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Abstract: With the exponential growth of high dimensional unlabeled data, unsupervised feature
selection (UFS) has attracted considerable attention due to its excellent performance in machine
learning. Existing UFS methods implicitly assigned the same attribute score to each sample, which
disregarded the distinctiveness of features and weakened the clustering performance of UFS methods
to some extent. To alleviate these issues, a novel UFS method is proposed, named unsupervised
feature selection with latent relationship penalty term (LRPFS). Firstly, latent learning is innovatively
designed by assigning explicitly an attribute score to each sample according to its unique importance
in clustering results. With this strategy, the inevitable noise interference can be removed effectively
while retaining the intrinsic structure of data samples. Secondly, an appropriate sparse model is
incorporated into the penalty term to further optimize its roles as follows: (1) It imposes potential
constraints on the feature matrix to guarantee the uniqueness of the solution. (2) The interconnection
between data instances is established by a pairwise relationship situation. Extensive experiments on
benchmark datasets demonstrate that the proposed method is superior to relevant state-of-the-art
algorithms with an average improvement of 10.17% in terms of accuracy.

Keywords: unsupervised feature selection; latent relationship penalty term; attribute score;
sparse model

MSC: 68Q99

1. Introduction

With the explosive growth of data and information, dimensionality reduction tech-
niques have become a crucial step in machine learning and data mining [1,2]. The primary
dimensionality reduction techniques involve nonnegative matrix factorization (NMF) [3],
principal component analysis (PCA) [4], locally linear embedding (LLE) [5], and feature
selection (FS) [6]. These dimensionality reduction techniques are beneficial in accelerating
the speed of the model’s learning and enhancing clustering performance and prediction
accuracy. Typically, feature selection is an effective strategy for dimension reduction due
to its excellent property in removing unimportant or meaningless features, which will
certainly enhance the interpretability of these models. Consequently, these approaches
have been applied in various applied fields such as gene expression analysis [7], image
processing [8], natural language processing [9], and other fields.

According to the availability of data labels [10], feature selection methods can be
categorized as supervised feature selection methods (SFS) [11,12], semi-supervised feature
selection methods (SSFS) [13,14], and unsupervised feature selection methods (UFS) [15,16].
Supervised feature selection methods and semi-supervised feature selection methods can
identify discriminative features by effectively mining the latent information in labeled data.
However, in practice acquiring label data is extremely time-consuming, especially in some
cases there exists unreliability of labelled data. Unsupervised feature selection methods are
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conducted to address this difficult challenge by identifying discriminative features without
the availability of labeled data. As a result, it has garnered increasing attention in recent
years. Generally, the strength of unsupervised feature selection methods lies in the ability
to achieve satisficed results by assessing the importance of features based on appropriate
criteria. However, there are several key factors that unsupervised feature selection methods
need to emphasize.

Firstly, in unsupervised scenarios, it is crucial to design various strategies for extracting
pseudo-label information to compensate for the absence of labeled data. Generally, the
pseudo-label information is performed in UFS based on spectral regression [17,18]. In
the unsupervised feature selection (UFS) algorithm, the essence of spectral regression
is to construct a similarity measure that is employed to learn pseudo-label information
such that each sample is more accurately guaranteed to be categorized into the ground
truth class. For example, Zhao et al. [19] proposed a feature selection framework based
on spectral regression using the spectrum of graphs to explore the intrinsic properties of
features. Cai et al. [20] designed a two-step strategy by adopting spectral regression in
the first step to retain the multi-cluster structure of the data, and sparse regression in the
second step to simplify calculations. By performing this two-step strategy, the potential
correlation between different features can be well investigated, thereby efficiently selecting
more discriminative features. In contrast, Hou et al. [21] utilized a one-step strategy by
embedding sparse regression and spectral regression into a joint learning framework, in
which the clustering performance outperforms the above two-step strategy in literature [20].
Unfortunately, the pseudo-label information generated by spectral analysis in UFS often
generally has the drawback of negative values and an inaccurate similarity matrix due to
noise interference, which is a challenging issue in UFS.

Secondly, it is significant to explore the internal structure of the original data. It is
noted that the sparsity of high-dimensional data implies that such data contains manifold
information. That is, the feature subset obtained by UFS should preserve this manifold
information. To meet this requirement, a large number of relevant methods have been
presented to investigate the internal structure of data in UFS. For example, He et al. [22]
exploited local manifold information to evaluate the importance of features by calculating
the Laplacian score (LapScor). Shang et al. [23] introduced a graph regularization term into
the objective function of UFS and constructed a feature graph to enable the feature vectors
of the original data to be consistent with the vectors in the coefficient matrix. Thus, the
feature subset preserves this manifold information by learning the manifold information
through a similarity matrix. Liu et al. [24] constructed a loss term with ℓ1-norm constraint to
maintain the local geometric structure of the data through linear coefficients. To address the
unreliability of constructing the similarity matrix in the above UFS methods, Nie et al. [25]
constructed a structured graph optimization to learn the similarity matrix adaptively, in
which the manifold information will be well preserved by constructing a more satisfactory
similarity matrix. Based on the method in [25], Li et al. [26] and Chen et al. [27] innovatively
extended structured graph optimization. The former incorporated maximum entropy
with the generalized uncorrelated regression model into the method described in [25],
in which local manifold information of the data can be retained so that uncorrelated yet
distinctive features are effectively selected. The latter derived a flexible optimal graph by
leveraging a flexible low-dimensional manifold embedding mechanism to compensate for
the unreliability of the conventional UFS methods. However, the above methods ignore
the dependency between the data instances (that is, mining interconnection information
between the data instances is not well understood yet).

Thirdly, it is important to exploit interconnection information between data instances
in that interconnection information inherently implies in data instances. Exploring this
interconnection information will lead to effectively improving the clustering performance
and reducing the impact of inevitable noises. For this reason, Tang et al. [28] embedded
latent representation learning into UFS, named LRLMR, in which latent representation
learning learned an affinity matrix with correlation information between data instances.
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Based on LRLMR, Shang et al. [29] designed DSLRL, in which the affinity matrices regard-
ing interconnection information are constructed to fully investigate the interconnection
information. The distinction between LRLMR and DSLRL lies in the fact that the former
only considers the interconnection information among data instances, whereas the latter
takes into account the interconnection information existing between both data instances
and features.

These methods mentioned above can address the above three issues respectively and
effectively (i.e., designing successful strategies for extracting pseudo-label information
to compensate for the absence of labeled data, exploring the internal structure of data
instances, and exploiting interconnection information between data instances). However,
the exploration of individual uniqueness in the existing literature remains an unresolved
challenge. The reason may lie in that these methods generally assume the importance of
each sample is no ranking so that the attribute score of each sample is assigned equally.
Such an assumption is unsuitable since it neglects the diversity and particularity (i.e.,
the uniqueness of data instances). Specifically, three groups of face images illustrated in
Figure 1a–c respectively chosen from three classes in the ORL dataset [30]. From a human
visual perspective, each individual in Figure 1 is unique whether it belongs to the same
class or a different class. Consequently, it is more reasonable to assume an attribute score
is flexibly assigned to each individual according to their uniqueness. In other words, the
scores of individuals within the same class tend to become more similar, while the scores of
individuals from different classes tend to become more distinct. Therefore, emphasizing
individual uniqueness can facilitate the effective distinction of individuals and eliminate the
interference of redundant features to some extent. Although some researchers [31–33] have
introduced the idea of LDA into UFS to minimize the within-class distance and maximize
the between-class distance, they still ignore the learning of individual uniqueness.
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To alleviate the above issues outlined, in this paper a novel embedded unsupervised
feature selection method, called unsupervised feature selection with latent relationship
penalty term (LRPFS), is proposed. The original intention of LRPFS is to explore the
data structure, pseudo-label information, interconnection information, and individual
uniqueness. Specifically, (1) a novel method is developed to preserve the spatial data
structure by quantifying sample distances in space via inner product relations; (2) we
evaluate the uniqueness of samples based on their unique contributions to the whole,
and determine the uniqueness of samples through pairwise relationships based on the
principles of latent representation learning and symmetric nonnegative matrix factorization.
Meanwhile, these pairwise relationships also create connections between samples, enabling
the subspace matrix to provide pseudo-label information.

The main contributions of this paper are summarized as follows:
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• A novel unsupervised feature selection with latent relationship penalty term is pre-
sented, which simultaneously performs an improved latent representation learning on
the attribute scores of the subspace matrix and imposes a sparse term on the feature
transformation matrix.

• The latent relationship penalty term, an improved latent representation learning, is
proposed. By constructing a novel affinity measurement strategy based on pairwise
relationships and attribute scores of samples, this penalty term can exploit the unique-
ness of samples to reduce interference from noise and ensure that the spatial structure
of both the original data and the subspace data remains consistent, which is different
from other existing models.

• An optimum algorithm with convergence is designed and extensive experiments are
conducted: (1) LRPFS has shown superior performance on publicly available datasets
compared to other existing models in terms of clustering performance and more remark-
able capability of discriminative feature selection. (2) Experiments verify that LRPFS
has fast convergence, short computation time, and significant performance by explicitly
evaluating an attribute score for each individual to eliminate redundant features.

The remaining sections of this article are structured as follows. Section 2 reviews the
concepts of latent representation learning and inner product space about feature selection.
In Section 3, the latent relationship penalty term is introduced, and the LRPFS method
is presented. Section 4 demonstrates the superiority of the proposed method over other
advanced algorithms through experimental design and analyses the properties of the
algorithm itself. Finally, Section 5 provides the conclusion and discusses future work.

2. Related Works

In this section, latent representation learning in feature selection is briefly reviewed.
In addition, the inner product space and some notations are introduced.

2.1. Notations

The following notations are illustrated in this paper. For example, an arbitrary
A = [a1, a2, . . . , an]

T ∈ Rn×d is donated as a matrix, ai indicates that the i-th row of matrix
A is a vector, aij represents the elements of the i-th row and j-th column of the matrix A,

the F-norm of the matrix A is defined as ∥A∥F = (∑n
i=1 ∑d

j=1
∣∣aij

∣∣2)1/2, and the ℓ2,1-norm of

the matrix A is defined as ∥A∥2,1 = ∑n
i=1

(
∑d

j=1 aij
2
)1/2

.

2.2. Review of Feature Selection and Latent Representation Learning

Generally, feature selection methods are classified into three categories according to
the strategy of feature evaluation: filter [22,34], wrapper [35,36], and embedded [37,38].
The filter feature selection aims to evaluate each feature directly with a specific ranking
criterion, i.e., variance, Laplacian score, feature similarity, and trace ratio, to select a
feature subspace [39]. However, the filter feature selection only considers the feature itself
but ignores the interdependence between features [40]. In contrast, the wrapper feature
selection constructs a quasi-optimal subset of features by emphasizing feature combinations
and correlations between features [41]. In most approaches based on wrapper feature
selection, the algorithm complexity tends to increase with the dimension of data space,
which may lead to computationally expensive. In addition, to achieve an effective feature
subset, these methods based on embedded feature selection integrate feature selection with
model learning by adjusting feature priority in the learning iteration process. Compared
to filter feature selection, embedded feature selection has gained more attention due to
its superior performance in that it can reduce feature redundancy more effectively except
that it has greater robustness, whereas, compared to wrapper feature selection, embedded
feature selection effectively reduces training time and cost, and speeds up computation.
Nevertheless, these approaches based on the above three kinds have drawbacks such as
premature convergence and obtaining local optimum.
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Traditional UFS methods assume that data are independently and identically dis-
tributed, whereas, in the real world, samples are correlated with each other. With the
development of embedded feature selection, embedding latent representation learning into
UFS has been widely applied to investigate the interconnection information between sam-
ples such that it can reveal the latent structure in the data [28,42,43]. Latent representation
learning employs a model of symmetric nonnegative matrix factorization [44] to learn the
interconnection information between samples. The specific representation is as follows:

R = ∥T −VVT∥2
F = ∑n

i,j=1 |tij − vivT
j |2, (1)

where T ∈ Rn×n is the affinity matrix containing interconnection information between
samples [28], V ∈ Rn× f represents the latent representation matrix, n is the number of
samples, and f is the number of latent variables. The tij is defined as follows [29]:

tij = exp(

∥∥xi − xj
∥∥2

−2σ1
2 ), (2)

where i, j = 1, 2, . . ., n, σ1 is a bandwidth parameter. The latent representation learning is
integrated into the UFS, and the objective function is expressed as follows:

O = ∥XW −V∥2
F + α∥T −VVT∥2

F,

s.t. V ≥ 0,
(3)

where α is the balance parameter, X ∈ Rn×d is the data matrix, and W ∈ Rd× f is the feature
transformation matrix. The first term of the objective function is the loss function, which
enables matrix X to approximate matrix V under the influence of matrix W. Consequently,
matrix V can be considered as a subspace of X. Moreover, under the influence of latent
representation learning, matrix V can be used as a pseudo-label matrix to guide feature
selection. Through the application of latent representation learning, the performance and
efficiency of these models can be enhanced in that there exists a degree of reduction in
noise and redundant information.

2.3. Inner Product Space

The essence of feature selection is to find a suitable feature subset to represent the
original data, which is the mapping of data from a high-dimensional space to a low-
dimensional space. Therefore, exploring the spatial structure has become an important
issue in feature selection [1,45,46]. First, the objective is to aggregate several elements
into a cohesive set with an establishment of the “relationship” or “structure” among these
elements in a set to construct a space. However, there are various spaces in mathematics,
such as metric space, vector space, normed linear space, and inner product space. Among
these spaces, the inner product space adds a “structure” [47], i.e., inner product, in which
the angles and lengths of vectors are discussed and it can possess the properties of non-
negativity such as non-degeneracy, conjugate symmetry, first-variable linearity and second-
variable conjugate linearity. Therefore, in this paper, our objective is to explore samples
in the inner product space and a framework that can potentially preserve the structure of
the data space by integrating the structure of different elements in the higher-dimensional
space into the lower-dimensional space via inner product operations.

3. Methodology

In this section, a novel regularization term, known as the latent relationship penalty
term, is presented and incorporated into the derivation of the LRPFS mechanism. Addi-
tionally, an optimization algorithm, convergence analysis, and computational complexity
analysis for LRPFS are provided.
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3.1. Latent Relationship Penalty Term

In a practical application, each individual exhibits distinct characteristics (i.e., unique-
ness) that contribute to the whole model, which assumes specific roles in data representation
and establishing interconnections with the entire dataset. However, it is important to note
that this individual uniqueness is not solely dependent on irrelevant and redundant fea-
tures, but rather on the presence of significant and informative features. The characteristics
of these features play a crucial role in capturing the essence of the data and enabling
meaningful representations. Therefore, our objective is to acquire a spatial subset that
can accurately identify the significant features while preserving individual uniqueness.
According to this premise, a novel latent relationship penalty term based on Equation (1)
is developed to exploit individual uniqueness while maintaining the inherent structural
relationships within the data through pairwise associations. Subsequently, the methodol-
ogy and principles of the latent relationship penalty term are presented to illustrate the
proposed method, which involves two main steps in constructing the latent relation penalty
term as follows.

3.1.1. Preservation of Data Structures

The dataset X ∈ Rn×d can be considered as a distribution of n individuals
xi(i = 1, 2, . . . , n) within a d dimensional linear space, and

〈
xi, xj

〉
reflects inherent (in-

ner product) relationship between two vectors. The subspace matrix V ∈ Rn× f is desig-
nated to represent the underlying structure of the dataset X. Based on this, our objective
is to preserve the approximate data structure between individuals in both the original
space and the subspace by leveraging the inner product space metric distance. This is
accomplished through the pairwise relationship of vector multiplication by ensuring that〈

vi, vj
〉
≈

〈
xi, xj

〉
. As a result, this pairing establishes a direct correspondence between the

high-dimensional inner product space and the low-dimensional inner product space, as
depicted in the following Equation (4):

R1 = ∑n
i,j=1 |⟨vi, vj⟩ − λ⟨xi, xj⟩|2 = ∑n

i,j=1 |vivT
j − λxixT

j |2 = ∥VVT − λXXT∥2
F, (4)

where λ is a scale parameter to regulate the scale relationship between the original data
matrix X and the subspace matrix V. Accounting for the presence of inherent noise in
the original dataset, which frequently undermines the integrity of the data structure, our
approach focuses on mitigating the influence of irrelevant and redundant features within
each sample. To achieve this, the uniqueness of each sample should be exploited, thereby
enhancing the preservation of the underlying data structure.

3.1.2. Exploring the Uniqueness of Individuals

To assess the uniqueness of individuals, the concept of an attribute score, denoted as q,
is introduced. This score is referred to as the contribution of each individual to the overall
dataset by taking into account their interrelationship with the entire sample. Specifically,
the attribute score qii is defined as ∥si∥1, where qii represents the score of the i-th sample
xi, and si is the i-th vector in the similarity matrix S. To construct the similarity matrix,
S ∈ Rn×n, a k-neighbourhood graph, denoted as Nk, is employed. The value of k is set to 0
or 5, where a value of 0 corresponds to a complete graph. The similarity matrix is defined
as follows:

[S]ij =

{
exp(

−∥xi−xj∥2

2σ2 ), i f xj ∈ Nk(xi)

0, otherwise
i, j = 1, 2, 3, . . . , n, (5)

where σ is the width parameter [23], the obtained score q is introduced into Equation (4)
such that vi ≈ qiixi, resulting in the final expression for the latent relationship penalty term
as follows.

R2 = ∑n
i,j=1

∣∣∣vivT
j − λqiiqjjxixT

j

∣∣∣2. (6)
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Classical latent representation learning in UFS typically employs Gaussian functions to
measure interconnection information between samples, as demonstrated in
Equations (1) and (2). In contrast, Equation (6) introduces a novel measurement approach
by defining tij as λqiiqjjxixT

j . The affinity matrix constructed using this method not only
leverages the uniqueness of individuals as a prior condition to mitigate noise interference
but also regulates the structural approximation consistency between the original space and
the subspace by capturing pairwise relationships among samples.

3.2. Objective Function

Aiming to incorporate Equation (6) into UFS such that the latent relational penalty term
has a potentially constraining function on the feature transformation matrix W ∈ Rd× f ,
the objective function is summarized as follows.

(W*, V*) = arg min∑n
i=1 ∥xiW − vi∥2

2 + ∑n
i,j=1 |vivT

j − λqiiqjjxixT
j |2,

s.t.W > 0, V > 0.
(7)

To prevent the occurrence of trivial solutions, a potentially constraining function is
integrated by the latent relationship penalty term. The detailed process is presented in
Theorem 1. Furthermore, by imposing the latent relationship penalty term, the subspace
matrix V can act as a pseudo-label matrix within the UFS framework to guide the feature se-
lection process. Our goal is to acquire a sparse feature transformation matrix W to improve
the efficiency of feature selection. To achieve this purpose, the ℓ2,1-norm regularization
term is introduced, which results in the final expression of the objective function as follows:(

W*, V*) = arg min∑n
i=1∥xiW − vi∥2

2 + ∑n
i,j=1 |vivT

j − λqiiqjjxixT
j |2 + α∥W∥2,1,

s.t.W > 0, V > 0,
(8)

where α is a sparsity constraint parameter to adjust the sparsity of W. The feature transfor-
mation matrix W is obtained by the optimization of the objective function with the score of
each feature calculated using ∥wi∥2. The higher the score, the more important the features
are. The top l features are selected to generate a new data matrix Xnew by ranking the
feature scores in descending order.

3.3. Optimization

To simplify the operation, all variables in the objective function of LRPFS are repre-
sented as matrices, and Equation (8) can be substituted as follows.

(W*, V*) = arg min∥XW −V∥2
F + ∥VVT − λQXXTQT∥2

F + α∥W∥2,1,

s.t.W > 0, V > 0,
(9)

where Q ∈ Rn×n is a diagonal matrix and qii (i = 1, 2, . . . , n) is the i-th diagonal element
in the matrix Q. The model (9) is a nonconvex problem concerning W and V, so it is not
practical to find the global optimal solution at the same time. Nevertheless, the model
is convex concerning the other variable when one variable is fixed, therefore this model
can be solved by alternately optimizing W and V, respectively. The Lagrange function is
constructed as follows.

L = ∥XW −V∥2
F + ∥VVT − λQXXTQT∥2

F + αTr(WTUW) + Tr(φW) + Tr(∅V), (10)

where, U ∈ Rd×d is a diagonal matrix. The calculation of the i-th diagonal element uii of U
is performed as follows:

uii =
1

2∥Wi∥2
. (11)
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To avoid overflow, a sufficiently small constant ε is introduced, leading to the following
rewriting of Equation (10):

uii =
1

2max(∥Wi∥ 2, ε)
. (12)

(1) Fix V and update W:

The partial derivative of the Lagrange Function (11) with respect to W is computed,
and further results in the following expression:

∂L
∂W

= 2XTXW − 2XTV + 2αUW + φ. (13)

According to the Karush-Kuhn-Tucker (KKT) condition [48], the following iterative
update formula for W can be derived.

wij ← wij

[
XTV

]
ij

[XTXW + αUW]ij
. (14)

(2) Fix W and update V:

Similar to the optimization variable W, the partial derivative of the Lagrange Func-
tion (10) for V is taken, yielding the following result:

∂L
∂V

= −2XW + 2V + 4VVTV − 4λQXXTQTV + ∅. (15)

Following the Karush-Kuhn-Tucker (KKT) condition, the following iterative update
formula for V is obtained.

vij ← vij

[
XW + 2λQXXTQTV

]
ij

[V + 2VVTV]ij
. (16)

With the above analysis, Algorithm 1 summarizes the procedure of LRPFS. The
pipeline of LRPFS is visualized in Figure 2.
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(2) Fix 𝑊 and update 𝑉: 

Similar to the optimization variable 𝑊, the partial derivative of the Lagrange func-

tion (10) for V is taken, yielding the following result: 

𝜕𝐿

𝜕𝑉
= −2𝑋𝑊 + 2𝑉 + 4𝑉𝑉𝑇𝑉 − 4𝜆𝑄𝑋𝑋𝑇𝑄𝑇𝑉 + ∅. (15) 

Following the Karush-Kuhn-Tucker (KKT) condition, the following iterative update 

formula for 𝑉 is obtained. 

𝑣𝑖𝑗 ← 𝑣𝑖𝑗
[𝑋𝑊 + 2𝜆𝑄𝑋𝑋𝑇𝑄𝑇𝑉]𝑖𝑗

[𝑉 + 2𝑉𝑉𝑇𝑉]𝑖𝑗
. (16) 

With the above analysis, Algorithm 1 summarizes the procedure of LRPFS. The pipe-

line of LRPFS is visualized in Figure 2. 
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Algorithm 1: LRPFS algorithm steps

1: Input: Data matrix X ∈ Rn×d; Parameters α, λ, f , and k; The maximum number of iterations
maxIter;
2: Initialization: The iteration time t = 0; W = rand(d, f ); V = rand(n, f ); U = eye(m);
Construct the attribute score matrix Q;
3: while not converged do

4: Update W using wij ← wij
[XTV]ij

[XT XW+αUW]ij
;

5: Update V using vij ← vij
[XW+2λQXXT QTV]ij

[V+2VVTV]ij
;

6: Update U using uii =
1

2max(∥Wi∥ 2,ε) ;

7: Update t by: t = t + 1, t ≤ maxIter;
8: end while
9: Output: The feature transformation matrix W and the subspace matrix V.
10: Feature selection: Calculate the scores of the d features according to ∥wi∥2 and select the first l
features with high scores.

The potential constraint of error function embedding latent relationship penalty term
in LRPFS can be explained by the following Theorem 1:

Theorem 1. Let X ∈ Rn×d, V ∈ Rn×c, and W ∈ Rd×c, Assume that there exists a X with a left
inverse, such that XW ≈ V and VVT ≈ λQXXTQT , then the term WWT ≈ λXLQXXTQTXR
(λ is a scalar, XL is the left inverse of X, and XR is the right inverse of X).

Proof. Properties of one side inverse matrices [49]: If the matrix M ∈ Rn×d has rank
ρ(M) = d, then there exists a left inverse matrix ML ∈ Rd×n such that ML M = Id.
Similarly, the matrix MT ∈ Rd×n exists a right inverse matrix MR ∈ Rn×d such that
MT MR = Id, where Id ∈ Rd×d is an identity matrix.

According to the properties above, if X is one side inverse matrice and ρ(X) = d, then
X has a left inverse XL and XT has a right inverse XR, and the proof is as follows:

VVT ≈ λQXXTQT , (Since XW ≈ V)

⇔ XWWTXT ≈ λQXXTQT ,

⇔ XLXWWTXT ≈ λXLQXXTQT ,

⇔WWTXT ≈ λXLQXXTQT ,

⇔WWTXTXR ≈ λXLQXXTQTXR,

⇔WWT ≈ λXLQXXTQTXR.

(17)

The constraint on WWT can be derived by WWT ≈ λXLQXXTQTXR, indicating a
latent relationship by embedding constraint on W. □

In Theorem 1, the scenario where X has a left inverse is presented. However, in
practical applications, it’s possible that the matrix X does not possess a left inverse, resulting
in an approximation of XWWTXT ≈ λQXXTQT . The final expressions in both situations
express the relationship between the matrix W and the known matrices Q and X. The latent
relationship penalty term, through this potential constraint, makes the generated W more
accurate and avoids trivial solutions.

3.4. Convergence Analysis

This subsection proves the convergence of LRPFS by demonstrating that under the
update rules (14) and (16), the objective Function (8) is monotonically decreasing.
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First, the introduction of a theorem [45] is necessary, which provides theoretical
assurance for the convergence of LRPFS.

Definition 1. If there is a function G(x, x′) such that F(x) satisfies:

G
(
x, x′

)
≥ F(x), G(x, x) = F(x). (18)

Thus F(x) is nonincreasing function under the following updating formula:

x(t+1) = arg
min

x
G(x, x(t)), (19)

where G(x, x′) is an auxiliary function for F(x).

Proof.
F(x(t+1)) ≤ G(x(t+1), x(t)) ≤ G(x(t), x(t)) = F(x(t)). (20)

If the objective function is proved to be monotonic, the objective function is retained
to contain the W term, and get the following equations:

F(W) = ∥XW −V∥2
F + α∥W∥2,1. (21)

Through the computation of first-order and second-order partial derivatives of F(W)
with respect to W, the following expressions can be derived:

F′ij = [2XTXW − 2XTV + 2αUW]ij, (22)

F′′ij = [2XTX + 2αU]ii. (23)

□

Lemma 1.

G(Wij, W(t)
ij ) = Fij(W

(t)
ij ) + F′ij(W

(t)
ij )(Wij −W(t)

ij ) +
[XTXW + αUW]ij

W(t)
ij

(Wij −W(t)
ij )2, (24)

where G(Wij, W(t)
ij ) is the auxiliary function of Fij. When Wij = W(t)

ij , G(W(t)
ij , W(t)

ij ) = Fij(W
(t)
ij ).

Proof. The Taylor series expansion of Fij
(
Wij

)
is:

Fij(Wij) = Fij(W
(t)
ij ) + F′ij(W

(t)
ij )(Wij −W(t)

ij ) + [XTX + αU]ii(Wij −W(t)
ij )2. (25)

G(Wij, W(t)
ij ) ≥ Fij(Wij) is equivalent to:

[XTXW + αUW]ij

W(t)
ij

≥ [XTX + αU]ii. (26)

Since:

[XTXW + αUW]ij = ∑k [X
TX + αU]ikW(t)

kj ≥ [XTX + αU]iiW
(t)
ij . (27)

The inequality G(Wij, W(t)
ij ) ≥ Fij(Wij) holds. □

Next, it is demonstrated that, in accordance with the iterative update rule (14), Fij
exhibits a monotonically decreasing.
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Proof. Substituting Equation (24) with x(t+1) = arg
min

x
G(x, x(t)).

W(t+1)
ij = W(t)

ij −W(t)
ij

F′ij(W
(t)
ij )

2[XTXW + αUW]ij
= W(t)

ij
[XTV]ij

[XTXW + αUW]ij
. (28)

It can be seen from the updating rules of W that Fij monotonically decreases under
updating (14). The proof of the updating rules of V is similar to that of W such that the
acquisition of updating rule (16) will be generated. Therefore, the conclusion can be drawn
that Fij exhibits a monotonically decreasing trend, and the objective function of LRPFS
converges. □

3.5. Computational Time Complexity

The time complexity of LRPFS consists of two main parts. The first part involves
constructing the feature score matrix Q, which has a time complexity of O

(
dn2). The

second part involves iteratively optimizing the feature transformation matrix W and the
subspace matrix V, with a calculation complexity of O

(
nd2) per iteration. Therefore, the

total time complexity is O
(
dn2 + tnd2), where t is the number of iterations.

4. Experiments

In this section, the superiority of LRPFS is demonstrated through a series of experi-
ments conducted on benchmark datasets. These experiments consist of two main parts:
comparative experiments (Section 4.5) and LRPFS analysis experiments (Section 4.6). All
of the experimental results are implemented with MATLAB R2018b on a Windows ma-
chine with 3.10-GHZ i5-11300H, 16-GB main memory. The code of our proposed LRPFS is
available at https://github.com/huangyulei1/LRPFS accessed on 5 December 2023.

4.1. Datasets

The benchmark datasets include COIL20, Colon, Isolet, JAFFE, Yale64, PIE [29], nci9,
PCMAC, Lung_dis, and TOX_171, downloaded at https://jundongl.github.io/scikit-feature/
datasets.html, accessed on 3 August 2022, and https://www.face-rec.org/databases/, ac-
cessed on 3 August 2022, and Table 1 illustrates the details of these datasets.

Table 1. Details of nine datasets.

No. Datasets Samples Features Class Type

1 COIL20 1440 1024 20 Object image
2 Colon 62 2000 2 Biological
3 Isolet 1560 617 26 Speech Signal
4 JAFFE 213 676 10 Face image
5 Lung_dis 73 325 7 Biological
6 nci9 60 9712 9 Biological
7 PCMAC 1943 3289 2 Text
8 PIE 2856 1024 68 Face image
9 TOX_171 171 5748 4 Biological
10 Yale64 165 4096 11 Face image

4.2. Comparison Methods

Since LRPFS belongs to UFS, the comparison experiments are performed under unsu-
pervised conditions, and the selected 10 state-of-the-art UFS methods are briefly described
as follows.

Baseline: The method utilizes the original dataset as a feature subset for clustering.
LapScor [22]: A classical filter FS method to evaluate features by local preservation ability.
SPEC [19]: It selects feature subsets by utilizing spectral regression.

https://github.com/huangyulei1/LRPFS
https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://www.face-rec.org/databases/
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MCFS [20]: A two-step framework for selecting features is constructed by combining
spectral regression and sparse regression.

UDFS [40]: Based on ℓ2,1-norm minimization and discriminant analysis ideas, a joint
framework is imposed to guide the UFS.

SOGFS [25]: The method adaptively learns the local manifold structure and constructs
a more accurate similarity matrix to select more discriminative features.

SRCFS [46]: The idea of collaboration and randomization of multiple subspaces under
high-dimensional space is introduced to select more discriminable features by exploring
the ability of various subspaces.

RNE [24]: A method to preserve local geometric structure is constructed through a
novel robust objective function.

inf-FSU [39]: It assigns a score for each feature through graph theory to obtain a
feature subset.

S2DFS [38]: This method constructs a parameter-free UFS method based on the trace
ratio criterion with ℓ2,0-norm constraint to maintain more feature discrimination power.

4.3. Evaluation Metrics

In our experiments, the performance of the proposed LRPFS is evaluated by using
two evaluation metrics: clustering accuracy (ACC) and normalized mutual information
(NMI) [50]. The values of these evaluation metrics range from 0 to 1, and the higher the
value is, the better the performance of the algorithm is.

4.4. Experimental Settings

Concerning the parameter settings, the number of k-neighbours is set to 0 or 5 for these
methods that require the construction of a similarity matrix, and the parameter σ is fixed
at 10 [23]. For the inf-FSU method, the parameter α is tuned in the range of {10−4, 10−3,
10−2, 10−1, 100}. For the RNE method, the parameter range is set according to ref. [24]. For
our LRPFS method, both the scaling parameter λ and the sparse parameter α are searched
from {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}, and the number of latent variables f is
default to the number of classes of the dataset. For the remaining methods, the parameters
are tuned in {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. In the experimental process, the
maximum number of iterations maxIter is set to 30 and the iteration will be terminated early
when the objective function value (Obj) satisfies |Obj(t)−Obj(t− 1)|/Obj(t− 1) < 10−6,
where Obj(t) denotes the objective function value for the t-th iteration. The number of
feature subsets l varies in {20, 30, 40, 50, 60, 70, 80, 90, 100}. Since the result of k-means
depends on the initialization, we repeat the clustering 20 times independently and take the
means and standard deviations as the final results.

4.5. Comparison Experiment

The performance of LRPFS is compared with 10 state-of-the-art FS methods on 9
datasets, i.e., COIL20, Colon, Isolet, JAFFE, Lung_dis, nci9, PCMAC, PIE and TOX_171.
Firstly, feature selection is performed to achieve feature subsets from the datasets. Secondly,
k-means is applied to the feature subsets to derive clustering results. Finally, the results of
these algorithms are evaluated by two metrics (i.e., ACC and NMI).

According to the above experimental settings, the clustering results (i.e., ACC, NMI) of
LRPFS and the comparison methods on nine datasets are shown in Tables 2 and 3, where the
best results for each dataset are bolded, the second-best results are underlined and labelled
with the number of selected features. Table 4 illustrates the running time of all algorithms
on various datasets. According to these Tables, it can be seen that LRPFS outperforms all
other comparison methods in terms of ACC, while in most cases, the NMI values of LRPFS
are higher than other algorithms, which fully demonstrates the effectiveness of selecting
discriminative features. The specific summary is as follows.
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(1) Overall, most of the UFS methods outperform baseline across a majority of datasets.
This performance differential highlights the substantial superiority of these UFS
methods in effectively eliminating irrelevant and redundant features.

(2) The results presented in Tables 2 and 3 indicate that our proposed method, LRPFS,
achieves significant performance compared to other state-of-the-art techniques. Spe-
cially, LRPFS showcases a substantial increase in Accuracy (ACC) of 32.26%, 30.65%,
30.57%, 33.87%, 24.84%, 25.81%, 29.04%, 24.2%, 14.76%, and 1.54%, respectively, as
compared to baseline, LapScor, SPEC, MCFS, UDFS, SOGFS, SRCFS, RNE, inf-FSU,
and S2DFS. The main reason for this phenomenon is that LRPFS excels in extracting
the inherent information within the data structure and assigning unique attribute
scores to individual samples. These distinct attributes significantly contribute to its
outstanding performance, especially on the Colon dataset.

(3) The insights revealed by the results in Table 4 serve to emphasize LRPFS’s remarkable
competitiveness in terms of computation time against a significant proportion of the
algorithms under comparison. While the performance of LRPFS might be slightly
inferior to baseline, LapScor, and MCFS, it still exhibits excellent computational
efficiency, coupled with the highest clustering accuracy. This is particularly evident
when comparing LRPFS with UDFS, SOGFS, RNE, inf-FSU, and S2DFS. Compared
with baseline, the running time of LRPFS on some datasets with few samples, such
as Colon, nci9, and TOX_171, is slower than baseline. The main reason is that the
process of selecting discriminant features takes a certain amount of time. However,
when dealing with datasets with large samples such as PIE and Isolet, the running
time of LRPFS is superior to baseline and the clustering accuracy is also significantly
improved, which verifies the dimension reduction capability of LRPFS and provides
a theoretical basis for the implementation of practical problems.

(4) MCFS performs better than SPEC on Isolet, JAFFE, Lung_dis, PCMAC, and PIE since
MCFS takes sparse regression into account in the FS model, which can improve the
learning ability of the model. Specially, S2DFS is slightly better than UDFS even if
there exists the same idea of discriminant analysis in S2DFS and UDFS. The reason
may lie in that in S2DFS a trace ratio criterion framework with ℓ2,0-norm constraint
plays a positive role.

(5) RNE, SOGFS, and LRPFS exhibit commendable performance, affirming the impor-
tance of capturing the underlying manifold structure inherent in the data. Notably,
SOGFS outperforms RNE across some datasets, especially on JAFFE, Lung_dis, nci9,
and PIE. This distinction can be attributed to SOGFS’s incorporation of an adaptive
graph mechanism, thereby engendering more precise similarity matrices. Unlike the
aforementioned two techniques, LRPFS introduces the refinement of attribute scores
to mitigate the harmful impact of noise while preserving the inherent data structure.
This distinctive attribute underscores the superiority of LRPFS to a certain degree.

Table 2. ACC (MEAN ± STD % (The number of selected features)) of different algorithms on
real-world datasets, where the best results for each dataset are bolded, the second-best results
are underlined.

Methods COIL20 Colon Isolet JAFFE Lung_dis nci9 PCMAC PIE TOX_171

Baseline
65.75 54.84 61.73 82.04 73.63 40.75 50.49 24.68 44.77
±4.16 ±0.00 ±2.77 ±5.59 ±5.26 ±5.26 ±0.00 ±1.09 ±3.93
(all) (all) (all) (all) (all) (all) (all) (all) (all)

LapScor
60.41 56.45 55.83 76.74 70.41 37.58 50.23 39.00 52.81
±2.11 ±0.00 ±2.14 ±4.58 ±7.34 ±3.08 ±0.00 ±1.05 ±0.27
(100) (40) (100) (50) (90) (80) (50) (70) (20)

SPEC
64.74 56.53 46.84 80.94 71.03 46.33 50.08 17.88 50.32
±3.47 ±0.36 ±1.89 ±5.35 ±5.38 ±4.17 ±0.00 ±0.89 ±1.31
(90) (30) (100) (100) (100) (50) (20) (100) (90)
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Table 2. Cont.

Methods COIL20 Colon Isolet JAFFE Lung_dis nci9 PCMAC PIE TOX_171

MCFS
64.22 53.23 56.81 85.40 81.92 45.58 50.13 27.87 43.63
±3.37 ±0.00 ±2.20 ±4.41 ±4.80 ±3.26 ±0.00 ±1.48 ±1.87
(50) (60) (90) (100) (80) (40) (20) (70) (20)

UDFS
58.71 62.26 42.65 84.55 77.60 35.25 51.02 20.74 45.06
±2.14 ±1.22 ±1.72 ±4.10 ±6.66 ±2.25 ±0.39 ±0.69 ±4.18
(100) (30) (100) (100) (90) (60) (30) (100) (70)

SOGFS
57.83 61.29 45.44 86.03 76.71 42.75 52.50 36.60 49.80
±2.78 ±0.00 ±1.88 ±4.78 ±5.50 ±4.43 ±0.41 ±1.01 ±2.21
(100) (30) (100) (70) (90) (50) (80) (30) (80)

SRCFS
57.14 58.06 55.91 76.17 70.68 39.33 50.49 39.77 47.46
±2.68 ±0.00 ±2.04 ±4.65 ±5.36 ±2.98 ±0.00 ±1.05 ±0.29
(100) (100) (100) (100) (80) (90) (100) (90) (100)

RNE
61.52 62.90 49.44 73.66 73.29 36.08 53.86 27.82 54.35
±1.91 ±0.00 ±1.51 ±4.52 ±5.32 ±3.56 ±4.82 ±0.83 ±3.64
(70) (70) (70) (90) (90) (30) (20) (40) (80)

inf-FSU

58.32 72.34 56.75 66.01 78.90 32.92 50.75 40.32 39.94
±2.69 ±0.79 ±1.35 ±3.83 ±6.21 ±2.85 ±0.00 ±1.11 ±1.02
(100) (50) (100) (100) (80) (100) (40) (100) (30)

S2DFS
67.10 85.56 63.64 81.46 78.70 46.50 50.08 27.79 46.55
±3.18 ±0.36 ±2.09 ±7.67 ±4.76 ±4.25 ±0.00 ±0.81 ±2.43
(60) (30) (100) (100) (80) (100) (30) (60) (50)

LRPFS
69.31 87.10 66.41 86.31 82.23 47.25 57.84 41.62 54.44
±3.17 ±1.17 ±1.74 ±3.63 ±4.53 ±4.69 ±0.97 ±1.43 ±0.87

(90) (70) (100) (60) (60) (30) (60) (70) (50)

Table 3. NMI (MEAN ± STD % (The number of selected features)) of different algorithms on
real-world datasets, where the best results for each dataset are bolded, the second-best results
are underlined.

Methods COIL20 Colon Isolet JAFFE Lung_dis nci9 PCMAC PIE TOX_171

Baseline
76.69 0.60 76.06 83.61 69.27 37.96 0.01 48.84 24.17
±1.99 ±0.00 ±1.26 ±3.37 ±4.21 ±5.92 ±0.00 ±0.62 ±3.73
(all) (all) (all) (all) (all) (all) (all) (all) (all)

LapScor
69.67 0.97 69.45 83.45 64.86 36.49 0.58 64.51 34.93
±1.18 ±0.00 ±0.91 ±2.28 ±5.71 ±1.66 ±0.00 ±0.65 ±0.36
(100) (40) (100) (50) (90) (40) (50) (70) (20)

SPEC
73.52 1.75 59.89 83.92 67.09 45.41 0.45 42.57 25.64
±1.49 ±0.02 ±1.38 ±3.73 ±3.55 ±3.64 ±0.00 ±0.43 ±1.49
(100) (30) (100) (80) (100) (40) (20) (20) (90)

MCFS
74.14 0.10 69.80 85.82 74.01 45.76 0.41 50.89 19.00
±1.90 ±0.00 ±0.66 ±2.20 ±4.11 ±3.27 ±0.00 ±0.69 ±3.78
(60) (20) (100) (100) (80) (40) (20) (70) (60)

UDFS
69.43 3.12 57.41 84.95 69.80 34.99 0.11 44.13 15.78
±0.99 ±0.63 ±0.87 ±2.69 ±4.65 ±2.95 ±0.05 ±0.38 ±5.16
(100) (30) (100) (90) (90) (20) (30) (100) (100)

SOGFS
70.79 7.79 61.35 88.08 70.60 42.42 2.16 58.55 28.18
±1.72 ±0.00 ±0.36 ±2.97 ±2.57 ±3.77 ±0.52 ±0.53 ±4.16
(100) (30) (100) (70) (100) (70) (80) (30) (100)
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Table 3. Cont.

Methods COIL20 Colon Isolet JAFFE Lung_dis nci9 PCMAC PIE TOX_171

SRCFS
69.20 1.83 68.18 81.18 65.45 37.65 0.63 64.95 31.40
±0.98 ±0.00 ±0.98 ±3.89 ±4.25 ±3.32 ±0.00 ±0.86 ±0.30
(100) (100) (100) (100) (100) (80) (20) (90) (40)

RNE
72.01 3.95 62.85 78.76 67.31 33.66 1.26 54.42 28.26
±1.56 ±0.00 ±1.01 ±3.70 ±4.40 ±3.73 ±1.24 ±0.55 ±4.07
(100) (70) (100) (90) (90) (30) (20) (40) (80)

inf-FSU

68.65 16.80 71.52 69.26 74.60 27.53 0.21 65.66 13.11
±1.16 ±0.77 ±0.58 ±2.28 ±5.81 ±3.30 ±0.00 ±0.73 ±1.17
(100) (50) (100) (100) (80) (100) (40) (100) (60)

S2DFS
76.33 40.70 74.75 83.85 74.43 46.55 0.29 52.64 30.18
±1.43 ±0.78 ±0.83 ±4.07 ±3.25 ±4.06 ±0.00 ±0.64 ±2.36
(80) (30) (100) (100) (80) (100) (20) (60) (100)

LRPFS
76.55 41.80 75.96 86.71 76.63 47.12 2.00 64.97 35.80
±1.03 ±3.10 ±0.61 ±2.12 ±4.38 ±4.56 ±0.30 ±0.48 ±1.00
(100) (70) (100) (90) (60) (70) (90) (80) (80)

Table 4. Computation time (seconds) of different methods on real-world datasets.

Methods COIL20 Colon Isolet JAFFE Lung_dis nci9 PCMAC PIE TOX_171

Baseline 24.91 0.62 19.13 1.64 0.43 2.56 3.04 99.57 7.84
LapScor 5.83 0.38 7.96 0.95 0.35 0.47 1.75 33.24 0.94

SPEC 10.58 0.31 12.94 0.96 0.41 0.54 16.52 53.50 1.08
MCFS 5.97 1.01 8.01 1.24 0.65 2.14 2.83 30.88 1.39
UDFS 13.94 12.43 13.41 1.48 0.52 1198.87 67.97 55.85 314.23

SOGFS 96.53 3.09 23.73 1.98 0.86 12,137.22 608.57 58.83 929.49
SRCFS 10.53 0.53 12.91 1.22 0.55 0.62 12.59 51.55 1.42
RNE 12.71 29.53 12.67 5.42 1.36 476.33 50.15 33.79 179.91

inf-FSU 10.75 2.88 9.31 1.90 0.61 55.31 50.91 47.07 28.03
S2DFS 7.21 12.80 7.86 1.77 0.65 1379.36 60.78 31.01 291.46
LRPFS 9.27 1.24 12.83 1.19 0.41 23.24 29.56 52.40 8.66

To further investigate the effect of the number of selected features on LRPFS, the
clustering performance of various methods is illustrated upon different numbers of features
as shown in Figures 3 and 4, where the horizontal coordinate indicates the number of
features selected according to the FS methods, the vertical coordinate denotes the clustering
performance and the shaded section represents the error range of ACC and NMI. It can
be explicitly observed that the curves of LRPFS are mostly uppermost, especially on
Colon, PCMAC, and PIE, which achieves a satisfactory performance and demonstrates the
superiority of LRPFS over other compared methods.

To verify the noise reduction ability of LRPFS, noise tests are conducted on the COIL20
dataset with random noise of 8 × 8, 12 × 12 and 16 × 16 sizes added to each sample
(32 × 32) respectively to generate three synthetic datasets as shown in Figure 5b–d, and
the clustering results are shown in Table 5. It can be seen that LRPFS is superior to other
comparison methods under the influence of various noises and still achieves excellent
performance, especially in Figure 5b, it is extremely difficult to select significant features
since most features of the pictures are blocked according to the excessive size of the noise.
However, LRPFS with latent relationship penalty term still achieves satisfactory results,
for example, the ACC of LRPFS is 9.06% higher than that of RNE on the 16×16 noised
COIL20 datasets. Consequently, LRPFS has the strong learning capability of identifying
discriminative features and diminishing noise.
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Table 5. ACC and NMI (MEAN ± STD %) on the noised COIL20 datasets, where the best results for
each dataset are bolded, the second-best results are underlined.

Methods
Accuracy (%) Normalized Mutual Information (%)

8 × 8 Noise 12 × 12 Noise 16 × 16 Noise 8 × 8 Noise 12 × 12 Noise 16 × 16 Noise

LapScor 56.03 ± 3.43 58.72 ± 2.96 58.32 ± 3.56 67.53 ± 1.06 69.83 ± 0.84 68.82 ± 1.28
SPEC 63.90 ± 2.78 63.78 ± 2.34 56.46 ± 2.29 72.18 ± 1.23 73.35 ± 1.34 67.75 ± 0.92
MCFS 64.01 ± 3.58 63.94 ± 2.02 61.96 ± 2.45 73.69 ± 1.84 73.37 ± 1.08 70.77 ± 1.06
UDFS 59.28 ± 2.68 63.45 ± 2.49 60.85 ± 2.31 69.15 ± 1.33 73.12 ± 1.17 68.27 ± 1.48

SOGFS 57.19 ± 2.39 57.60 ± 2.59 57.43 ± 2.88 70.41 ± 1.10 70.47 ± 0.77 69.85 ± 1.60
SRCFS 57.70 ± 3.19 58.20 ± 2.00 57.86 ± 2.42 69.81 ± 1.50 69.87 ± 1.28 68.13 ± 1.00
RNE 62.05 ± 4.12 61.63 ± 2.98 53.52 ± 2.35 72.44 ± 1.62 71.74 ± 1.44 65.76 ± 0.88

inf-FSU 57.33 ± 2.52 58.01 ± 2.27 59.23 ± 2.19 69.06 ± 1.12 68.07 ± 1.20 68.21 ± 1.42
S2DFS 65.39 ± 3.19 65.75 ± 3.94 62.39 ± 3.27 73.27 ± 1.81 73.40 ± 1.88 70.76 ± 1.55
LRPFS 65.95 ± 2.79 66.85 ± 2.50 62.58 ± 2.21 73.71 ± 1.33 74.14 ± 1.15 70.94 ± 1.28
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with the Baseline, S2DFS, and LRPFS methods. For the baseline method, all features are
selected as feature subsets to represent the original dataset. For both S2DFS and LRPFS,
the top 100 features are selected as feature subsets. The experimental results correspond
to Figure 6a–c, respectively. It is obvious that in Figure 6a,b, the inter-class distance in
regions A and B is very small, which means that baseline and S2DFS fail to distinguish
different classes clearly, whereas, in Figure 6c, our LRPFS succeeds in enlarging the distance
of different classes. Especially, when the coordinate scales are the same as in Figure 6c, the
overall spatial structure of LRPFS remains consistent compared to S2DFS, which further
verifies that the potential relationship penalty term can explore the uniqueness of the
samples to maximize the inter-class distance while preserving the spatial structure of the
data and selecting more discriminative features.
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4.6. LRPFS Experimental Performance

In this subsection, to assess the efficiency of LRPFS, convergence, and parameter
sensitivity experiments are conducted on nine benchmark datasets (i.e., COIL20, Colon,
Isolet, JAFFE, Lung_dis, nci9, PCMAC, PIE, and TOX_171). Additionally, the feature
selection performance of LRPFS is evaluated on the Yale64 dataset.

4.6.1. Convergence Analysis

To empirically demonstrate the convergence of LRPFS, convergence curves for nine
datasets are depicted in Figure 7, where the horizontal axis represents the number of
iterations and the vertical axis denotes the objective function values. From these plots, it is
observed that the curves of the objective function exhibit significant and rapid variations,
particularly in the Colon, Isolet, Lung_dis, and nci9 datasets, and convergence can be
achieved within 15 iterations on all datasets. This observation serves as evidence that
LRPFS achieves effective and stable convergence across all datasets, which further validates
the correctness of the theoretical convergence proof.
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4.6.2. Parameter Sensitivity Experiment

LRPFS involves parameters k, σ, λ, and α. Among them, parameters k and σ are
associated with constructing the sample attribute scores, which have an indirect and
slight influence on the algorithm. Therefore, we mainly conduct parameter sensitivity
experiments on parameters λ and α. We fix k = 0, σ = 10, and adjust the range of
parameters λ and α in {10−4, 10−3, 10−2, . . ., 102, 103, 104}. The 3-D grids of ACC and NMI
are displayed under different parameter values on test datasets as shown in Figures 8 and 9.
As can be observed on most of the datasets, the values of ACC and NMI are positively
correlated, and the clustering results are comparatively stable with the varying parameters.
In particular, in these datasets where the number of samples is larger than the number of
features. For example, COIL20 and PIE, λ has a minor impact on the clustering performance
of LRPFS than α. However, on Colon, nci9, and PCMAC where the number of features is
larger than the number of samples, LRPFS is more sensitive to λ. The reason may lie in that
latent relationship penalty mining plays a more significant role in guiding feature selection
when the number of sample features is larger. In a word, the parameters λ and α both
play an indispensable role in LRPFS in that the feature selection mechanism of LRPFS can
perform efficiently under the combined influence of latent relationship penalty and sparse
constraints. Meanwhile, the experiment verifies that the parameters λ and α are suitable for
12 benchmark datasets in the range of {10−4,10−3, 10−2, . . ., 102, 103, 104}, which provides a
suitable parameter reference range for LRPFS in practical application.
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4.6.3. The Effectiveness Evaluation of Feature Selection

On the Yale64 dataset, the selected features of LRPFS are visualized. In our experi-
ments, two samples are randomly selected from the Yale64 dataset and select {0, 50, 100,
200, 500, 800, 1000, 2000} features from the selected samples under LRPFS, and the selected
features are displayed in white pixels, which correspond to the images from left to right
in the illustration in Figure 10, sequentially. It can be observed that when 50 features are
selected, the selected features are mainly concentrated in hair, eyes, and nose, whereas the
selected features appear in the mouth when the selected features are increased to 100 so
that the features of hair, eyes, and nose are more discriminative than the mouth in Yale64
dataset. As the selected features gradually increase, the selected features are mainly divided
into hair, eyes, glasses, nose, mouth, beard, etc., which is consistent with the perception of
selected features for face recognition. Thus, it is demonstrated that LRPFS can effectively
identify discriminative features and reasonably evaluate feature scores.

Axioms 2024, 12, x FOR PEER REVIEW 21 of 24 
 

Figure 9. The NMI results of LRPFS on the nine datasets under different parameters varying in 

log10. 

4.6.3. The effectiveness Evaluation of Feature Selection 

On the Yale64 dataset, the selected features of LRPFS are visualized. In our experi-

ments, two samples are randomly selected from the Yale64 dataset and select {0, 50, 100, 

200, 500, 800, 1000, 2000} features from the selected samples under LRPFS, and the selected 

features are displayed in white pixels, which correspond to the images from left to right 

in the illustration in Figure 10, sequentially. It can be observed that when 50 features are 

selected, the selected features are mainly concentrated in hair, eyes, and nose, whereas the 

selected features appear in the mouth when the selected features are increased to 100 so 

that the features of hair, eyes, and nose are more discriminative than the mouth in Yale64 

dataset. As the selected features gradually increase, the selected features are mainly di-

vided into hair, eyes, glasses, nose, mouth, beard, etc., which is consistent with the per-

ception of selected features for face recognition. Thus, it is demonstrated that LRPFS can 

effectively identify discriminative features and reasonably evaluate feature scores. 

 

Figure 10. Results of two Yale64 samples with different numbers of selected features. 

5. Conclusions 

In this paper, a novel unsupervised feature selection with latent relationship penalty 

term, named LRPFS, is proposed, which takes into account the uniqueness of the samples 

and sufficiently exploits the attributes of preserving the data structure. LRPFS incorpo-

rates latent relationship penalty term into UFS, which provides a latent constraint on the 

feature transformation matrix and generates a pseudo-label matrix for feature selection. 

Additionally, the ℓ2,1-norm sparsity constraint is applied to the feature transformation ma-

trix to enhance the computational efficiency of the algorithm significantly. 

Comparative experiments are conducted between the LRPFS and 10 UFS methods. 

The comparison experiments covered various aspects, including clustering tasks, running 

speed, and noise experiments, utilizing datasets from different domains, such as images, 

text, Speech Signal, and biological data. The experimental results demonstrate that, com-

pared to the comparison methods, LRPFS can effectively select discriminative features 

and reduce the interference of noise, especially on Colon dataset the ACC value of LRPFS 

is increased by 32.26% over the baseline, which further confirms the effectiveness of the 

LRPFS mechanism. The reason is that LRPFS can preserve pairwise relationships on the 

uniqueness score of the sample to explore the interconnection between individuals. At the 

same time, our proposed learning framework is beneficial for providing a theoretical basis 

for the realization of practical problems. 

On the other hand, one limitation of LRPFS is that it requires the tuning of two pa-

rameters, which can be time-consuming. In Section 4, extensive experiments demonstrate 

the importance of a well-tuned set of parameters. Hence, our future work aims to develop 

a new mechanism that eliminates the need for parameter tuning or to design a novel op-

timization mechanism capable of simultaneously optimizing all variables. We also plan to 

apply this method to other fields such as remote sensing images and gene expression anal-

ysis in the future. 

Figure 10. Results of two Yale64 samples with different numbers of selected features.

5. Conclusions

In this paper, a novel unsupervised feature selection with latent relationship penalty
term, named LRPFS, is proposed, which takes into account the uniqueness of the samples
and sufficiently exploits the attributes of preserving the data structure. LRPFS incorporates
latent relationship penalty term into UFS, which provides a latent constraint on the feature
transformation matrix and generates a pseudo-label matrix for feature selection. Addition-
ally, the ℓ2,1-norm sparsity constraint is applied to the feature transformation matrix to
enhance the computational efficiency of the algorithm significantly.

Comparative experiments are conducted between the LRPFS and 10 UFS methods. The
comparison experiments covered various aspects, including clustering tasks, running speed,
and noise experiments, utilizing datasets from different domains, such as images, text,
Speech Signal, and biological data. The experimental results demonstrate that, compared to
the comparison methods, LRPFS can effectively select discriminative features and reduce
the interference of noise, especially on Colon dataset the ACC value of LRPFS is increased by
32.26% over the baseline, which further confirms the effectiveness of the LRPFS mechanism.
The reason is that LRPFS can preserve pairwise relationships on the uniqueness score of the
sample to explore the interconnection between individuals. At the same time, our proposed
learning framework is beneficial for providing a theoretical basis for the realization of
practical problems.

On the other hand, one limitation of LRPFS is that it requires the tuning of two
parameters, which can be time-consuming. In Section 4, extensive experiments demonstrate
the importance of a well-tuned set of parameters. Hence, our future work aims to develop
a new mechanism that eliminates the need for parameter tuning or to design a novel
optimization mechanism capable of simultaneously optimizing all variables. We also plan
to apply this method to other fields such as remote sensing images and gene expression
analysis in the future.
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