups as quotient structures. This idea is illustrated in the following result.

Proposition 1 ([10,37]). Let H be a subgroup of an arbitrary group G and E be an idempotent
subset of G, i.e., E2 = E. If for all a ∈ H there is aE = Ea, then G = {aE | a ∈ H} is an HX-
group with the neutral element E. Moreover, if E is a normal subgroup of G, then the HX-group
G = {aE | a ∈ G} is regular and uniform.

Indeed, the surjection f : H −→ G defined by f (a) = aE, for any a ∈ H, is a group
homomorphism, i.e., f (ab) = (ab)E = (aE)(bE) = f (a) f (b), meaning that H/Ker f is
isomorphic with G. The set aE = {a · x | x ∈ E} is called the left quasi-coset of E, while the
right quasi-coset is Ea = {x · a | x ∈ E}.

In the finite case, the following properties are essential when one constructs an HX-
group with the support a finite group.

Theorem 2 ([10]). Let G be an HX-group with the support G and the neutral element E. Then,

(i) For any subset A of G, |A| = |E|, where |A| means the cardinality of the set A.
(ii) For any two subsets A and B in G such that A ∩ B ̸= ∅, it follows that |A ∩ B| = |E|.

These properties are better illustrated in the following example of an HX-group with
the support the dihedral group D4, formed with four rotations and four reflections.
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Example 3 ([15]). On the dihedral group D4 = ⟨ρ, σ | ρ4 = σ2⟩ = {e, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ},
consider the HX-group G1 = {{e, ρ2}, {ρ, ρ3}, {σ, ρ2σ}, {ρσ, ρ3σ}} represented by the following
Cayley’s table

⋆ {e, ρ2} {ρ, ρ3} {σ, ρ2σ} {ρσ, ρ3σ}
{e, ρ2} {e, ρ2} {ρ, ρ3} {σ, ρ2σ} {ρσ, ρ3σ}
{ρ, ρ3} {ρ, ρ3} {e, ρ2} {ρσ, ρ3σ} {σ, ρ2σ}
{σ, ρ2σ} {σ, ρ2σ} {ρσ, ρ3σ} {e, ρ2} {ρ, ρ3}
{ρσ, ρ3σ} {ρσ, ρ3σ} {σ, ρ2σ} {ρ, ρ3} {e, ρ2}

Every element of the HX-group G1 has cardinality 2 and its neutral element E = {e, ρ2}
contains the neutral element e of the support group, so G1 is a regular and uniform HX-group
because E = E−1 = E⊖.

In addition, it is worth noting that G1 is not the only HX-group with the support the dihedral
group D4, but there exist other two HX-groups G2 = {{e, ρ, ρ2, ρ3}, {σ, ρσ, ρ2σ, ρ3σ}} and G3 =
{{e}, {ρ}, {ρ2}, {ρ3}, {σ}, {ρσ}, {ρ2σ}, {ρ3σ}}, both satisfying the conditions of Theorem 2.
The general construction of HX-groups with the support dihedral group Dn is presented in [15].

2.2. Polygroups

In this subsection, we will briefly recall the terminology and notations related to
polygroups. New properties have been recently investigated by Sonea [39] and Al Tahan
et al. [40] in connection with the commutativity degree of finite polygroups. This property
for complete hypergroups has been investigated in [18].

Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of H. Let “◦”
be a hyperoperation on H; that is, “◦” is a function from H × H into P∗(H). If (a, b) ∈ H × H,
its image under “◦” in P∗(H) is denoted by a ◦ b, or briefly by ab if there is no confusion
and it is called the hyperproduct of the elements a and b. The hyperoperation is extended
to subsets of H in a natural way, that is, for non-empty subsets A, B of H, A ◦ B = ∪{a ◦ b |
a ∈ A, b ∈ B}. The notation a ◦ A is used for {a} ◦ A and A ◦ a for A ◦ {a}. Generally, the
singleton {a} is identified with its member a. The structure (H, ◦) is called a semihypergroup
whenever a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ H, i.e., whenever the hyperoperation is
associative. A semihypergroup is a hypergroup whenever a ◦ H = H ◦ a = H for all a ∈ H,
meaning that the reproduction axiom holds.

Since the polygroups have a similar structure to the one of groups, we will denote
the hyperoperation on a polygroup by “·”. This is a multivalued operation and it will not
be confused with the operation defined on a group and denoted in the same way. The
hypergroup (P, ·) is called a polygroup whenever the following conditions hold:

(1) P has a scalar identity e (i.e., e · x = x · e = x, for every x ∈ P);
(2) Every element x of P has a unique inverse x−1 in P ( i.e., e ∈ x · x−1 ∩ x−1 · x);
(3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

It is clear that any group can be viewed as a polygroup and that the following elemen-
tary properties hold: e−1 = e and (x−1)−1 = x. A non-empty subset K of a polygroup (P, ·)
is a subpolygroup of P whenever x, y ∈ K implies x · y ∈ K and x ∈ K implies x−1 ∈ K. A
subpolygroup N of a polygroup (P, ·) is normal whenever N · x = x · N for all x ∈ P. The
concept of the normal subhypergroup of a quasicanonical hypergroup, equivalently with
that of a normal subpolygroup of a polygroup, was defined for the first time by Massouros
in [24]. A very detailed and well-explained analysis of the relevant mathematical back-
ground that led to its definition is presented. Just a few years later, Corsini introduced the
concept of an invariant or normal part of a hypergroup and as a consequence also that of a
normal subhypergroup. In both studies, the above mentioned definition is given. However,
a different definition appears in [38] (Definition 3.3.2), saying that a subhypergroup N of a
polygroup P is normal if x−1 · N · x ⊆ N, but without implying the equality x · N = N · x,
for any x in P. Indeed, let N be a subhypergroup of a polygroup P satisfying the property
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x−1 · N · x ⊆ N. Since x−1 · N · x is a subset of N, it follows that there exists an element y in
N such that y /∈ x−1 · N · x. Suppose now by absurd that x · N = N · x. Then, there exists an
element z in N such that x · y ∩ z · x ̸= ∅. Thereby, y ∈ x−1 · N · x, which is a contradiction.
Thus, in order to not create confusion, we propose using the original definition given
by Massouros, and the one proposed by Davvaz should be used to define a new type of
subhypergroup/subpolygroup.

Given an arbitrary group G and an arbitrary subgroup (not necessarily normal) H of G,
the system G � H formed with all double cosets of G modulo H is the motivating example
of a polygroup (in fact it is a chromatic polygroup, being isomorphic with the algebra
of a color scheme, as proven by Comer [41] in his first studies on polygroups), already
appearing in a paper by Dresher and Ore [4]. Indeed, G � H = {HgH; g ∈ G} equipped
with the hyperoperation (Hg1H) · (Hg2H) = {Hg1hg2H | h ∈ H} is a polygroup with
the scalar identity H = HeH (where e is the neutral element of the group G), where the
inverse of the element HgH is (HgH)−1 = Hg−1H. This construction remembers the one
of a quotient group.

3. Regularity, Uniformity and Essentiality Properties in HX-Groups

In this section, we propose some equivalent conditions in that an HX-group can be
represented as a group of cosets. Also, we illustrate some examples of HX-groups that are
not groups of cosets.

We start this section with a general characterization of uniform HX-groups. For a
non-empty subset H of a group G, by H ⩽ G, we mean that H is a subgroup of G.

Theorem 3. For an HX-group G on G with the neutral element E, the following assertions are
equivalent:

(i) There exists X ∈ G such that X ⊆ E⊖.
(ii) E⊖ ∈ G.
(iii) E⊖ ⩽ G.
(iv) E ⩽ G.
(v) For all A ∈ G, A⊖ = A−1 holds, meaning that G is a uniform HX-group.
(vi) G∗ ⩽ G and for all A, B ∈ G such that A ⊆ B, it follows that A = B.
(vii) For all A ∈ G, A⊖ ∈ G holds.

Proof. (i) → (ii) Since X ̸= ∅, there exists x0 ∈ X such that x0 ∈ E⊖. Therefore, x−1
0 ∈ E

and hence e = x0x−1
0 ∈ x0E ⊆ XE = X. This implies that E = Ee ⊆ EX = X. Thus,

E ⊆ E⊖ and therefore E⊖ ⊆ (E⊖)⊖ = E, meaning that E = E⊖, and so E⊖ ∈ G.
(ii) → (iii) Let z1, z2 ∈ G such that z1, z2 ∈ E⊖. This means that z−1

1 , z−1
2 ∈ E and

then (z1z2)
−1 = z−1

2 z−1
1 ∈ E2 = E, implying that z1z2 ∈ E⊖. Thereby, E⊖ is closed under

the group operation. Since E ∈ G, it follows that E ̸= ∅ and so there exists a ∈ E. Thus,
e = aa−1 ∈ EE⊖ = E⊖, because E⊖ ∈ G and E is the neutral element of the group G. Finally,
for any z ∈ G such that z ∈ E⊖, it follows that z−1 ∈ E and then z−1E⊖ ⊆ EE⊖ = E⊖. We
can conclude that z−1 = z−1e ∈ z−1E⊖ ⊆ E⊖. Thus, clearly E⊖ ⩽ G.

(iii) → (iv) This is a clear implication that follows immediately from group properties.
(iv) ↔ (v) This is the assertion in Theorem 1.
(iv) → (vi) Since E ⩽ G, it follows that G∗ ⩽ G, according to [10,11]. Let us

prove now the second part of the assertion, supposing that A, B ∈ G, such that A ⊆ B.
Then, B−1 A ⊆ B−1B = E and therefore B−1 A(A−1) ⊆ EA−1 = A−1. Using the equiva-
lence between (iv) and (v), we can rewrite the last equality as B⊖ ⊆ A⊖, implying that
B = (B⊖)⊖ ⊆ (A⊖)⊖ = A, concluding that A = B.

(vi) → (iv) Since E is closed under the group operation, because E2 = E, it is enough
to prove that any inverse of an element in E is again in E. Take an arbitrary x in E. Since
x ∈ E ∈ G∗ and G∗ ⩽ G, it follows that x−1 ∈ G∗, meaning that there exists A ∈ G such
that x−1 ∈ A. It follows that x−1 A−1 ⊆ AA−1 = E, implying that A−1 ⊆ xE ⊆ EE = E
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and then, by the hypothesis, we have A−1 = E, equivalently with E = A. Since x−1 ∈ A, it
follows that x−1 ∈ E and therefore E ⩽ G.

(v) → (vii) This is an obvious implication.
(vii) → (ii) By the hypothesis, we know there exists A ∈ G such that A⊖ ∈ G. Thus,

we have A⊖(A⊖)−1 = E. In addition, since A = AE and therefore A⊖ = E⊖A⊖, we can
write A⊖(A⊖)−1 = E⊖[A⊖(A⊖)−1], meaning that E = E⊖E. Thereby, E⊖ = (E⊖E)⊖ =
E⊖E, leading to the equality E = E⊖. Clearly, now we have E⊖ ∈ G.

Proposition 2. Let G be a torsion group (i.e., every element of G has a finite order) and (G,G) be
an HX-group. Then, (G,G) is regular.

Proof. Since EE = E, we conclude that E is closed under the product of G. In addition, G
is a torsion group; thus, each element has a finite order and hence e ∈ E. Thus, (G,G) is a
regular HX-group.

Corollary 1. Any HX-group constructed on a finite group is regular.

The following result characterizes the regular HX-groups as groups of cosets.

Proposition 3. Let (G,G) be an HX-group. Then, the following assertions are equivalent:

(i) (G,G) is regular.
(ii) For any A ∈ G, there exists a ∈ A such that A = aE = Ea.

Proof. (i) → (ii) Let A be an arbitrary element in G. Then, E = AA−1 = A−1 A, meaning
that, for e ∈ E, there exist a ∈ A and b ∈ A−1 such that e = ab. It follows that bA ⊆
A−1 A = E and therefore abA ⊆ aE. Since we can write A = eA = abA ⊆ aE, it implies
that A ⊆ aE ⊆ AE = A, concluding that A = aE. Similarly, one proves that A = Ea.

(ii) → (i) Since E ∈ G, there exists a ∈ E such that E = aE. Thus, for a ∈ E, there
exists x ∈ E such that a = ax, meaning that x = e. Therefore, e ∈ E, so (G,G) is a regular
HX-group.

Corollary 2. Any uniform regular HX-group can be written as a group of cosets.

Proof. Let (G,G) be a uniform regular HX-group. For an arbitrary a ∈ G∗ = ∪{A | A ∈ G},
there exists A ∈ G such that a ∈ A. By Theorem 3(v), we know that A⊖ = A−1; thus, we
can write:

aEa−1 ⊆ AEA⊖ = AEA−1 = AA−1 = E,

meaning that E is a normal subgroup of G∗. Since (G,G) is regular, by Proposition 3, for
each A ∈ G, there exists a ∈ A such that A = aE. Thus, G = G∗

E = {aE | a ∈ G∗}.

In the following, we introduce and discuss the property of minimality/maximality of
the neutral element E of an HX-group.

Definition 3. In an arbitrary HX-group (G,G), we say that the neutral element E is ⊆-minimal (or
⊆-maximal) in G whenever E is a minimal (or maximal) element of G with respect to the inclusion.

Example 4 ([10]). Let (G,+) = (R,+) be the additive group of all real numbers and H be the
set of all integers and take E = {r ∈ R | r > 0} = (0,+∞). Then, G = {n + E | n ∈ H} is an
HX-group on G with the neutral element E. We note that the elements of G may form a countable
chain . . . ⊃ (−2,+∞) ⊃ (−1,+∞) ⊃ E ⊃ (1,+∞) ⊃ (2,+∞) ⊃ . . ., meaning that E is not
either ⊆-minimal or ⊆-maximal in G.
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Example 5. If the HX-group G with the neutral element E can be written as a subset of cosets, it
means it can be written as a partition, and thus A ∩ E = ∅ for any proper subset A of G, A ̸= E.
In other words, E is a ⊆-minimal and ⊆-maximal element of G.

Theorem 4. Let (G,G) be an HX-group. The following conditions are equivalent:

(i) E is ⊆-minimal in G.
(ii) E is ⊆-maximal in G.
(iii) For any A, B ∈ G such that A ∩ B ∈ G, A = B holds.
(iv) For any A, B ∈ G such that A ∪ B ∈ G, A = B holds.

Proof. (i) → (iii) Let A, B ∈ G such that A ∩ B ∈ G. For simplicity, denote C = A ∩ B.
Then, CA−1 ⊆ E and CB−1 ⊆ E, implying that CA−1 = CB−1 = E, since E is ⊆-minimal
in G. Therefore, C = CE = CA−1 A = EA = A and similarly C = B, leading to the equality
A = B.

(iii) → (i) Let A ∈ G such that A ⊆ E. Thus, A ∩ E = A ∈ G, implying that A = E,
and so E is ⊆-minimal in G.

(ii) → (iii) Let A, B ∈ G such that A ∩ B ∈ G. Taking C = A ∩ B, we may write
E = CC−1 ⊆ AC−1 and E = CC−1 ⊆ BC−1. It follows that E = AC−1 = BC−1 and hence
C = EC = AC−1C = AE = A, and similarly, we obtain C = B, implying that A = B.

(iii) → (ii) Let A ∈ G such that E ⊆ A. Thus, A ∩ E = E ∈ G, implying that A = E,
so E is ⊆-maximal in G.

(ii) → (iv) Let A, B ∈ G such that A ∪ B ∈ G. Denoting D = A ∪ B, we obtain that
E ⊆ A−1D and E ⊆ B−1D, leading to the equalities A−1D = B−1D = E, because E is
⊆-maximal in G. It follows immediately that D = ED = AA−1D = AE = A. Similarly,
one obtains D = B and thus A = B.

(iv) → (ii) Let A ∈ G such that E ⊆ A. Then, A ∪ E = A ∈ G implies that A = E and
therefore E is ⊆-maximal in G.

Theorem 5. Let (G,G) be an HX-group with E ∩ E⊖ ̸= ∅. Then, E is ⊆ -minimal in G if and
only if for any A ∈ G such that A ∩ E⊖ ̸= ∅, it follows that A = E.

Proof. Let E be ⊆-minimal in G and A ∈ G such that A ∩ E⊖ ̸= ∅. There exists a ∈ A ∩ E⊖,
and for x ∈ E it follows that xa ∈ EA = A, which implies that x ∈ Aa−1, with a−1 ∈ E.
Thus, x ∈ AE = A. Therefore, E ⊆ A and hence A−1E ⊆ A−1 A = E. Thus, A−1 ⊆ E, which,
by the minimality of E, leads to A−1 = E. This implies that E = AA−1 = AE = A.

Conversely, let A ∈ G such that A ⊆ E. Thus, E = A−1 A ⊆ A−1E = A−1. Since
E ∩ E⊖ ̸= ∅, it follows that A−1 ∩ E⊖ ̸= ∅. By the hypothesis, this implies that A−1 = E,
because A−1 ∈ G. Therefore, E = A and hence E is ⊆-minimal in G .

Remark 1. If (G,G) is a regular HX-group, the conditions of Theorem 5 are clearly satisfied.

Proposition 4. Let (G,G) be an HX-group such that E is ⊆-maximal in G. If G∗ ⩽ G, then
E ⩽ G too, and therefore G is a uniform HX-group.

Proof. Since e ∈ G∗, there exists A ∈ G such that e ∈ A. Then, E = eE ⊆ AE = A and
by the maximality of E, it follows that E = A and therefore e ∈ E, so (G,G) is a regular
HX-group. Applying Proposition 3, we know that for any X ∈ G there exists x0 ∈ X such
that X = x0E.

Let A, B ∈ G such that A ⊆ B. Accordingly with the above mentioned property,
there exist a ∈ A and b ∈ B such that A = aE and B = bE. Thus, aE ⊆ bE and therefore
E ⊆ a−1bE. Based on the maximality of E, we have E = a−1bE, equivalently with aE = bE.
Applying Theorem 3(vi), we conclude that E ⩽ G.
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Example 6. (i) Let R∗ = R \ {0} and G be the multiplicative group (R∗, ·). Take G =
{(−∞,−1), (1,+∞)}. The following assertions hold:
(i-1) (G,G) is an HX-group with the neutral element E = (1,+∞).
(i-2) E is ⊆-maximal in G.
(i-3) 1 /∈ E (and thus G is not regular) and for all a ∈ G∗, aE /∈ G.

(ii) Let Q∗ = Q \ {0} and G be the multiplicative group (Q∗, ·). For each n ∈ Z, take An = 2nN
and let G = {An | n ∈ Z}. Then, clearly we have:
(ii-1) (G,G) is an HX-group with the neutral element E = N.
(ii-2) E ⩽̸ G.
(ii-3) 1 ∈ E (and thus G is regular) and E is not ⊆-maximal in G.
(ii-4) Each element of G is a coset of E.

The following auxiliary result suggests the introduction of a new concept, i.e., that
of essentiality.

Lemma 1. Let (G,G) be a regular HX-group. For each X ∈ G with the property that X ∩ E ̸= ∅,
XE⊖ = EE⊖ holds.

Proof. For an arbitrary element X ∈ G such that X ∩ E ̸= ∅, there exists x ∈ X ∩ E and
since e = xx−1 with x−1 ∈ E⊖, we have e ∈ XE⊖. Thus, X−1 ⊆ X−1XE⊖, equivalently
with X−1 ⊆ EE⊖. Then, XX−1 ⊆ (XE)E⊖ = XE⊖, leading to E ⊆ XE⊖. Then, on one
hand, it follows that EE⊖ ⊆ XE⊖E⊖ = X(EE)⊖ = XE⊖.

On the other hand, since (G,G) is regular, by Proposition 3, there exists x0 ∈ X
such that X = x0E = Ex0. Since e ∈ EE⊖ ⊆ XE⊖, it follows that e ∈ EX⊖ and thus
X ⊆ XEX⊖ = XX⊖. Then, X−1X ⊆ X−1XX⊖, meaning that E ⊆ EX⊖, with X = x0E.
So, E ⊆ EE⊖x−1

0 , implying that Ex0 ⊆ EE⊖, i.e., X ⊆ EE⊖. From here, we immediately
obtain the other inclusion of the requested equality, i.e., XE⊖ ⊆ EE⊖E⊖ = E(EE)⊖ = EE⊖,
concluding the proof.

Definition 4. Let (G,G) be an HX-group.

(i) We say that E⊖ is essential in EE⊖, and denote this by E⊖ ◁G EE⊖, whenever for an arbitrary
A ∈ G such that A ⊆ EE⊖, it follows that A ∩ E⊖ ̸= ∅.

(ii) The HX-group (G,G) is called strong whenever it is regular and E⊖ ◁G EE⊖.

Example 7 ([11] Example 3.10). Consider the set G = {(a1, a2, a3) | a1 ∈ R \ {0}, a2, a3 ∈ Z}
with the operation

(a1, a2, a3) · (b1, b2, b3) = (a1 · b1, a2 + b2, a3 + b3),

where "+” and "·” are the usual addition and multiplication of real numbers. Clearly (G, ·) is a
group with the neutral element e = (1, 0, 0). For each n ∈ Z, take An = {(1, m, n) | m ∈ Z} and
define on G = {An | n ∈ Z} the operation An1 ◦ An2 = An1+n2 , for all n1, n2 ∈ Z. Thus, (G,G)
is an HX-group with the neutral element E = A0 ∋ e and hence E = E−1 = E⊖. This implies
that EE⊖ = E, so (G,G) is a strong HX-group.

Example 8 ([11] Example 3.11). Let G be the group (C \ {0}, ·). For each r ∈ R \ {0}, consider
the sets

zr = {reiφ|φ =
n
2k π, k, n ∈ N}.

Taking G = {zr | r ∈ R \ {0}}, for each r, s ∈ R \ {0}, define zr ◦ zs = zrs. Thus, (G,G) is
an HX-group with the neutral element E = z1, where z⊖1 = {e−iφ | φ = n

2k π, k, n ∈ N}. Thus,
for each zr ∈ G such that zr ⊆ EE⊖, it follows that |r| = 1. Since z1 and z−1 have non-empty
intersections with E⊖, we conclude that (G,G) is a strong HX-group.

Theorem 6. Let (G,G) be a regular HX-group. The following assertions are equivalent:



Axioms 2024, 13, 7 10 of 15

(i) For any A ∈ G such that A ∩ E ̸= ∅, it follows that A = E.
(ii) E⊖ ◁G EE⊖.

Proof. (i) → (ii) Let A ∈ G such that A ⊆ EE⊖. Suppose by the absurd that A ∩ E⊖ = ∅.
This means that A ∩ E = ∅, because otherwise, by the hypothesis, we would get A = E,
with E ∩ E⊖ ∋ e, since G is regular. Having A ⊆ EE⊖ and A ̸= ∅, there exists a ∈ A such
that a ∈ EE⊖. This implies that a = e1e−1

2 for some e1, e2 ∈ E. Thus, e1 = ae2 and hence
e1 ∈ AE = A. Therefore, e1 ∈ A ∩ E, which is a contradiction.

(ii) → (i) Let A ∈ G such that A ∩ E ̸= ∅. By Lemma 1, we have AE⊖ = EE⊖. On
one hand, for e ∈ E⊖, it follows that A = Ae ⊆ AE⊖ = EE⊖, implying that A ∩ E⊖ ̸= ∅.
Thus, there exists e1 ∈ E such that e−1

1 ∈ A. Thereby, e ∈ Ae1 ⊆ AE = A, which leads to
E = Ee ⊆ EA = A.

On the other hand, using the hypothesis, there exists e2 ∈ A ∩ E and thus A−1e2 ⊆
A−1 A = E. This implies that A−1 ⊆ Ee−1

2 ⊆ EE⊖, meaning that A−1 ∩ E⊖ ̸= ∅. Similarly,
as stated above, E ⊆ A−1. Therefore, A = AE ⊆ AA−1 = E, concluding that A = E.

We conclude this section with a sufficient condition under which a strong HX-group
G can be written as a group of cosets modulo the neutral element E of G.

Corollary 3. Let (G,G) be a strong HX-group.

(i) For any A ∈ G such that A ∩ E⊖ ̸= ∅, it follows that A = E.
(ii) If G∗ ⩽ G , then G = G∗

E .

Proof. (i) Since A ∩ E⊖ ̸= ∅, it follows that A⊖ ∩ E ̸= ∅. Thus, there exists z ∈ A⊖ ∩ E.
Having e = z−1z, we may conclude that e ∈ AE = A and therefore e ∈ A ∩ E. According
to Theorem 6, we immediately get A = E.

(ii) Using Corollary 2, it is enough to show that E ⩽ G. Let a ∈ E be an arbitrary
element, so a ∈ G∗ and hence a−1 ∈ G∗. Thus, there exists A ∈ G such that a−1 ∈ A. This
implies that e ∈ aA ⊆ EA = A and hence a = ae ∈ EA = A. Therefore, a ∈ E ∩ A. Now,
by Theorem 6, we get A = E. Thus, a−1 ∈ E and the proof is complete.

4. HX-Polygroups

The aim of this section is to extend the notion of HX-groups to the class of polygroups.
We then obtain conditions that characterize an HX-polygroup as a polygroup of cosets or
as a double coset polygroup.

Let (P, ·) be a polygroup and H br a non-empty subset of P∗(P). We say that H is an
HX-subset of P if for all (A, B) ∈ H2, there exists C ∈ H such that C ∩ A · B ̸= ∅.

Definition 5. Let (P, ·) be a polygroup and H be an HX-subset of P. We say that H is an
HX-polygroup on P if (H,⊙) is a polygroup with the hyperoperation defined as follows: for any
(A, B) ∈ H2,

A ⊙ B = {C ∈ H | C ∩ A · B ̸= ∅}.

We denote the polygroup (H,⊙) by (P,H).

Example 9. Let P be a polygroup with the scalar identity e and N be a normal subpolygroup of P.

Then, H = {Nx | x ∈ P} =
P
N

is the quotient polygroup and clearly (H, P) is an HX-polygroup

with the hyperoperation Nx1 ⊙ Nx2 = {Ny | Ny ∩ Nx1x2 ̸= ∅}.

Proposition 5. Let (G, ·) be a torsion group and G be an HX-group on G. Then, the hyperoperation
in Definition 5 reads A ⊙ B = {A · B}, for all (A, B) ∈ G2.

Proof. According to Proposition 2, every HX-group derived from a torsion group is regular,
so it is a group of cosets. Thus, there exists a unique C ∈ G such that C ∩ A · B ̸= ∅ for all
(A, B) ∈ G2, and hence A ⊙ B = {A · B} for all (A, B) ∈ G2.
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Example 10. Let H be a subgroup of an arbitrary group (G, ·). The system of all double cosets
G � H = {HxH | x ∈ G} is a polygroup. Since

HxH ⊙ HyH = {HzH | z ∈ G, HzH ∩ HxH · HyH ̸= ∅} = {HxhyH | h ∈ H},

we conclude that G = {HxH | x ∈ G} is an HX-polygroup on G that we will call the double coset
HX-polygroup.

According to Corollary 1, every HX-group on a finite group is regular, so it can be seen
as a group of cosets. A natural question arises: does this property also apply for HX-polygroups?
The following example answers this question negatively, so there exist finite polygroups on
which we may construct an HX-polygroup which is not a polygroup of cosets.

Example 11. On the set P = {e, a, b, c}, define the hyperoperation · as in the Cayley’s table below:

· e a b c
e e a b c
a a e b c
b b b c e, a
c c c e, a b

It is easy to check that (P, ·) is a polygroup with the scalar identity e. Considering the set
H = {{e, a}, {b, c}}, we obtain that H = (H,⊙) is the HX-polygroup defined by the following
Cayley’s table:

⊙ {e, a} {b, c}
{e, a} {e, a} {b, c}
{b, c} {b, c} {e, a}, {b, c}

Moreover, since {e, a} · x ̸= {b, c}, for all x ∈ P, we conclude that H is not a polygroup of
cosets. In addition, it is a double coset HX-polygroup. Indeed, H = HeH = HaH = {e, a} and
HbH = HcH = {b, c}.

Example 12. Let G = {0, 1, 2} be a cyclic group of order 3. Endow the set P = {{0}, {1, 2}}
with the hyperoperation ⊙ defined in the next Cayley’s table:

⊙ {0} {1, 2}
{0} {0} {1, 2}
{1, 2} {1, 2} P

Then, (P,⊙) is an HX-polygroup on G, which is not a polygroup of cosets nor a double coset
HX-polygroup.

Proposition 6. Let (P, ·) be a polygroup and H be an HX-polygroup on P which satisfies the
following conditions:

(i) The identity E of H is a subpolygroup of P.
(ii) x · i(A) ∩ E ̸= ∅ for all A ∈ H and x ∈ A.
(iii) A · E ∈ H for all A ∈ H.

Then, i(A) = {x−1 | x ∈ A} for all A ∈ H.

Proof. According to Condition (ii), for an arbitrary A ∈ H and x ∈ A, there exists y ∈ i(A)
such that x · y∩ E ̸= ∅. Now, let u ∈ x · y∩ E. Because E is a subpolygroup of P, there exists
u−1 ∈ E such that e ∈ u · u−1 ⊆ x · (y · u−1). Hence, x−1 ∈ y · u−1 ⊆ A⊖ · E. According
to Condition (iii), we have i(A) · E ∈ H, implying that i(A) · E ⊆ i(A)⊙ E = E (since
E is the identity of H) and thus x−1 ∈ i(A). Consequently, {x−1 | x ∈ A} ⊆ i(A) for
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all A ∈ H. Now, let an arbitrary a ∈ i(A). Since i(A) ∈ H and i(i(A)) = A, applying
Condition (ii), we have a · A ∩ E ̸= ∅. Thus, there exist b ∈ E and x ∈ A such that b ∈ a · x
and therefore a−1 ∈ x · b−1. Since E is a polygroup of P, it follows that b−1 ∈ E and hence
a−1 ∈ x · E ⊆ A · E, where A · E ∈ H, and therefore A · E ⊆ A⊙ A = A. Therefore, a−1 ∈ A
and thereby a = (a−1)−1 ∈ {x−1 | x ∈ A}. Thus, the proof is complete.

Theorem 7. Let (P, ·) be a polygroup and H be an HX-polygroup on P with the identity E which
satisfies the following conditions:

(i) i(A) = {a−1 | a ∈ A} for all A ∈ H.
(ii) A · i(A) = E for all A ∈ H.
(iii) K =

⋃
A∈H

A is a subpolygroup of P.

(iv) E · A ∈ H for all A ∈ H.

Then, (H,⊙) is a polygroup of cosets.

Proof. First note that, for each L ∈ H, Condition (iv) implies E · L = L, because {L} =
E ⊙ L = {C ∈ H | C ∩ E · L ̸= ∅} ⊇ E · L. In particular, it holds that E · E = E = i(E) and
thus E is a subpolygroup of P.

Now, suppose that A ∈ H and x ∈ A. We will prove that E · x = A = x · E. Let y ∈ A.
Since K · x = K, there exists u ∈ K such that y ∈ u · x. Therefore, u ∈ y · x−1 ⊆ A · i(A) = E
and hence y ∈ E · x. Thus, A ⊆ E · x. Since E · A = A, it follows that E · x ⊆ A.
Consequently, E · x = A. Now, we prove that x · E = A. Since i(A) ∈ H, by Condition (iii),
we have i(A) · i(i(A)) = E and hence i(A) · A = E. Because E · i(A) = i(A), we may
write A · E · i(A) = A · i(A) = E. This implies A · E · i(A) · A = E · A = A and hence
A · E · E = A. Thus, A · E = A and since x ∈ A, it follows that x · E ⊆ A. Similarly, one
can prove that A ⊆ x · E. Now, we show that E is normal in K. For this reason, let x ∈ K,
and so there exists A ∈ H such that x ∈ A. According to what we have proved above,
E · x = x · E = A. Thus, E is normal in K and H = K

E , which shows that H is a polygroup
of cosets.

Theorem 8. Let (G, ·) be a group and H be an HX-polygroup on G. If K =
⋃

A∈H A is a subgroup
of G, then we have

(i) e ∈ E, where e is the identity element of G and E is the scalar identity of H.
(ii) If X ∩ E ̸= ∅, then X = E for all X ∈ H.
(iii) If X ∩ Y ̸= ∅, then X = Y for all X, Y ∈ H.

Proof. (i) Since K is a subgroup of G, there exists A ∈ H such that e ∈ A. Thus, E = e · E ⊆
A · E and so A · E ∩ E = E ̸= ∅. Therefore, E ∈ A ⊙ E = {A} and hence E = A ∋ e.
(ii) If x ∈ X ∩ E, then there exists Y in H such that x−1 ∈ Y. Therefore, e = x−1 · x ∈ Y · E
and hence Y · E ∩ E ̸= ∅. Thus, E ∈ Y ⊙ E = {Y}, so E = Y. Since x ∈ E, x = x · e ∈ X · E
and hence X · E ∩ E ̸= ∅. Thus, X = E.
(iii) Now, suppose that a ∈ X ∩ Y. Since K is a subgroup of G, there exists Z ∈ H such
that a−1 ∈ Z. Thus, e = a−1 · a ∈ Z · X and hence, based on Item (i), we conclude that
Z · X ∩ E ̸= ∅. This implies that E ∈ Z ⊙ X, and so Z = i(X). Similarly, we have Z = i(Y)
and therefore X = Y.

The following theorem states a necessary and sufficient condition such that an HX-
polygroup constructed on a group G is a double coset polygroup.

Theorem 9. Let (G, ·) be a group and H be an HX-polygroup on G with the scalar identity E. If
K =

⋃
A∈H A is a subgroup of G, then H is a double coset HX-polygroup if and only if ExE ∈ H

for every x ∈ K.

Proof. First suppose that H is a double coset HX-polygroup. This means that H =
{HxH | x ∈ G} for some subgroup H of G. Since E is the scalar identity of H, it follows
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that e ∈ H ∩ E and according to Theorem 8, we have E = H. Therefore, ExE ∈ H for every
x ∈ K.

Conversely, let X ∈ H with x ∈ X. By Theorem 8, we have ExE ∈ H and ExE∩ X ̸= ∅.
Thereby, X = ExE.

5. Conclusions and Some Open Problems

Polygroups are a type of hypergroup with a very similar behavior to groups that can
also be generated from groups or again from other polygroups. They were introduced
by Comer, motivated by the example of double cosets of a group modulo a subgroup,
without knowing the initial works that appeared in Europe, in particular in Italy and
Greece, conducted by P. Bonansinga, C. Massouros and S. Ioulidis. Thus, it is natural to
extend the notion of HX-groups on a group to that of HX-polygroups on a polygroup
and investigate the regularity property and find conditions under which they can be
characterized as a double coset polygroup. In this paper, we have managed to do this
for HX-polygroups with groups as their support. In the future, we will continue our
investigation for HX-polygroups on polygroups that are not groups.

In our opinion, this work may open several new lines of research and here we will
suggest three of them.

1. Since polygroups have also recently been studied in relation to soft sets [42], it is worth
developing the theory of soft HX-groups [43] and its extension to soft HX-polygroups.

2. Another studied problem related to HX-groups is the one involving a direct product.
In particular, it will be interesting to know the relationship between the direct product
of the HX-groups (G1, G1) and (G2, G2) and the HX-group (G, G1 × G2) formed on
the direct product group G1 × G2. This aspect was very well studied in [44]. The
same problem can be extended and investigated for HX-polygroups, considering
the direct product P1 × P2 of two polygroups (P1, ·1) and (P2, ·2) equipped with the
hyperoperation defined in [38] by

(a1, b1) ◦ (a2, b2) = {(x, y) ∈ P1 × P2 | x ∈ a1 ·1 a2, y ∈ b1 ·2 b2}.

Then, one can study the relationship existing between the direct product of the HX-
polygroups (H1, P1) and (H2, P2) and the HX-polygroup (H, P1 × P2) created on the
direct product polygroup P1 × P2.

3. The final problem that we would like to propose for future work is related to HX-rings.
They were introduced in 1988 by Hong Xing Li, the same author who defined the
HX-groups. Considering a ring (R,+, ·), two binary operations can be defined on
P∗(R):

A ⊕ B = {a + b | a ∈ A, b ∈ B} and
A ⊙ B = {a · b | a ∈ A, b ∈ B}

endowing P∗(R) with a semigroup structure with respect to each of these two opera-
tions. Note that these operations are defined in the same way as the operation on an
HX-group. Moreover, the above-defined operations do not satisfy the distributivity
law, i.e., (A ⊕ B)⊙ C = (A ⊙ C)⊕ (B ⊙ C) and A ⊙ (B ⊕ C) = (A ⊙ B)⊕ (A ⊙ C),
but just the inclusive distributive laws, i.e., (A ⊕ B)⊙ C ⊂ (A ⊙ C)⊕ (B ⊙ C) and
A ⊙ (B ⊕ C) ⊂ (A ⊙ B)⊕ (A ⊙ C). Therefore, H. X. Li defined a non-empty subset F
of P∗(R) as a distributive class on R if, for any A, B, C ∈ F , the distributivity property
of the operations “⊕” and “⊙” holds. In addition, he noticed that a distributivity class
may not be closed with respect to operations and defined the concept of HX-rings as
follows.

Definition 6 ([45]). If a distributive class on a ring R with the operations “⊕” and “⊙”
forms a ring, then it is called an HX-ring. Denote by Q its zero element, i.e., the neutral
element with respect to the addition “⊕”. An HX-ring is called regular if 0 ∈ Q, where 0 is
the zero element of the ring R.
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The main result in [45] states that any regular HX-ring R on a ring R can be written
as a set of cosets R = {a + I | a ∈ H} with the zero element Q = I, where H is a
subring of R and I is semi-ideal with respect to H, meaning that I is a subsemigroup of
(R,+) and IH ∪ HI ⊂ I. We strongly believe that this topic deserves further and deeper
investigation, first by providing significant examples of HX-rings (that unfortunately are
completely missing from the original paper) and then by finding new properties similar to
the uniformity or essentiality defined for HX-groups.
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