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Abstract: In this work, we consider Cauchy-type problems for Laplace’s equation with a dynamical
boundary condition on a part of the domain boundary. We construct a discrete-in-time, meshless
method for solving two inverse problems for recovering the space–time-dependent source and
boundary functions in dynamical and Dirichlet boundary conditions. The approach is based on
Green’s second identity and the forward-in-time discretization of the non-stationary problem. We
derive a global connection that relates the source of the dynamical boundary condition and Dirichlet
and Neumann boundary conditions in an integral equation. First, we perform time semi-discretization
for the dynamical boundary condition into the integral equation. Then, on each time layer, we use
Trefftz-type test functions to find the unknown source and Dirichlet boundary functions. The accuracy
of the developed method for determining dynamical and Dirichlet boundary conditions for given
over-determined data is first-order in time. We illustrate its efficiency for a high level of noise, namely,
when the deviation of the input data is above 10% on some part of the over-specified boundary data.
The proposed method achieves optimal accuracy for the identified boundary functions for a moderate
number of iterations.

Keywords: Laplace’s equation; dynamical boundary conditions; inverse problems; Green’s identity;
meshless method; conjugate gradient method

MSC: 35J05; 35C11; 65M30; 65M38

1. Introduction

Elliptic partial differential equations (PDEs) with dynamical boundary conditions,
imposed on the whole or part of the domain boundary, describe processes of filtration in
various fields, including hydrology, chemistry, semi-conductors, and heat transfer in a solid
in contact with a fluid (see, e.g., refs. [1–3]).

Global existence results for 2D elliptic equations with dynamical boundary conditions
are obtained in ref. [2,4]. The existence of blow-up solutions to Laplace’s equation with
semi-linear dynamical boundary conditions is studied in refs. [5]. The authors of [6,7]
derived estimates of the convergence rate compatible with the smoothness of the differential
solutions to the Poisson’s equation with a dynamical interface and dynamic boundary
condition in special discrete Sobolev norms. In ref. [8], a weighted finite difference scheme
is constructed and studied for a numerical solution of Laplace’s equation with dynamical
boundary conditions.

Numerical identification source problems in mathematical physics using experimental
data have garnered great interest in recent decades (see, e.g., refs. [9–14]). Such inverse
problems belong to the class of ill-posed problems and their numerical analysis requires
special numerical identification techniques, such as the quasi-solution method, selection
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method, iterative optimization algorithms, and regularization procedures [11–19]. Among
them, the most popular is Tikhonov’s regularization method [20,21].

The inverse Cauchy problem for PDEs is to recover the missing boundary data from
given over-specified Dirichlet or Neumann data on a part of the domain boundary. Be-
ing ill-posed [22], it usually requires regularization techniques for numerically handling
the instability.

Inverse Cauchy problems for Laplace’s and Poisson’s equations can be used for
imaging corrosion damage in plates from electrostatic data (see, e.g., the references in
ref. [17]), for crack processes in elasticity [13,23], and thermal processes [24,25]. An
interesting engineering model that considers energy systems as full cells is described by an
unknown boundary data inverse problem for a Poisson’s equation in ref. [26]. Feyman’s
PDEs problem [27] is an inverse Cauchy problem with dynamical boundary conditions,
describing gravity capillary waves.

In this paper, we consider two inverse boundary source problems for Laplace’s equa-
tion with a dynamical condition on a part of the boundary. We determine the Dirichlet
boundary condition and source in the dynamical boundary condition under Dirichlet–
Neumann over-determined data.

Analytical results for inverse boundary condition identification (inverse Cauchy-type)
problems for elliptic PDEs, or particularly for Laplace’s equation, were proposed, for
example, in refs. [19,28–30]. A unique reconstruction of a constant heat transfer coefficient
was achieved in ref. [30] from a singular boundary energy measurement within a non-linear
Robin-type boundary condition linked to an elliptic equation. The existence and uniqueness
of the inverse source problem for elliptic equations were proved in ref. [19]. Moreover,
the continuous dependence of the inverse problem solution from the observations was
established. In ref. [28], the author reviews some open direct and inverse parabolic–elliptic
Laplace-type problems. In addition, the uniqueness of the Cauchy inverse coefficient
problem for elliptic equations, with a focus on Poisson’s equation, is discussed in [29].

Various numerical methods have been developed for solving the inverse Cauchy
problem for elliptic PDEs. For example, the Mann iterative regularization method in [31],
the Kozlov–Maz’ya–Fomin algorithm [32] was employed in ref. [26] to identify missing
boundary data for a 2D diffusion-reaction PDE, the coupled complex boundary method was
used in [33] to solve inverse Cauchy problems for a kind of elliptic PDE, and the collocation
method, where the collocation points are determined based on the Chebyshev nodes,
was used in [24] for solving Cauchy-type problems for Laplace’s equation. The authors
of [34] discuss the reconstruction of the Robin boundary condition by recovering the Robin
coefficient from given Cauchy data. This problem describes a process of electric impedance
tomography in which the electrical potential is the solution of Laplace’s equation.

Meshless methods are widely used for solving inverse Cauchy and source problems for
elliptic equations. The local meshless technique, based on the finite collocation method for
solving Cauchy problems of elliptic PDEs in annulus domains, was developed in ref. [35].
A novel meshless numerical solution method for the inverse Cauchy problem for a semi-
linear elliptic-type PDE in an arbitrary doubly connected plane domain was developed
in [36]. Meshless and iteration free methods, based on a collocation scheme using radial
basis functions, for solving the inverse wave problem for boundary identification and for
recovering the source term were proposed in refs. [37,38]. The radial basis collocation
method was used in ref. [39] for solving the parameter identification inverse Helmholtz
problem. In ref. [40], the authors constructed a numerical method for solving the inverse
Cauchy problem in a two-layered domain.

The method of fundamental solutions (MFS) is a meshless boundary collocation
method that belongs to the family of Trefftz methods [41]. In recent years, there has been
a lot of activity regarding the application of MFS for solving inverse problems. A brief
review of inverse Cauchy problems for Laplace’s and Poisson’s equations is presented in
refs. [13,41].
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One notorious approach for solving inverse Cauchy problems of PDEs is the use
of Green’s identity to obtain global functional dependence for deriving the unknown
boundary data from other boundary data.

The authors of [23] used Green’s formula to transform the inverse problem into a
moment problem for the numerical computation of a Cauchy problem. The second Green’s
identity was employed in refs. [18,42] to solve one-dimensional source and boundary
condition inverse problems.

In ref. [42], the inverse heat conduction problem for identifying two boundary func-
tions for given additional observations of the temperature was solved. Using the adjoint
Trefftz method, the authors constructed a global boundary integral equation method (BIEM).
A global domain BIEM was constructed in ref. [18] to restore the space–time-dependent
heat source under the measurements of the boundary and final time condition.

Based on the second Green’s identity, the author of [17] developed a global domain
boundary integral equation method for Laplace’s and Poisson’s equations. Then, they used
the integral equation and Trefftz functions to solve the inverse Cauchy problem for recover-
ing unknown boundary conditions and the inverse source problem for Poisson’s equation.

Fewer results in the literature are related to the numerical solution of inverse problems,
especially inverse Cauchy problems for PDEs with dynamical boundary conditions. In
ref. [43], the authors studied the inverse problem of numerically determining the initial
temperatures in a heat equation with dynamical boundary conditions under additional
data after a final time. The inverse problem was reduced to a Tikhonov minimization
problem. The authors of ref. [15] investigated the inverse problem for a heat equation
with dynamic boundary conditions for determining two source terms under final time
observations. They applied the weak solution approach to a construct gradient formula of
the cost functional and the corresponding adjoint problem. A numerical algorithm was
also proposed. An inverse problem of a weakly coupled parabolic–elliptic system with
dynamical boundary was studied in ref. [27]. This is a Cauchy problem for water waves,
which was first proposed by Richard Feynman.

In this work, we extend the ideas in ref. [17] and solve two inverse problems for recov-
ering space–time-dependent boundary functions in Laplace’s problem with a dynamical
boundary condition.

The remaining part of the paper is organized as follows. In Section 2, the forward
(direct) problem is formulated and its well-posedness is discussed. In Section 3, using the
second Green’s identity for the forward problem, we obtain the basic relation between
the dynamical boundary source, the boundary conditions, and the other input data. The
main results of the paper, concerning inverse problems are obtained in Section 4. Section 5
is devoted to the numerical test examples, which illustrate the efficiency of the proposed
algorithm. Some strengths, weaknesses, and limitations of the method are discussed in
Section 6. The paper finishes with some concluding remarks.

2. The Forward Problem

Let us introduce the rectangular spatial domain Ω = {(x, y) : 0 ≤ x ≤ l1, 0 ≤ y ≤ l2}
with boundary Γ = Ω \ Ω, where Ω = {(x, y) : 0 < x < l1, 0 < y < l2}. Let us denote
the lower/south boundary as Γ0 = {(x, y) : 0 < x < l1, y = 0}. Let T be the final time
and t ∈ [0, T] be the time variable. We consider the initial-boundary value problem for the
unknown function u(x, y, t)
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△u = 0, (x, y) ∈ Ω, t ∈ (0, T), (1)
∂u
∂t

=
∂u
∂y

+ g(x, t), (x, y) ∈ Γ0, t ∈ (0, T), (2)

u(0, y, t) = uW(y, t), y ∈ [0, l2], t ∈ (0, T), (3)

u(x, l2, t) = uN(x, t), x ∈ [0, l1], t ∈ (0, T), (4)

u(l1, y, t) = uE(y, t), y ∈ [0, l2], t ∈ (0, T), (5)

u(x, 0, 0) = u0(x), x ∈ [0, l1], (6)

where △ = ∂2

∂x2 + ∂2

∂y2 is the Laplacian, g(x, t), uW(y, t), uE(y, t), uN(x, t), and u0(x) are
smooth known functions. Moreover, we assume that the following compatibility conditions
are fulfilled:

uE(l2, t) = uN(l1, t), uW(l2, t) = uN(0, t), uW(0, 0) = u0(0), uE(0, 0) = u0(l1),
(7)

∂uW
∂t

(0, t) =
∂uW
∂y

(0, t) + g(0, t),
∂uE
∂t

(l1, t) =
∂uE
∂y

(l1, t) + g(l1, t), t > 0.

Such problems arise in hydrology. For example, the filtration problem for the pressure
in the steady-state filtration equation and the dynamic upper edge layer are accounted for
by a non-stationary boundary condition (see, e.g., refs. [2,3] and the references therein).

Results of weak solutions of problems like (1)–(6) were obtained in refs. [6,7]. Our
computational method requires the existence of global smooth solutions. The existence of
global classical solutions for elliptic equations with dynamical boundary conditions was
proved in refs. [2,44–47]. Modifying the results in [47], we can easily obtain the following
assertion of the global existence and uniqueness of the solution of (1)–(6).

Theorem 1. We assume that g ∈ C1(QT), QT = Ω × (0, T), Ω = Ω1 × Ω2, Ωi = (0, li),
i = 1, 2 and uW , uE ∈ C1(Ω2T), uN ∈ C1(Ω1T), ΩiT = Ωi × (0, T), i = 1, 2, u0 ∈ C2(Ω1).
Also, we suppose that the compatibility conditions (7) hold. Then, for every T, 0 < T < ∞, there
exists a unique solution u ∈ C

(
(0, T), C2(Ω)

)
to problems (1)–(6).

Proof. We use the results from Section 3 of [47], where Γ is the boundary of the domain Ω.
In our case, the compatibility conditions assure the existence and uniqueness of a smooth
solution to problems (1)–(7).

3. Basic Identities

In this section, we apply the second Green’s identity to problems (1)–(6) in order to
obtain a global relation between the source g(x, t), the boundary functions, and the other
input data.

We start with recalling the well-known Green’s theorem in the plane.

Lemma 1 (Green’s theorem in the plane [17]). Let Ω be a bounded region in the plane (x, y)
with a counter-clockwise contour Γ consisting of finitely many smooth curves. Let G1(x, y) and
G2(x, y) be functions that are differentiable in Ω and continuous in Ω. Then,∫

Ω

∫ [
∂G2

∂x
− ∂G1

∂y

]
dxdy =

∮
Γ
(G1dx + G2dy). (8)

Taking

G1 = v
∂u
∂y

− u
∂v
∂y

, G2 = u
∂v
∂x

− v
∂u
∂x

,

in (8), we obtain the second Green’s identity for the Laplace operator.
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Theorem 2 (Second Green’s identity [17]). Let Ω be a bounded domain in the plane (x, y) with a
counter-clockwise contour Γ consisting of a finite number of smooth curves. Let u(x, y) and v(x, y)
be functions that are twice differentiable in Ω and continuous on Ω. Then,∫

Ω

∫
(u△v − v△u) =

∮
Γ

(
u

∂v
∂n

− v
∂u
∂n

)
ds, (9)

where dσ = dxdy is an area derivative with respect to −→n =
(

dy
ds ,− dx

ds

)
.

Theorem 3 (Global relation). For problems (1)–(6), the following global relation holds:

∮ (
u

∂v
∂n

− v
∂u
∂n

)
ds =

∫ l1

0

[(
∂u
∂t

(x, 0, t)− g(x, t)
)

v(x, 0)− u(x, 0, t)
∂v
∂y

(x, 0)
]

dx

+
∫ l2

0

[
u(l1, y, t)

∂v
∂x

(l1, y)− v(l1, y)
∂u
∂x

(l1, y, t)
]

dy

−
∫ l1

0

[
∂u
∂y

(x, l2, t)v(x, l2)− u(x, l2, t)
∂v
∂y

(x, l2)
]

dx

−
∫ l2

0

[
u(0, y, t)

∂v
∂x

(0, y)− v(0, y)
∂u
∂x

(0, y, t)
]

dy = 0,

(10)

for any function v with △v = 0.

Proof. Inserting △v = 0 into (9), integrating along the contour Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3,
where Γ1 = {(x, y) : x = l1, 0 ≤ y ≤ l2}, Γ2 = {(x, y) : y = l2, 0 ≤ x ≤ l1}, Γ3 = {(x, y) :
x = 0, 0 ≤ y ≤ l2} and taking into account the boundary condition (2), we obtain (10).

Now, after the time-discretization of the dynamical boundary condition on each time
level, we can solve inverse problems for the elliptic equation using the approach in ref. [17].

4. Inverse Problems

In this section, we formulate inverse problems for identifying space–time-dependent
boundary functions in Laplace’s problems (1)–(6). Then, after the time discretization of the
dynamical problems, we use the results in Section 3 and ref. [17] to solve them numerically
using the space-meshless approach.

The first inverse problem, denoted by IP − guΓ0 , concerns recovering the function
g(x, t) and u(x, 0, t) in (1)–(6), under the additional observation

∂u
∂y

(x, l2, t) = ũN(x, t), x ∈ [0, l1], t ∈ (0, T), (11)

where ũN(x, t) is a measured function. Additionally, the compatibility condition holds as
follows:

∂uW
∂y

(l2, t) = ũN(0, t).

The second inverse problem, referred to as IP − guΓ0 uW, is to determine the functions
g(x, t), u(x, 0, t), and uW(y, t) in (1)–(6) for given measurements (11).

Such inverse Cauchy problems are challenging to solve even numerically because
their solution does not depend continuously on the input data [17].

First, we apply time semi-discretization to (10). Let us introduce a uniform time mesh
with grid nodes tn = nτ, n = 0, 1, . . . , M, τ = T/M. Thus, applying the forward Euler
method to the dynamical boundary condition (2), we obtain

un+1 − un

τ
=

∂un+1

∂y
+ g(x, tn+1), (x, y) ∈ Γ0, t ∈ (0, T), (12)
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where un := un(x, y) = u(x, y, tn).
Considering (10) at the time layer tn+1 and applying (12), we derive

∫ l1

0

[(
un+1(x, 0)− un(x, 0)

τ
− g(x, tn+1)

)
v(x, 0)− un+1(x, 0)

∂v
∂y

(x, 0)
]

dx

+
∫ l2

0

[
un+1(l1, y)

∂v
∂x

(l1, y)− v(l1, y)
∂un+1

∂x
(l1, y)

]
dy

−
∫ l1

0

[
∂un+1

∂y
(x, l2)v(x, l2)− un+1(x, l2)

∂v
∂y

(x, l2)
]

dx

−
∫ l2

0

[
un+1(0, y)

∂v
∂x

(0, y)− v(0, y)
∂un+1

∂x
(0, y)

]
dy = 0.

(13)

4.1. Solution of IP − guΓ0

To construct the numerical algorithm for solving the inverse problem, following [17],
we suggest a trial solution using test functions that satisfy Laplace’s equation, despite the
initial conditions, boundary conditions, and over-determined data.

From Theorem 3 and [17] at each time layer, we take one and the same test function
v(x, y), which is a stable solution of (1):

v(x, y) = sin
kπx

l1
e−kπy/l1 , k ∈ N. (14)

For k ∈ N, these functions are similar to the well-known Trefftz functions [41]. Follow-
ing [17], we refer to the proposed approach as the Trefftz test function method.

Further, from (13) and (14), we obtain

∫ l1

0

[
un+1(x, 0)− un(x, 0)

τ
− g(x, tn+1) +

kπ

l1
un+1(x, 0)

]
sin

kπx
l1

dx

=
∫ l1

0

[
∂un+1

∂y
(x, l2)v(x, l2)− un+1(x, l2)

∂v
∂y

(x, l2)
]

dx

+
∫ l2

0

[
un+1(0, y)

∂v
∂x

(0, y)− un+1(l1, y)
∂v
∂x

(l1, y)
]

dy.

Consequently, from (3)–(5) and (11), we derive

∫ l1

0

[(
kπ

l1
+

1
τ

)
un+1(x, 0)− g(x, tn+1)

]
sin

kπx
l1

dx

=
∫ l1

0

un(x, 0)
τ

sin
kπx

l1
dx

+
∫ l1

0

[
ũn+1

N (x)v(x, l2)− un+1
N (x)

∂v
∂y

(x, l2)
]

dx

+
∫ l2

0

[
un+1

W (y)
∂v
∂x

(0, y)− un+1
E (y)

∂v
∂x

(l1, y)
]

dy := f n+1
k .

(15)

Therefore, since f n+1
k is known, we can determine un+1(x, 0) and gn+1(x) from

∫ l1

0

[(
kπ

l1
+

1
τ

)
un+1(x, 0)− gn+1(x)

]
sin

kπx
l1

dx = f n+1
k . (16)
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Representing the unknown functions by

un(x, 0) = an
0 +

m

∑
j=1

an
j cos(jx) +

m

∑
j=1

bn
j sin(jx),

gn(x) = cn
0 +

m

∑
j=1

cn
j cos(jx) +

m

∑
j=1

dn
j sin(jx),

(17)

at each time level, the recovery reduces to the determination of m1 = 4m + 2 coefficients,
i.e., the elements of the vector

en = [an
1 , an

2 , . . . , an
m, bn

1 , bn
2 , . . . , bn

m, an
0 , cn

1 , cn
2 , . . . , cn

m, dn
1 , dn

2 , . . . , dn
m, cn

0 ]
T .

We take m1 test functions (14) at each time step. Substituting (17) in (16), we obtain
the linear system

Aen+1 = fn+1, fn = [ f n
1 , f n

2 , . . . , f n
m1
]T , (18)

where A is the m1 × m1 coefficient matrix with elements

Ak,j =

(
kπ

l1
+

1
τ

)
Pk,j, Ak,m+j =

(
kπ

l1
+

1
τ

)
Qk,j, j = 1, 2, . . . , m,

Ak,m0 =

(
1 +

l1
kπτ

)
(1 − cos(kπ)), m0 = 2m + 1,

Ak,m0+j = −Pk,j, Ak,m0+j+m = −Qk,j, j = 1, 2, . . . , m,

Ak,m1 =
l1
kπ

(cos(kπ)− 1),

and

Pk,j =
1
2

(
1 − cos(kπ + jl1)

kπ
a + j

+
1 − cos(kπ − jl1)

kπ
a − j

)
,

Qk,j =
1
2

(
sin(kπ − jl1)

kπ
a − j

− sin(kπ + jl1)
kπ
a + j

)
.

In the numerical realization of the proposed approach, namely, to compute the vector
fn+1, we take into account that the solution un(x, 0) in the previous time layer is known.
For t = τ, it is the initial condition, as given in (6). For t > τ, it is derived from (17). Then,
the second integral in (15) simplifies as follows:

∫ l1

0

un(x, 0)
τ

sin
kπx

l1
dx =

1
τ

m

∑
j=1

(
an

j Pk,j + bn
j Qk,j

)
+ an

0
l1

kπτ
(1 − cos(kπ)), t > τ.

At each time layer, the system (18) is solved using the conjugate gradient
method [11,14,17,18], which is the closest iterative method to direct methods. It requires
a reasonable number of iterations in order to reach the desired tolerance and avoids the
coefficient matrix inversion. First, we normalize the system (18) to derive

Den+1 = Fn+1, where D = ATA > 0, Fn+1 = ATfn+1.

Then, for n = 0, 1, . . . , M − 1, we execute the following steps:

1. Choose the initial guess en+1
0 , the accuracy ϵ, and set

rn+1
0 = Den+1

0 − Fn+1, pn+1
0 = rn+1

0 .
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2. For i = 0, 1, 2, . . . , perform the iterations

ηn+1
i =

∥rn+1
i ∥2

(pn+1
i )TDpn+1

i

,

en+1
i+1 = en+1

i − ηipi,

rn+1
i+1 = Den+1

i+1 − Fn+1,

αn+1
i+1 =

∥rn+1
i+1 ∥

2

∥rn+1
i ∥2

,

pn+1
i+1 = αn+1

i+1 pn+1
i + rn+1

i+1 .

3. If ∥rn+1
i+1 ∥

2 < ϵ, then stop; otherwise go to step 2.

4.2. Solution of IP − guΓ0 uW

Now, we describe the approach for solving the second inverse problem IP − guΓ0 uW.
From (3), (5), (11), and (15), we obtain∫ l1

0

[(
kπ

l1
+

1
τ

)
un+1(x, 0)− g(x, tn+1)

]
sin

kπx
l1

dx −
∫ l2

0
un+1

W (y)
∂v
∂x

(l1, y)dy

=
∫ l1

0

un(x, 0)
τ

sin
kπx

l1
dx

+
∫ l1

0

[
ũn+1

N (x)v(x, l2)− un+1
N (x)

∂v
∂y

(x, l2)
]

dx −
∫ l2

0
un+1

E (y)
∂v
∂x

(0, y)dy := f̃ n+1
k .

Further, for a known f̃ n+1
k , we find un+1(x, 0), gn+1(x) and un+1

W (y) from

∫ l1

0

[(
kπ

l1
+

1
τ

)
un+1(x, 0)− gn+1(x)

]
sin

kπx
l1

dx − kπ

l1

∫ l2

0
un+1

W (y)e−
kπy
l1 dy = f̃ n+1

k . (19)

The unknown functions un(x, 0) and gn(x) are represented in the form (17), and
similarly, the recovery of un+1

W (y) is reduced to identifying the coefficients pj, j = 0, 1, . . . , m,
qj, j = 1, 2, . . . , m in

un
W(y) = sn

0 +
m

∑
j=1

sn
j cos(jy) +

m

∑
j=1

qn
j sin(jy), (20)

at each time level. Finally, we have to determine m2 = 6m + 3 coefficients, i.e., the elements
of the vector

ẽn = [an
1 , . . . , an

m, bn
1 , . . . , bn

m, an
0 , cn

1 , . . . , cn
m, dn

1 , . . . , dn
m, cn

0 , sn
1 , . . . , sn

m, qn
1 , . . . , qn

m, sn
0 ]

T .

We consider m2 test functions (14) at each time step. Inserting (17), (20) in (19), we
derive the linear system

Ãẽn+1 = f̃n+1, f̃n = [ f̃ n
1 , f̃ n

2 , . . . , f̃ n
m2
]T , (21)

where Ã gives the m2 × m2 coefficient matrix, obtained from A, by adding 2m + 1 rows
and columns, namely,
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Ãk,j = Ak,j, Ãk,m+j = Ak,m+j, j = 1, 2, . . . , m,

Ãk,m0 = Ak,m0 , m0 = 2m + 1,

Ãk,m0+j = Ak,m0+j, Ãk,m0+j+m = Ak,m0+j+m, j = 1, 2, . . . , m,

Ãk,m1 = Ak,m1 ,

Ãk,m1+j =
kπl1

(kπ)2 + (jl1)2 (1 + Sjk), j = 1, 2, . . . , m,

Ãk,m1+m+j =
kπl1

(kπ)2 + (jl1)2

(
jl1
kπ

− Rjk

)
, j = 1, 2, . . . , m,

Ãk,m2 = e−kπl2/l1 − 1,

where

Sk,j = e−kπl2/l1
(

jl1
kπ

sin(jl2)− cos(jl2)
)

,

Rk,j = e−kπl2/l1
(

sin(jl2) +
jl1
kπ

cos(jl2)
)

.

Then, at each time layer, instead of (21), we solve the corresponding normalized
system

D̃ẽn+1 = F̃n+1, where D̃ = ÃTÃ, F̃n+1 = ÃT f̃n+1.

To this end, we perform the same steps (1–3), as shown in the previous section,
substituting D for D̃, F for F̃, and e for ẽ.

5. Numerical Results

In this section, we illustrate the efficiency of the time-discrete, space-meshless method
for solving inverse problems, i.e., IP − guΓ0 and IP − guΓ0 uW. We investigated the stability
by adding a different level of random noise into the over-specified boundary data.

The following test problems were considered:

TP1: u(x, y, t) = e−t cos x cosh(y − 0.5);

TP2: u(x, y, t) = e−t(x3 − 3xy2).

We took the perturbed measurements ũσ
N(x, t) for the over-specified boundary data,

which were generated by adding noise at each time layer to the exact values:

ũσ
N(x, tn) = ũN(x, tn) + 2ρ(σ(x, tn)− 0.5), n = 1, 2, . . . , M, (22)

where ρ is the noise level and σ(x, tn) is a random function, uniformly distributed on the
interval [0, 1] for a fixed tn.

Example 1. (IP − guΓ0 ). In this example, the performance of the propose approach for solving the
inverse problem IP − guΓ0 is illustrated. Let l1 = l2 = 1, T = 1, ϵ = 1 × 10 −6. First, we examine
TP1.

Since, the method involves discretizations in time, we tested the temporal order of the
convergence of the restorer functions u(x, 0, T) and g(x, T) for noise-free data, i.e., ρ = 0
and different values of m. The convergence rate (CRν) of the mesh function ν was estimated
using log2 from the fraction of the maximal error at the final time of the function ν, which
was computed using time meshes with step sizes τ and τ/2. The results for different values
of τ and m are given in Table 1. The errors decreased as the time mesh became finer. We
observed that the temporal convergence rate of the solution at y = 0 was first, while the
convergence rate of the function g was close to two.
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Table 1. Maximum error and temporal order of convergence for different m for TP1, Example 1.

τ m Max. Error uM(x, 0) CRu Max. Error gM(x) CRg

0.01 1 6.8956 × 10−4 1.3360 × 10−4

0.005 1 4.3177 × 10−4 0.6754 2.4273 × 10−5 2.4606
0.0025 1 2.1914 × 10−4 0.9784 3.4441 × 10−6 2.8171
0.00125 1 1.1003 × 10−4 0.9940 5.0705 × 10−7 2.7639
0.000625 1 5.5081 × 10−5 0.9983 8.1055 × 10−8 2.6452
0.0003125 1 2.7551 × 10−5 0.9995 1.4465 × 10−8 2.4864
0.00015625 1 1.3777 × 10−5 0.9998 2.8862 × 10−9 2.3253
0.000078125 1 6.8888 × 10−6 0.9999 6.2998 × 10−10 2.1958

0.01 3 4.3634 × 10−4 3.4898 × 10−4

0.005 3 3.4898 × 10−4 0.3223 1.8095 × 10−4 0.9476
0.0025 3 1.9202 × 10−4 0.8619 1.5003 × 10−4 0.2703
0.00125 3 1.0576 × 10−4 0.8605 3.9079 × 10−5 1.9407
0.000625 3 5.4102 × 10−5 0.9670 9.9157 × 10−6 1.9786
0.0003125 3 2.7232 × 10−5 0.9904 2.5132 × 10−6 1.9802
0.00015625 3 1.3642 × 10−5 0.9972 6.2961 × 10−7 1.9970
0.000078125 3 6.8247 × 10−6 0.9992 1.5335 × 10−7 2.0376

Further, we investigated the solution behavior with noise.
On Table 2, we give the maximum error of the recovered functions u(x, 0, T) and

g(x, T) of TP1 for different values of m, time steps, and noise levels. The average number
of iterations (iter) is proposed as well.

Table 2. Maximum error for different m, time steps, and noise levels for TP1, Example 1.

τ m Max. Error uM(x, 0) Max. Error gM(x) Iter

ρ = 0.02

0.01 1 6.3069 × 10−4 1.1115 × 10−2 4.842
2 2.0456 × 10−3 9.1980 × 10−3 9.149
3 4.0123 × 10−3 2.3232 × 10−2 15.733

0.005 1 1.6550 × 10−3 2.0769 × 10−2 3.821
2 3.2464 × 10−3 1.5258 × 10−2 8.940
3 4.3991 × 10−3 7.9018 × 10−3 19.010

ρ = 0.2

0.01 1 4.4107 × 10−3 7.3444 × 10−3 6.594
2 1.1629 × 10−2 5.2861 × 10−3 17.574
3 3.9689 × 10−2 2.1198 × 10−1 21.306

0.005 1 4.4905 × 10−3 3.9252 × 10−2 7.139
2 1.3193 × 10−3 7.0087 × 10−2 17.920
3 4.0288 × 10−2 6.0438 × 10−2 24.303

In Figures 1 and 2, we plot the exact and recovered functions u(x, 0, t), gM(x), respec-
tively, in the t − x plane for TP1, ρ = 0.2, m = 2, and τ = 0.01.

As was expected, for the lower deviation, we obtained a better accuracy. Moreover,
since the exact solution for TP1 only contains the first harmonic term cos(x), a better
accuracy was obtained for m = 1 and the convergence was very fast in the sense that a
small number of iterations were required to obtain optimal accuracy. We observed that, in
general, the recovery of the function u(x, 0, t) was more precise in comparison with g(x, t)
and, independently of the noise level, for a larger m (m = 3), the precision of the restored
source g was better for a smaller time step.

Now, we consider TP2. In Table 3, we present the computational results: the maximum
error and average number of iterations for different m, time steps, and noise levels ρ = 0.2.
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Figure 1. Exact (left) and recovered (right) function u(x, 0, t) for TP1, Example 1.
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Figure 2. Exact (left) and recovered (right) function g(x, t) for TP1, Example 1.

Table 3. Maximum error for different m, time steps, and ρ = 0.2 for TP2, Example 1.

τ m Max. Error uM(x, 0) Max. Error gM(x) Iter

0.01 10 4.3234 × 10−2 1.9103 × 10−1 40.763
15 3.0266 × 10−2 1.6096 × 10−1 47.208
20 2.7671 × 10−2 1.4172 × 10−1 51.000

0.005 10 4.2076 × 10−2 1.8547 × 10−1 44.582
15 2.9288 × 10−2 1.5733 × 10−1 51.553
20 2.7508 × 10−2 1.3997 × 10−1 60.816

In Figure 3, we depict the exact and recovered function u(x, 0, t) for ρ = 0.2, m = 15,
τ = 0.01. In Figure 4, we plot the error |g(x, t)− gn(x)| and residual ∥rk∥ at each iteration
for t = τ and t = T.

The result shows that as the values of m increased, the accuracy of the recovered
functions was affected slightly and the convergence steps increased slightly. Furthermore,
the size of the time step did not essentially influence the accuracy.

Example 2. (IP − guΓ0 uW). In this example, we tested the efficiency of the proposed algorithm for
solving IP − guΓ0 uW with perturbed over-determined data (22). The test problems were (1), (6),
TP1, and TP2 for l1 = l2 = 1, T = 1, and ϵ = 1.e − 6.

In Table 4, we present the maximal errors and average number of iterations of the
recovered functions at the final time for TP1 with different noise levels and τ = 0.01.
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Figure 3. Exact (left) and recovered (right) function u(x, 0, t) for TP2, Example 1.
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Figure 4. Error |g(x, t)− gn(x)| in t − x plane (left) and residual vs. the iteration number (right) for
t = τ (line with circles) and t = T (line with squares) for TP2, Example 1.

Table 4. Maximum error for different m and ρ, τ = 0.01 for TP1, Example 2.

Max. error Max. Error Max. Error
ρ m uM(x, 0) gM(x) uM

W(y) Iter

0.02 1 1.8693 × 10−2 4.2198 × 10−3 1.9027 × 10−1 13.821
2 2.6226 × 10−1 3.7340 × 10−2 2.8543 × 10−1 15.772
3 2.4577 × 10−1 8.0663 × 10−2 2.8665 × 10−1 19.841

0.2 1 5.8913 × 10−2 6.2845 × 10−2 2.6709 × 10−1 13.862
2 2.3012 × 10−1 2.4847 × 10−1 1.5154 × 10−1 15.861
3 2.1429 × 10−1 6.2469 × 10−1 2.1894 × 10−1 19.594

In Figures 5 and 6, we plot the recovered functions un(x, 0) and gn(x) for TP1, m = 2,
τ = 0.01, ρ = 0.02, and ρ = 0.2. Next, in Figures 7 and 8, on the y − t plane, we depict the
exact uW(y, tn) and recovered boundary condition un

W(y) for TP1, τ = 0.01, and different
values of ρ and m.
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Figure 5. Recovered function un(x, 0) for TP1, m = 2, ρ = 0.02 (left) and ρ = 0.2 (right) for Example 2.
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Figure 6. Recovered function gn(x) for TP1, m = 2, ρ = 0.02 (left) and ρ = 0.2 (right) for Example 2.
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Figure 7. Exact (left) and recovered (right) function uW(y, tn), m = 2, ρ = 0.2 for TP1, Example 2.

In Table 5, we present the computational results for TP2.

Table 5. Maximum error for ρ = 0.2, τ = 0.01 and different m for TP2, Example 2.

Max. Error Max. Error Max. Error
m uM(x, 0) gM(x) uM

W(y) Iter

10 1.7842 × 10−1 1.6864 × 10−1 2.5069 × 10−1 39.267
15 1.4291 × 10−1 1.4003 × 10−1 1.1296 × 10−1 41.733
20 1.2674 × 10−1 1.4083 × 10−1 1.9546 × 10−1 48.831
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Figure 8. Recovered function uW(y, tn), ρ = 0.02, m = 2 (left) and m = 3 (right) for TP1, Example 2.

We observed that the function un(x, 0) exhibited a higher accuracy than un(x) and
un

W(y). The level of noise influenced the accuracy of the recovered functions, while the
values of m did not affect it significantly. As for IP − guΓ0 , we observed a slight increase in
the convergence steps.

6. Discussion

The proposed method is able to simultaneously recover two or three space–time-
dependent functions (Dirichlet boundary conditions and the source term in the dynamical
boundary condition) in the initial boundary value problem for Laplace’s equation with
dynamical boundary conditions. The temporal order of the convergence of the solution for
exact measurements is first for the Dirichlet boundary and second for the source term. As
is typical for solutions of inverse problems with perturbed data, the order of convergence
is destroyed, i.e., it becomes lower as the deviation increases.

The method introduced is a comprehensive approach in which Trefftz-type test func-
tions are directly incorporated into Green’s second identity to formulate a linear system
for reconstructing unknown data using a finite Fourier series. This approach eliminates
the necessity of regularization techniques and is robust enough to handle significant levels
of noise. For example, we achieved optimal accuracy and relevant results for a moderate
number of iterations. In contrast, in the other methods in the literature for solving inverse
Cauchy problems, for example, those using the modified collocation Trefftz method (see,
e.g., [48,49]), the authors employ regularization techniques by truncating the higher modes
of the Fourier series of the input data or using a scaling factor in the Trefftz functions.

The considered inverse problem can be solved using a boundary-type solution proce-
dure. In our paper, the global relation (13) is derived using the second Green identity so
that the input data generation is much easier than when using domain-type algorithms.

The weakness of the approach is that, in contrast to some iteration-free approaches
(see, e.g., [38]), we use an iteration procedure, which requires additional computational
time. Furthermore, it is essential to select a value for m within a moderate range, as an
excessively large m could results in an inaccurate outcome.

Although, in general, the Trefftz method is of high precision, the presented approach
involves an approximation in time, which generates a discretization error. Furthermore,
additional errors arise from the noise in the input data.

The limitations of the proposed numerical approach are related to the fact that it
uses the smoothness of solution. Additionally, for elliptic equations with non-constant
coefficients, it is difficult to further develop the method.
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7. Conclusions

The reconstruction of the dynamical boundary condition source and Dirichlet bound-
ary condition from Dirichlet–Neumann measurements for Laplace’s equation was inves-
tigated. In the first stage of our study, we performed time semi-discretization for the
problem. Then, applying Green’s second identity to the Laplace boundary value problem,
we constructed an integral equation, which connects the source of the dynamical boundary
condition and the Dirichlet and Neumann boundary conditions. By successfully picking
the Trefftz test function, we developed an algorithm to numerically establish the dynamical
and Dirichlet boundary conditions.

The numerical results show that the suggested method is stable and efficient for
strongly ill-posed cases with a large amount of noise imposed on the over-specified bound-
ary data. The noise level has a greater impact on the accuracy of the recovered space–time-
dependent boundary functions as compared to the time mesh step size.

Our future work will investigate the theoretical convergence of the proposed numerical
method. Furthermore, we plan to study inverse problems for elliptic equations with semi-
linear dynamical boundary conditions like the problem investigated in Section 6 of [5,44].
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