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Abstract: In this paper, we introduce the “Walk on Equations” (WE) Monte Carlo algorithm, a novel
approach for solving linear algebraic systems. This algorithm shares similarities with the recently
developed WE MC method by Ivan Dimov, Sylvain Maire, and Jean Michel Sellier. This method
is particularly effective for large matrices, both real- and complex-valued, and shows significant
improvements over traditional methods. Our comprehensive comparison with the Gauss–Seidel
method highlights the WE algorithm’s superior performance, especially in reducing relative errors
within fewer iterations. We also introduce a unique dominancy number, which plays a crucial role
in the algorithm’s efficiency. A pivotal outcome of our research is the convergence theorem we
established for the WE algorithm, demonstrating its optimized performance through a balanced
iteration matrix. Furthermore, we incorporated a sequential Monte Carlo method, enhancing the
algorithm’s efficacy. The most-notable application of our algorithm is in solving a large system
derived from a finite-element approximation in constructive mechanics, specifically for a beam
structure problem. Our findings reveal that the proposed WE Monte Carlo algorithm, especially
when combined with sequential MC, converges significantly faster than well-known deterministic
iterative methods such as the Jacobi method. This enhanced convergence is more pronounced in larger
matrices. Additionally, our comparative analysis with the preconditioned conjugate gradient (PCG)
method shows that the WE MC method can outperform traditional methods for certain matrices.
The introduction of a new random variable as an unbiased estimator of the solution vector and the
analysis of the relative stochastic error structure further illustrate the potential of our novel algorithm
in computational mathematics.
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1. Introduction

Linear systems play a pivotal role in various fields of mathematics, science, engi-
neering, and technology, showcasing their fundamental significance [1–5]. The study and
solution of linear systems of algebraic equations provide a versatile framework for mod-
eling and analyzing a wide array of real-world phenomena [6–14]. These systems offer
a structured approach to represent relationships and dependencies among variables, en-
abling the formulation of mathematical models for diverse applications, including physics,
economics, biology, and computer science. Linear systems also serve as the foundation
for understanding more-complex mathematical structures, paving the way for advanced
techniques and methodologies in numerical analysis, optimization, and data analysis.
The ability to efficiently solve linear systems is crucial for addressing practical problems,
making them an indispensable tool in the toolkit of researchers, scientists, and engineers
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across various disciplines. Whether in simulating physical systems, optimizing resource
allocation, or processing data, the significance of linear systems lies in their capacity to
provide a systematic and powerful framework for problem-solving and decision-making.

Beyond their foundational role in mathematics, linear systems offer a practical and
indispensable tool for solving real-world problems [15–18]. The linear nature of these
systems simplifies their mathematical representation, making them particularly amenable
to analytical and computational methods. In engineering, for instance, linear systems are
pervasive in control theory, signal processing, and structural analysis. The ability to solve
linear systems efficiently contributes to the design and optimization of systems ranging
from electronic circuits to mechanical structures. Moreover, in economics and finance,
linear models are frequently employed to analyze relationships between variables, aiding in
decision-making processes. The significance of linear systems extends to scientific research,
where they are utilized for data analysis, image processing, and simulations. In essence,
the versatility and applicability of linear systems underscore their significance across a
broad spectrum of disciplines, emphasizing their role as a cornerstone in the theoretical
understanding and practical application of mathematical concepts in the real world.

The significance of linear systems transcends their mere existence as mathematical
constructs; rather, they embody a fundamental and pervasive concept with profound impli-
cations across various domains of human inquiry. At its core, a linear system encapsulates
relationships, dependencies, and interactions within a structured framework, providing a
mathematical language to express and decipher complex phenomena. In physics, the laws
governing many natural phenomena exhibit linearity, allowing scientists to model and
predict behavior. In the intricate world of engineering, linear systems are the backbone of
control theory, enabling the design of stable and efficient systems, whether in aerospace
engineering or telecommunications.

Moreover, linear systems [19–21] serve as a gateway to understanding more-sophisticated
mathematical structures. The study of linear algebra and the solutions to linear systems lay
the groundwork for advanced mathematical techniques that underpin numerical analysis,
optimization, and statistical modeling. In essence, linear systems act as a bridge between
theoretical abstraction and real-world problem-solving, facilitating a deeper comprehension
of intricate mathematical concepts. The practical implications of efficiently solving linear
systems are profound. From the optimization of resource allocation in logistics to the
simulation of complex physical processes, the ability to navigate and manipulate linear
systems empowers researchers and engineers to tackle challenges of increasing complexity.
In economics, linear models elucidate intricate relationships within financial systems,
offering insights crucial for informed decision-making.

Linear Algebraic Equations (LAEs) [22–25] establish the fundamental scaffolding for
an array of scientific and engineering pursuits, effectively translating abstract concepts into
tangible, real-world applications. Whether navigating intricate simulations in the realm
of computational fluid dynamics or delving into intricate optimizations within the field
of structural engineering, LAEs provide a mathematical prism that allows us to not only
comprehend but also address a diverse range of complex challenges. As computational
power continues to burgeon and the intricacy of problems intensifies, attention has gravi-
tated towards large-scale LAEs. These expansive systems not only push the boundaries of
analytical methods but also necessitate a computational infrastructure capable of grappling
with their sheer magnitude. Within these vast systems lie intricate interrelationships and
voluminous datasets, amplifying the critical nature and complexity of their resolution.
Successfully addressing these extensive systems often hinges on the application of so-
phisticated stochastic techniques, highlighting the necessity for advanced and nuanced
approaches [26,27].

LAEs serve as a foundational framework in mathematics and its applications, enabling
the modeling and analysis of diverse systems and phenomena. The widespread use of
LAEs underscores their significance as a foundational and unifying mathematical frame-
work. As computational power continues to advance, the application of linear algebra in
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interdisciplinary research and problem-solving is likely to expand, further cementing its
role as an indispensable tool in both theoretical and applied mathematics. Their broad
applicability and the development of specialized techniques for their solution make them
a central topic in both theoretical and applied mathematics. The application of linear
algebraic equations extends across a wide array of fields, demonstrating their versatility in
addressing complex problems and providing essential tools for understanding, modeling,
and solving diverse systems and phenomena. Here are some broader perspectives on the
applications of LAEs [28–32].

In engineering disciplines, LAEs are fundamental to the analysis and design of struc-
tures, circuits, and mechanical systems. They play a pivotal role in solving problems related
to fluid dynamics, heat transfer, and electrical networks. In physics, linear algebra is essen-
tial for describing quantum mechanics, classical mechanics, and the behavior of physical
systems. Linear algebra is at the core of many algorithms and techniques in computer
science. From image processing and computer graphics to machine learning and artificial
intelligence, linear algebraic equations are used for tasks like image transformation, data
representation, and solving systems of equations arising in algorithmic processes. LAEs are
applied in economic modeling and financial analysis. Systems of linear equations are used
to model economic relationships, optimize resource allocation, and analyze market trends.
Techniques such as input-output analysis and linear programming rely on linear algebraic
methods. Linear algebra is a fundamental tool in statistics and data analysis. Methods
such as linear regression, principal component analysis, and singular value decomposi-
tion involve solving and manipulating systems of linear equations. These techniques are
crucial for extracting meaningful information from large datasets. LAEs play a central
role in optimization problems and control systems engineering. Techniques like linear
programming and control theory heavily rely on linear algebraic methods to optimize
processes, design controllers, and ensure stability in dynamic systems. Cryptography,
the science of secure communication, employs linear algebra in areas such as coding theory
and the design of encryption algorithms. Techniques like error-correcting codes and cryp-
tographic protocols often involve solving linear algebraic equations to ensure the security
and integrity of transmitted information. LAEs find applications in biomedical imaging,
genetics, and bioinformatics. Techniques like image reconstruction in medical imaging,
genetic mapping, and the analysis of biological networks involve solving linear systems
to interpret and understand complex biological phenomena. Environmental scientists use
LAEs to model and analyze environmental systems. This includes studying the flow of
pollutants in ecosystems, analyzing climate models, and optimizing resource management
strategies to address environmental challenges.

Monte Carlo (MC) algorithms [33–35] for LAPs leverage probabilistic sampling tech-
niques to address challenges associated with large-scale linear systems. These algorithms
are particularly useful when traditional methods become computationally expensive or
impractical. MC methods are often incorporated into randomized numerical linear algebra
algorithms. These methods introduce randomness into the computation, allowing for
efficient approximations of matrix factorizations and solutions to linear systems. These
techniques are useful for tasks like low-rank approximation, singular value decomposition,
and solving linear systems. MC algorithms for LAPs can be applied to solve systems of
linear equations. Instead of directly computing the solution, these algorithms use ran-
dom sampling to approximate the solution or components of the solution vector. This is
especially advantageous when dealing with large and sparse matrices. MC integration
techniques are adapted for LAPs, where the goal is to approximate integrals involving
high-dimensional vectors or matrices. This approach involves random sampling to esti-
mate expectations or integrals, offering a stochastic alternative to deterministic methods.
In some applications, matrices involved in linear algebraic problems are too large to be
explicitly formed or stored. Matrix-free MC methods address this challenge by performing
matrix-vector products on-the-fly, utilizing random samples to compute these products
without explicitly representing the entire matrix. MC algorithms provide a stochastic
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approximation framework for solving LAPs. By iteratively updating the solution based
on random samples, these algorithms converge to an approximate solution over multiple
iterations. This approach is particularly relevant for large-scale problems where determin-
istic methods may be impractical. MC algorithms naturally lend themselves to estimating
errors and confidence intervals in the computed solutions. By generating multiple random
samples and observing the variability in the results, these algorithms provide insights
into the uncertainty associated with the computed solution. MC algorithms for LAPs are
well-suited for parallel and distributed computing environments. The inherent randomness
and independence of MC samples make it possible to perform computations concurrently,
improving the scalability of these algorithms for large-scale problems. MC techniques for
LAPs find applications in data science and machine learning, especially in tasks involving
large datasets and high-dimensional spaces. These algorithms are used for tasks such as
approximating covariance matrices, solving linear regression problems, and conducting
randomized dimensionality reduction. Some MC algorithms for LAEs incorporate adaptive
sampling strategies, where the sampling distribution is adjusted based on the observed
outcomes. This adaptability allows the algorithm to focus computational efforts on the
most influential components of the problem. MC algorithms for LAPs provide a powerful
and flexible approach to handling large-scale computations. Their stochastic nature and
adaptability make them well-suited for addressing challenges in diverse fields, ranging
from scientific computing to data-driven applications. As computational resources continue
to advance, the role of MC methods in addressing complex LAPs is likely to expand further.

A comprehensive overview of these algorithms is provided in [36]. The renowned
Power method [37] furnishes an evaluation for the main eigenvalue λ1, employing the
well-known Rayleigh quotient In [38], the authors delve into matrix powers’ bilinear forms,
employing them to devise their solution. Both theoretical and experimental examinations
delve into the algorithm’s robustness. It is elucidated that as perturbations in the entries
of perfectly balanced matrices increase, both error and variance witness a corresponding
escalation. Particularly, smaller matrices exhibit a heightened variance. As the power of A
increases, a rise in the relative error becomes apparent.

Iterative Monte Carlo (IMC) methods [36,39,40] are a class of computational techniques
that utilize iterative processes inspired by Monte Carlo (MC) simulations to solve complex
problems, particularly those involving probabilistic or random elements. These methods
are iterative in nature, meaning that they involve repeated cycles of computation to refine
an estimate or solution. IMC methods are powerful tools that provide flexible and efficient
solutions to a wide range of problems across different disciplines. Their ability to handle
complex, high-dimensional problems makes them particularly valuable in situations where
traditional analytical methods may be impractical or infeasible. As computational resources
continue to advance, the application of Iterative Monte Carlo methods is likely to expand
further, contributing to advancements in scientific research, optimization, and data-driven
decision-making. IMC methods designed to solve LAEs (LAEs) can be conceptualized as
truncated Markov chains [41]:

T = {αt0 → αt1 → αt2 → · · · → αtk}, (1)

where each state αtq for q = 1, . . . , i represents an absorbing state in the chain.
To devise an algorithm for assessing the minimal eigenvalue by modulus, denoted as

λn, a matrix polynomial pk(A) = ∑∞
k=0 qkCk

m+k−1 Ak is essential. Here, Ck
m+k−1 represents

binomial coefficients, and q serves as an acceleration parameter [23,42,43]. This approach
aligns with a discrete analog of the resolvent analytical continuation method utilized in [44].
There are instances where the polynomial converges to the resolvent matrix [25,36,42].
Notably, implementing an acceleration parameter taking into account the resolvent is
one avenue for reducing computational complexity. Alternatively, employing a variance
reduction technique [45] serves to achieve the required solution approximation with fewer
operations. The variance reduction technique proposed in [45] for eigenvalue calculations
in particle transport utilizes MC approximations of fluxes. In [46], an unbiased estimator
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for solving linear algebraic systems (LAS) is introduced. This estimator is adept at finding
specific components of the solution, accompanied by comprehensive results elucidating its
quality and properties. The author leverages this estimator to establish error bounds and
construct confidence intervals for the solution components. Furthermore, ref. [47] introduces
a MC method for matrix inversion, rooted in the solution of simultaneous LAEs. In our
subsequent exploration, insights from both [36,47] will be incorporated to demonstrate how
the proposed algorithm can effectively approximate the inverse of a matrix.

2. Problem Formulation

Examine the subsequent LAP:

• Computing elements of the solution vector, which could involve a subset of compo-
nents or all components.

• Assessing linear functionals of the solution.
• Performing matrix inversion.
• Determining the extremal eigenvalues.

Let A and B are matrices of size n × n, i.e., A, B ∈ Rn×n.

A = {aij}n
i,j=1 = (a1, . . . , ai, . . . , an)

t,

where ai = (ai1, . . . , ain), i = 1, . . . , n. Norms of vectors (l1-norm): ∥ b ∥=∥ b ∥1=

∑n
i=1 |bi|, ∥ ai ∥=∥ ai ∥1= ∑n

j=1 |aij| and matrices ∥ A ∥=∥ A ∥1= maxj ∑n
i=1 |aij|. Consider

a matrix A ∈ Rn×n and a vector b = (b1, . . . , bn)t ∈ Rn×1. The matrix A can be treated as a
linear operator A[Rn → Rn]; the linear transformation Ab ∈ Rn×1 determines a new vector
in Rn×1.

Suppose that this LAE is given:

Bx = f , B ∈ Rn×n; f , x ∈ Rn×1. (2)

The inverse matrix task is the same as solving n-times the task (2), i.e.,

Bgj = f j, j = 1, . . . , n (3)

f j ≡ ej ≡ (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) gj ≡ (gj1, gj2, . . . , gjn)
t is the j-th column of G = B−1.

Let the matrix A = {aij}n
ij=1, such that

A = I − DB, (4)

D is a diagonal matrix D = diag(d1, . . . , dn) di =
γ
bii

, i = 1, . . . , n, γ ∈ (0, 1] is a parameter
for accelerating the convergence. The system (2) can be expressed as:

x = Ax + b, (5)

where B = D f .
Let’s assume that the matrix B exhibits diagonal dominance. However, it’s worth

noting that the algorithms presented are applicable to a broader class of matrices, as demon-
strated later. Specifically, if B is diagonally dominant, certain conditions on the matrix’
elements of A must be met:

n

∑
j=1

|aij| ≤ 1 i = 1, . . . , n. (6)

2.1. Problem Settings

We shall consider the following problems.
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Problem 1 (Evaluating the inner product).

J(x) = (v, x) =
n

∑
i=1

vixi

of the solution x ∈ Rn×1 of the LAS

Bx = f ,

where B = {bij}n
i,j=1 ∈ Rn×n is a given matrix; f = ( f1, . . . , fn)t ∈ Rn×1 and v = (v1, . . . , vn)t ∈

Rn×1 are given vectors.

It is feasible to select a non-singular matrix M ∈ Rn×n for which MB = I − A,
I ∈ Rn×n is the identity matrix and M f = b, b ∈ Rn×1.

Then
x = Ax + b.

It is taken into consideration that

(i)
{

1. The matrices M and A are both non-singular;
2. |λ(A)| < 1 for all eigenvalues λ(A) of A,

so, every value of λ(A) for which
x = Ax + b. (7)

is met. If the criteria outlined in (i) are satisfied, then a stationary linear iterative algorithm
can be employed:

xk = Axk−1 + b, k = 1, 2, . . . (8)

and the solution x could be expressed as x = ∑∞
k=0 Akb = b + Ab + A2b + A3b + . . . known

as von Neumann series.

Problem 2 (Assessing all components xi, i = 1, . . . n of the solution vector).

Here, we express the Equation (7) with A = I − MB, and likewise, b = M f .

Problem 3 (Inverting of matrices). This consists of computation: G = B−1, where B ∈ Rn×n a
specified real matrix.

It is presupposed that

(ii)
{

1. The matrix B is non-singular;
2. ||λ(B)| − 1| < 1 for all eigenvalues λ(B) of B.

Here the subsequent iterative matrix: A = I − B can be defined. When (ii) are met,
G = B−1 can be expressed as G = ∑∞

i=0 Ai.

2.2. Almost Optimal Monte Carlo Algorithm

We will employ the algorithm known as the MAO algorithm. It is an algorithm that
defines Almost Optimal Method (Method Almost Optimal, (MAO)) according the definition
given by I. Dimov in [48].

Take an initial density vector p = pii = 1n ∈ Rn, where pi ≥ 0, i = 1, . . . , n and
∑ i = 1n pi = 1. Also, contemplate a matrix representing transition density P = piji, j = 1n ∈
Rn×n, where pij ≥ 0, i, j = 1, . . . , n and ∑n

j=1 pij = 1, for any i = 1, . . . , n. Establish sets of
permissible densities Pb and PA.

Definition 1. The initial density vector p = {pi}n
i=1 is called permissible to the vector

b = {bi}n
i=1 ∈ Rn , i.e., p ∈ Pb, if
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{
pαs > 0 vαs ̸= 0
pαs = 0 vαs = 0.

(9)

The transition density matrix P = {pij}n
i,j=1 is called permissible to the matrix A = {aij}n

i,j=1,
i.e., P ∈ PA, if {

pαs−1,αs > 0 aαs−1,αs ̸= 0
pαs−1,αs = 0 aαs−1,αs = 0.

(10)

In this study, we will focus on densities that adhere to the defined criteria. This strategy
ensures that the generated random trajectories, designed to address the problems at hand,
consistently avoid encountering elements with zero values in the matrix. This method not
only reduces the computational intricacies of the algorithms but also proves advantageous,
particularly when handling large sparse matrices.

Suppose we have a Markov chain:

T = α0 → α1 → . . . αk → . . . (11)

with n states. The random trajectory (chain) Tk of length k originating from the initial state
α0, is specified as:

Tk = α0 → α1 → . . . αj → . . . αk. (12)

Here αj refers to the state selected, indicating j = 1, . . . , n.
Assume that

P(α0 = α) = pα and P(αj = β|αj−1 = α) = pαβ, (13)

where pα represents the probability of the chain initiating in state α, and pαβ is the transition
probability to state β after being in state α. These probabilities pαβ collectively form a
transition matrix P.

So our MAO WE algorithm, is configured with a distinctive selection of absorbing
states, entails the presence of n + 1 states denoted as 1, . . . , n, n + 1.

The transition density matrix is designed in a way that ∑n
β=1 pαβ ≤ 1, and the proba-

bility of absorption at each stage, excluding the initial one, is
pα,n+1 = pα = 1 − ∑n

β=1 pαβ, α = 1, . . . , n.

2.3. Absorbing States Monte Carlo Algorithm

Rather than dealing with the finite random trajectory Ti, we examine an infinite
trajectory characterized by a state coordinate δi(i = 1, 2, . . . ). Suppose δi = 0 if the
trajectory is broken (absorbed) and δi = 1 otherwise. Let

∆i = δ0 × δ1 × · · · × δi.

Thus, ∆i equals 1 until the trajectory’s first termination, and thereafter, ∆q becomes 0.
It can be demonstrated that, given conditions (i) and (ii), these equalities hold:

E{Qi fki
} = (h, Aib), i = 1, 2, . . . ;

E{
N

∑
i=0

∆iQibki
} = (h, x), (P1),

E{ ∑
i|ki=r′

∆iQi} = crr′ , (P3).
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3. Probabilistic Representation for the WE Algorithm
3.1. Simple Examples

• The positive case:

aij ≥ 0, i, j = 1, . . . , n. We also assume that ∑n
j=1 aij ≤ 1.

Consider a system of two equations:

x1 =
1
2

x1 +
1
4

x2 + 1, x2 =
1
3

x1 +
1
3

x2 + 2

with unknowns x1 and x2. Clearly, we have x1 = 1 + E(X), where

P(X = x1) =
1
2

, P(X = x2) =
1
4

, P(X = 0) =
1
4

and x2 = 2 + E(Y), where

P(Y = x1) =
1
3

, P(Y = x2) =
1
3

, P(Y = 0) =
1
3

.

To estimate x1, we start with an initial score of 1 in our walk. Subsequently, we either
terminate with a probability of 1

4 since we already know the value of X (which is zero),
or we proceed to approximate either x1 or x2 again with probabilities 1

2 or 1
4 . If the walk

continues and the goal is to approximate x2, we add 2 to the current score. We then stop
with a probability of 1

3 or continue to approximate x1 or x2 again with a probability of 1
3 .

This procedure persists until either of the random variables X or Y reaches zero. The score
increases incrementally during the walk as outlined. The score functions as an impartial
estimator of x1, and by averaging scores obtained from independent walks, we derive the
Monte Carlo estimation of x1.

This algorithm shares a striking similarity with those utilized in calculating Feynman-
Kac boundary value problems’ representation, employing walks that are either discrete or
continuous such as the discrete grids’ walk or the spheres method’ walk. At walk’ each
step, the current position solution x corresponds to the anticipated value of the solution
on a discrete or continuous set, potentially augmented by a source term. The pivotal
concept is the double randomization principle, asserting that the expected solution on
this set can be substituted by the solution at a randomly selected point, following the
appropriate distribution.

3.2. Probabilistic Representation for Real Matrices

Consider a system x = Ax + b, where ϱ(A) < 1, and ∑n
j=1 |ai,j| ≤ 1, ∀1 ≤ i ≤ n.

Define a Markov chain Tk with n + 1 states α1, . . . , αn, n + 1, with

P(αk+1 = j/αk = i) = |ai,j|

if i ̸= n + 1 and
P(αk+1 = n + 1/αk = n + 1) = 1.

Let c be a vector defined as c(i) = b(i) if 1 ≤ i ≤ n and c(n + 1) = 0. Repre-
sent τ = (α0, α1, . . . , αk, n + 1) as a random trajectory that initiates at the initial state
α0 < n+ 1 and traverses through (α1, . . . , αk) until reaching the absorbing state αk+1 = n + 1.
The probability of following the trajectory τ is given by P(τ) = pα0 pα0α1 , . . . pαk−1,kαk pαk .
Use the MAO algorithm: p = {pα}n

α=1 and for the transition density matrix P = {pαβ}n
α,β=1.

Define the weights:

Qm = Qm−1
aαm−1,αm

pαm−1,αm

, m = 1, . . . , k, Q0 =
cα0

pα0

. (14)
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The estimator θα(τ) can be expressed as θα(τ) = cα + Qk
aαkα

pαk
, α = 1, . . . n with

P(τ) = pα0 pα0α1 , . . . pαk−1,kαk pαk .
An example of the general MC method for LAP is shown on Figure 1. For the new

algorithm the following theorem can be proved.

 

                  

                                                                           

                                      

                                              
                               

                                         

                                   

                                                       

 
  
 
 
 

 
 
 
 
 
  
 
  
 
 
 
  
 
  
 
 
 

                                  

Figure 1. MC-scheme explanation.

Theorem 1. The random variable θα(τ) is an unbiased estimator of xα, i.e.,

E{θα(τ)} = xα.

Proof.

E{θα(τ)} = ∑
τ=(α0,...,αk ,n+1)

θα(τ)P(τ)

= ∑
τ=(α0,...,αk ,n+1)

(
cα + Qk(τ)

aαkα

pαk

)
P(τ)

= cα + ∑
τ=(α0,...,αk ,n+1)

Qk(τ)
aαkα

pαk

P(τ)

= cα + ∑
τ=(α0,...,αk ,n+1)

cα0

pα0

aα0α1 . . . aαk−1αk

pα0α1 . . . pαk−1αk

aαkα

pαk

pα0

× pα0α1 . . . pαk−1αk pαk

= cα +
∞

∑
k=0

n

∑
α0=1

. . .
n

∑
αk=1

aαkαaαk−1αk . . . aα0α1 cα0

= cα + (Ac)α + (A2c)α + . . . =

(
∞

∑
i=0

(
Aic
))

α

. (15)

Since ϱ(A) < 1, the last sum is finite and(
∞

∑
i=0

(
Aic
))

α

= xα, α = 1, . . . , n.
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Thus,
E{θα(τ)} = xα.

The conjugate to θα(τ) random variable θ∗α(τ) = ∑k
i=0 Qi

aαiα

pαi
cα has the same mean

value, i.e., xα. This could be established by the same technique used above.
Suppose it is possible to calculate N values of θα, namely θα,i, i = 1, . . . , N. Taking

into account θ̄α,N = 1
N ∑N

i=1 θα,i as a MC approximation of the component xα of the solution.
For the random variable θ̄α,N one may prove [1]:

Theorem 2. The random variable θ̄α,N is an unbiased estimator of xα, i.e.,

E{θ̄α,N} = xα (16)

and the variance D{θ̄α,N} vanishes when N goes to infinity, i.e.,

lim
N→∞

D{θ̄α,N} = 0. (17)

Proof. The equation can be readily demonstrated by employing the mean value’s proper-
ties. Similarly, the validity of (22) can be established using the variance properties.

Furthermore, by applying the Kolmogorov theorem and considering the independence
of the sequences (θα,N)N ≥ 1, which are also independently distributed with a finite
mathematical expectation of xα, it can be shown that θ̄α,N almost surely converges to xα:

P( lim
N→∞

θ̄α,N = xα) = 1.

The following theorem provides the composition of the variance in the proposed
algorithm [1].

Theorem 3.
D{ψk

α(τ)} =
cα0

pα0 pα
(Āk

c ĉ)α − (Ak
cc)2

α.

Proof. We are concerned with the variance

D{ψk
α(τ)} = E{(ψk

α(τ))
2} − (E{ψk

α(τ))
2. (18)

Consider the first term of (18).

E{(ψk
α(τ))

2} = E

{
c2

α0

p2
α0

a2
α0α1

. . . a2
αk−1αk

p2
α0α1

. . . p2
αk−1αk

c2
αk

pαk

}

=
n

∑
α0,...αk=1

c2
α0

p2
α0

a2
α0α1

. . . a2
αk−1αk

p2
α0α1

. . . p2
αk−1αk

c2
αk

p2
αk

pα0 pα0α1 . . . pαk−1αk pαk

=
n

∑
α0,...αk=1

c2
α0

pα0

|aα0α1 | . . . |aαk−1αk |
c2

αk

pαk

=
n

∑
α0,...αk=1

|cα0 |
pα0 pαk

|cα0 ||aα0α1 | . . . |aαk−1αk |c
2
αk

=
|cα0 |
pα0 pα

× (Āk
c ĉ)α.

Similarly, it can be demonstrated that the second term of (18) is equal to (Ak
cc)2

α.
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Thus, D{ψk
α(τ)} =

cα0
pα0 pα

(Āk
c ĉ)α − (Ak

cc)2
α♢

3.3. Balancing

The robustness of the MC algorithm is demonstrated in [38] with balanced matrices
possessing matrix norms much smaller than 1, showcasing significant variance improve-
ment compared to cases where matrices have norms close to 1. This underscores the crucial
importance of input matrix balancing in MC computations, suggesting that a balancing
procedure should serve as an initial preprocessing step to enhance the MC algorithms’
overall quality. Furthermore, for matrices that are close to stochastic matrices, the MC
algorithm’ accuracy remains notably high.

Theorem 4. Consider a perfectly balanced stochastic matrix

A =


1
n . . . 1

n
...
1
n . . . 1

n


and the vector c = (1, . . . , 1)t. Then MC algorithm defined by trajectory probability Pk(τ) is a
zero-variance MC algorithm.

It is sufficient to show that the variance Var{Xk
α(τ)} is zero. Obviously,

Ac =


1
n . . . 1

n
...
1
n . . . 1

n


 1

...
1

 =

 1
...
1

,

and also,

Akc =

 1
...
1

.

Since

Ā =


∣∣∣ 1

n

∣∣∣ . . .
∣∣∣ 1

n

∣∣∣
...∣∣∣ 1
n

∣∣∣ . . .
∣∣∣ 1

n

∣∣∣

 = A

and ĉ = {c2
i }n

i=1 = c, we have:
|cα0 |
pα0 pα

× (Āk
c ĉ)α = 1. Thus, we proved that Var{Xk

α(τ)} = 0.

It is feasible to explore matrix-vector iterations Akc as they form the foundation for
Neumann series, which serves as an approximation for solving systems of linear algebraic
equations. The underlying concept is to illustrate that as the matrix A approaches a perfectly
balanced matrix, the probability error of the algorithm diminishes. The theorem implies
that the initial algorithm can be enhanced by achieving balance in the iteration matrix.

3.4. Interpolation MC Algorithms

Definition 2. A MC algorithm with a probability error of zero is referred to as an interpolation
MC algorithm.

The subsequent theorem outlines the variance structure for the MAO algorithm. Let’s
introduce the following symbols: ĥ = {h2

i }n
i=1, v̄ = {|vi|}n

i=1, Ā = {|aij|}n
i,j=1.
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Theorem 5.
D{θ(k)} =∥ Ak

v ∥
(

v̄, Āk ĥ
)
− (v, Akh)2.

Corrolary 1. For a stochastic matrix A and vectors h = (1, . . . , 1)T , v = ( 1
n , . . . , 1

n ) the MC
algorithm, characterized by the density distributions outlined earlier, is classified as an interpolation
MC algorithm.

The well-known Power method brings an approximation for the dominant eigenvalue

λ1. It uses the so-called Rayleigh quotient µk =
(v,Akh)

(v,Ak−1h) :

λ1 = lim
k→∞

(v, Akh)
(v, Ak−1h)

,

where v, h ∈ Rn are arbitrary vectors. The Rayleigh quotient is used to obtain an approxi-
mation to λ1:

λ1 ≈ (v, Akh)
(v, Ak−1h)

, (19)

where k is arbitrary large natural number.
Considering the MAO density distributions, the random variable θ(k) can be expressed

in the following manner:

θ(k) = sing{Ak
v}∥Ak

v∥hαk

=
vα0

|vα0 |
aα0α1 . . . aαk−1αk

|aα0α1 | . . . |aαk−1αk |
∥v∥∥aα0∥ . . . ∥aαk−1∥ (20)

=
vα0

pα0

aα0α1 . . . aαk−1αk

pα0α1 . . . pαk−1αk

(21)

We deal with the variance

D{θ(k)} = E{(θ(k))2} − (E{θ(k)})2. (22)

The following equalities are true:

Ah =


1
n . . . 1

n
...
1
n . . . 1

n


 1

...
1

 =

 1
...
1

.

Obviously,

Akh =

 1
...
1

,

and

(v, Akh) =

(
1
n

, . . . ,
1
n

) 1
...
1

 = 1.

Theorem 6. The Markov chain trajectory length to absorption is less than 1 over the smallest
absorption probability.
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Proof. The chance for absorption at each step is at least m (where m is the smallest absorp-
tion probability). Thus, interpreting the steps to absorption as a geometrically distributed
random variable, we see that the expected length of a trajectory is at most 1/m. Moreover,
the standard deviation is finite and at most 1/m as well.

3.5. Eigenvalue Problems

For the Randomized Inverse Shifted Power Method the iteration xnew = Axold is
replaced by xnew = Bxold, where A and B have the same eigenvectors. The power iteration
xnew = Bxold converges to the eigenvector associated with B’s dominant eigenvalue. Since
A and B have the same eigenvectors, we have also computed an eigenvector of A. Letting σ
denote a scalar, there are 3 common choices for B: B = A − σI named as the shifted power
method, B = A−1 named as the inverse power method, and B = (A − σI)−1 named as the
inverse shifted power method. These observations are shown on Table 1.

Table 1. Relationship between eigenvalues of A and B.

B Eigenvalue of B Eigenvalue of A

A−1 1
λA

1
λB

A − σI λA − σ λB + σ

(A − σI)−1 1
λA−σ σ + 1

λB

3.6. Convergence and Mapping

To analyze the MC algorithms’ convergence, taking into account the following func-
tional equation

u − λLu = f , (23)

where λ is some parameter. Observe that the matrices can be treated as linear operators.
Determine resolvent operator (matrix) Rλ by

I + λRλ = (I − λL)−1,

in which I is the identity operator.
Let λ1, λ2, . . . be the eigenvalues of (23), where it is supposed that

|λ1| ≥ |λ2| ≥ . . .

MC algorithms rely on the depiction

u = (I − λL)−1 f = f + λRλ f ,

where
Rλ = L + λL2 + . . . , (24)

The systematic error of (24), when m terms are used, is

rs = O[(|λ|/|λ1|)m+1mρ−1], (25)

where ρ is the multiplicity of the root λ1.
In the neighborhood of the point λ = 0 (λ = 0 ∈ Ω) the resolvent can be determined

by the series

Rλ f =
∞

∑
k=0

ckλk,

where
ck = Lk+1 f .
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Contemplate the variable α situated within the unit circle on the complex plane
∆(|α| < 1).

The function
λ = ψ(α) = a1α + a2α2 + . . . ,

maps the domain ∆ into Ω.

Rψ(α) f =
∞

∑
j=0

bjα
j , (26)

where bj = ∑
j
k=1 d(j)

k ck and d(j)
k = 1

j!

[
∂j

∂αj [ψ(α)]
k
]

α=0
.

Let us assume that all eigenvalues λk are real and λk ∈ (−∞,−a], where a > 0 .
Contemplate a mapping for the case (λ = λ∗ = 1):

λ = ψ(α) =
4aα

(1 − α)2 . (27)

The sequence Rψ(α) f for the transformation given by (27) exhibits both absolute and
uniform convergence.

Rλ∗ f ≈
m

∑
k=1

bkαk
k =

m

∑
k=1

αk
∗

k

∑
i=1

d(k)i ci =
m

∑
k=1

g(m)
k ck, (28)

where

g(m)
k =

m

∑
j=k

d(j)
k α

j
∗. (29)

The coefficients
d(j)

k = (4a)kqk,j

and g(m)
k can be calculated in advance.

If q < 0, then

(v, ARm
q h)

(v, Rm
q h)

≈ 1
q

(
1 − 1

µ(k)

)
≈ λn, (30)

where λn = λmin is the minimal by modulo eigenvalue, and µ(k) is the approximation to
the dominant eigenvalue of Rq.

If |q| > 0, then

(v, ARm
q h)

(v, Rm
q h)

≈ λ1, (31)

where λ1 = λmax is the dominant

4. Description of the WE MC Algorithms

Now we will give the description of the new WE MC algorithm, the old WE MC
algorithm, and a combination between the two algorithms—the hybrid WE MC algorithm.

4.1. The First Monte Carlo Algorithm for Computing One Component of the Solution

In this Section 4.1 we will give the description of the first (old) WE algorithm for linear
systems described in details in [1]. For the Algorithm 1 we need in advance as input data
the matrix B, the vector f, the constant parameter γ ∈ (0, 1] and the number of random
trajectories N.
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Algorithm 1: Computing one component xi0 of the solution xi, i = 1, . . . n.

Initialization Input B, f, γ N.
Preliminary calculations (preprocessing):

Compute the matrix A using γ ∈ (0, 1]:

{aij}n
i,j=1 =

{
1 − γ i = j

−γ
bij
bii

i ̸= j .

Compute the vector asum:

asum(i) =
n

∑
j=1

|aij| for i = 1, 2, . . . , n.

compute the vector of initial probabilities,

πi =
vi

∑m
j=1 vj

, i = 1, 2, . . . , m;

Compute the transition probability matrix P = {pij}n
i,j=1,

pij =
|aij|

asum(i)
, i = 1, 2, . . . , n j = 1, 2, . . . , n .

Set S := 0 .
for k = 1 to N do (MC loop)

set m := i0 .
set S := S + b(m).
test = 0; sign = 1
while (test ̸= 0) do:

generate a udr variable r ∈ (0, 1)
if r ≥ asum(m) then test = 1;
else chose the index j according to pij;
set sign = sign ∗ sign{amj}; m = j;
update S := S + sign ∗ bm;
endif.

endwhile
enddo
xi0 = S

N

4.2. The First WE Monte Carlo Algorithm for Evaluating the Solution’ All Components

In this Section 4.2, to simplify the situation in Algorithm 2, let’s assume that all the
entries in the matrix are nonnegative, i.e., aij ≥ 0, for i, j = 1, . . . n.

4.3. The New WE Monte Carlo Algorithm for Computing One Component of the Solution

In this Section 4.3, we introduce the novel Monte Carlo algorithm designed for com-
puting a specific component xi0 of the solution in a linear system with real coefficients.
The algorithm initiates its walk on row i0 of the system, adding bi0 to the walk’s score.
Subsequently, the walk either undergoes absorption or moves to another equation based on
probabilities pi0 j outlined in Algorithm 3 below. The contributions to the score are adjusted
in accordance with the signs of the coefficients in the system. Further details are provided
in the following Algorithm 3.
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Algorithm 2: Computing all components xi, i = 1, . . . n of the solution.
Initialization.
Preprocessing.
for i = 1 to n do

S(i) := 0; V(i) := 0
for k = 1 to N do (MC loop)

set m := rand(1 : n) .
set test := 0; m1 := 0;
while (test ̸= 1) do:

V(m) := V(m) + 1; m = m1 + 1; l(m1) = m;
for q = 1, m1 do:
S(l(q)) := S(l(q)) + b(l(q));
if r > asum(m), then test = 1;
else chose j according to pi,j;
set m = j.
endif

endwhile
enddo
for j = 1, n do:

V(j) := max{1, V(j)};
S(j) = S(j)

V(j) .

Algorithm 3: Computing one component xi0 of the solution xi, i = 1, . . . , n.

Initialization
Input initial data: the matrix A, the vector b, and the number of random

trajectories N.
Preliminary calculations (preprocessing):

Compute the vector asum:

asum(i) =
n

∑
j=1

aij for i = 1, 2, . . . , n.

Compute the sum of elements in vector b:

sb =
n

∑
i=1

bi for i = 1, 2, . . . , n.

Set S := 0 .
for k = 1 to N do (MC loop)

test = 0.
choose the index j, according to the probability density vector (b1, b2, . . . , bn);

pj = j;
while test ̸= 1 do:

choose the new value of the index j, according to the probability density
vector

(
apj,1, apj,2, . . . , apj,n, 1 − asum(pj)

)
;

If j ̸= n + 1 then pj = j
else test = 1; S = S + b(i0) + sb ∗ apj,i0 /

(
1 − asum(pj)

)
endif

endwhile
enddo
xi0 =

S
N

.
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4.4. The New WE Monte Carlo Algorithm for Computing All Components of the Solution

In this Section 4.4, we present the novel Algorithm 4 designed for the computation
of all components of the solution. The core idea is to calculate scores for all states, treated
as new starting points, encountered throughout a given trajectory. The initial equation is
randomly selected from the n equations with uniform probability. Subsequently, for each
state i, we define the total score S(i) and the total number of visits V(i), both of which are
adjusted whenever state i is visited during a walk. The parameter cc represents the number
of trajectories for component xi of the solution. The algorithm’s key element involves
the application of the Sequential Monte Carlo (Sequential MC) method for linear systems,
as introduced by John Halton [49–52], based on the control variate method [39].

Algorithm 4: Computing all components of the solution xi, i = 1, . . . , n.
Initialization

Input initial data: the matrix A, the vector b, and the number of random
trajectories N.

Preliminary calculations (preprocessing):
Compute the vector asum:

asum(i) =
n

∑
j=1

aij for i = 1, 2, . . . , n.

Compute the sum of elements in vector b:

sb =
n

∑
i=1

bi for i = 1, 2, . . . , n.

Set S(i) = 0 and cc(i) = 0 for i = 1 to n .
for k = 1 to N do (MC loop)

choose component i0 to be estimated uniformly at random from 1, 2, . . .
increment cc(i0) by 1.
test = 0.
choose the index j, according to the probability density vector (b1, b2, . . . , bn);

pj = j;
while test ̸= 1 do:

choose the new value of the index j, according to the probability density
vector

(
apj,1, apj,2, . . . , apj,n, 1 − asum(pj)

)
;

If j ̸= n + 1 then pj = j
else test = 1; S(i0) = S(i0) + b(i0) + sb ∗ apj,i0 /

(
1 − asum(pj)

)
endif

endwhile
enddo

for i = 1 to n do xi =
S(i)
cc(i)

.

4.5. The Hybrid Monte Carlo Algorithm for Computing One Component of the Solution

In this Section 4.5 we will give the description of the hybrid WE algorithm for linear
systems. The hybrid WE Algorithm 5 seems like the old algorithm WE but used if you got
into an absorbing state (the state where the trajectory is broken) like the new algorithm.
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Algorithm 5: Computing one component xi0 of the solution xi, i = 1, . . . n.

Initialization Input: B, f, γ N.
Preliminary calculations (preprocessing):

Compute A using γ ∈ (0, 1]:

{aij}n
i,j=1 =

{
1 − γ i = j

−γ
bij
bii

i ̸= j .

Compute the vector asum:

asum(i) =
n

∑
j=1

|aij| for i = 1, 2, . . . , n.

compute

πi =
vi

∑m
j=1 vj

, i = 1, 2, . . . , m;

Compute P = {pij}n
i,j=1, where

pij =
|aij|

asum(i)
, i = 1, 2, . . . , n j = 1, 2, . . . , n .

Set S := 0 .
for k = 1 to N do (MC loop)

set m := i0 .
set S := S + b(m).
test = 0; sign = 1

while (test ̸= 0) do:
generate a udr variable r ∈ (0, 1)
choose the new value of the index j, according to the probability density

vector
(
apj,1, apj,2, . . . , apj,n, 1 − asum(pj)

)
;

if j = n + 1 then test = 1;
else sign = sign ∗ sign{amj}; m = j;
update S := S + sign ∗ bm;
endif.

endwhile
enddo

4.6. The Hybrid WE Monte Carlo Algorithm for Computing All Components of the Solution

Finally, in this Section 4.6 we will give the description of the Hybrid WE MC algorithm
for computing all components of the solution. Later we will see that in some situations this
hybrid Algorithm 6 gives the best results compared to the new and the old algorithm.

4.7. Sequential Monte Carlo

The Sequential Monte Carlo (SMC) approach for LAEs was initially pioneered by
John Halton in the 1960s [49] and has seen subsequent advancements in more recent
publications [50–52]. This technique has been applied across various domains, including
the computation of approximations on orthogonal bases [39] and the precise solution of
linear partial differential equations [53].
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Algorithm 6: Computing all components xi, i = 1, . . . n of the solution.
Initialization.
Preprocessing.
for i = 1 to n do

S(i) := 0; V(i) := 0
for k = 1 to N do (MC loop)

set m := rand(1 : n) .
set test := 0; m1 := 0;
while (test ̸= 1) do:

V(m) := V(m) + 1; m = m1 + 1; l(m1) = m;
for q = 1, m1 do:

S(l(q)) := S(l(q)) + b(l(q));
choose the new value of the index j, according to the probability density

vector
(
apj,1, apj,2, . . . , apj,n, 1 − asum(pj)

)
;

if j = n + 1, then test = 1;
set m = j.
endif

endwhile
enddo
for j = 1, n do:

V(j) := max{1, V(j)};
S(j) = S(j)

V(j) .

The SMC method is based on the simple yet highly efficient concept of iteratively
applying the control variate method. In the realm of linear systems, where the objective is to
determine the vector solution u for the equation u = Au + b, the method capitalizes on the
fact that minimizing the variance of the algorithm is achieved when b is small, and when
b = 0, the variance becomes zero. Exploiting the linearity of our problem, a new system is
constructed, with its solution representing the residual of the original system and having
a small b. Let u(1) denote the approximate solution obtained using the aforementioned
algorithm. The residual

r = u − u(1)

satisfies the new equation
r = Ar + b − Au(1),

where b − Au(1) is expected to be close to zero. We calculate the approximation r(1) for this
equation using our algorithm, resulting in the approximation

u(2) = u(1) + r(1)

for the original equation. This iterative process is applied to obtain the estimate u(k) after k
steps of the algorithm.

Demonstrated in [53], it has been established that when the number of samples N utilized
in computing u(k) is sufficiently large, the variance of u(k) decreases exponentially with respect
to k. This form of convergence, referred to as zero-variance algorithms [36,38,39,48,54–56],
enables these algorithms to effectively compete with optimal deterministic algorithms
based on Krylov subspace methods and conjugate gradient methods (CGM), which have
numerous variations.

However, a critical consideration is warranted. Performing the matrix-vector multipli-
cation Ar deterministically requires O(n2) operations. This implies that for a high-quality
WE algorithm combined with SMC to be efficient, only a small number of sequential steps is
necessary. The subsequent section will present numerical results showcasing high accuracy
achieved in just a few sequential steps.
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4.8. Dominancy Number

One of the key novelties in our paper is that we will introduce the special dominancy
parameter D .

D = min

{
|bii| − ∑j ̸=i |bij|

|bii|

∣∣∣∣∣ 1 ≤ i ≤ n

}
.

The condition number is consistently positive when dealing with diagonally dominant
matrices, providing a rough indication of the dominance strength of the matrix’s diagonal
over the remaining elements. This concept is closely intertwined with the absorption
probabilities in the Markov chain employed for the stochastic computation of solutions to
linear systems. It is noteworthy that when D ≥ 0.5 then the newly developed algorithm
performs with a several orders of magnitude higher accuracy compared to the old one.
Later we will give experiments when D is below and above 0.5 to see the behavior of the
three algorithms under consideration.

We may introduce the following statement

Theorem 7. If the dominancy number D is closer to 1, then the new algorithm is significantly
better than the previous algorithm.

Proof. When the dominancy number is close to 1, the preconditioned matrix has high
absorption probabilities at each step. Thus, the length of each trajectory is small. Observe
that in the new algorithm, the variable which estimates the solution is calculated once—at
the end of each trajectory, and is irrespective of the length of the trajectory. On the other
hand, in the old algorithm, the variable estimating the solution is updated along each step
of a trajectory. Thus, it is natural to observe that more lengthy trajectories would produce
better estimating variables. Whereas in the new algorithm, the length of a trajectory does
not affect the calculation of the estimating variable. Thus, it is expected that the new
algorithm performs better when the dominancy number is closer to 1.

5. Numerical Tests

In this section we give ample numerical simulations to demonstrate the capabilities
of the proposed approaches. The algorithms are implemented and run in a MATLAB®

R2021b environment, using a mobile computer with 6-core processor and 16 GB RAM.

5.1. The New Algorithm versus Deterministic Algorithms

On the graphs we will illustrate the value of

ε(x̂) =
∥x̂ − xexact∥
∥xexact∥

,

where we check the accuracy of a computed solution x̂, while xexact is the exact solution-
vector. One may observe that the results for all other components exhibit similar trends.

To assess whether the weighted residual [57,58]:

ρ :=
||Bx̂ − f ||
||B|| ||x̂|| , (32)

can serve as a reliable indicator of error, we juxtapose the relative error against the residual
for a matrix of dimensions n = 5000 (refer to Figure 2). It is evident [1] that the curves
representing the relative error and the residual closely align. The number of random
trajectories for MC is 5n. It is already established in [1] that for much large dense matrix of
size n = 25,000 the WE method is clearly better than the Jacobi method—see Figure 3.
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Figure 2. Comparison the relative error with the residual for the WE MC.
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Figure 3. Relative error for the WE MC and Jacobi method for a matrix of size 25,000 × 25,000.

Here we conduct a number of numerical experiments with dense matrices of size n = 10,
100, 1000, 10,000. A comparative analysis is conducted with well-established deterministic
methods, specifically Gauss–Seidel and Jacobi algorithms. Key observations are as follows.
Firstly, across all experiments, Gauss–Seidel consistently outperforms the Jacobi method by
a margin of at least three orders of magnitude. Notably, this study introduces a comparison
with Gauss–Seidel for the first time, as previous comparisons in [1] exclusively involved the
Jacobi method. For the matrix of size 10 × 10 on Figure 4 for 20 iterations, the relative error
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produced by the Monte Carlo approach is about two magnitudes better than the relative
error for Gauss–Seidel method and 7 magnitudes better than the Jacobi approach. For the
matrix of size 100× 100 on Figure 4 after just 15 iterations, the relative error from the Monte
Carlo approach is approximately six orders of magnitude better than the Gauss–Seidel
method and ten orders of magnitude better than the Jacobi method.
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Figure 4. Relative error of random dense matrices n × n for n = 10 (top left), n = 100 (top right),
n = 1000 (bottom left) and n = 10,000 (bottom right).

As we increase the matrix dimension to 1000 × 1000 the new Monte Carlo approach
continues to exhibit superior performance. In Figure 4, after 15 iterations, the relative error
from the Monte Carlo approach is approximately seven orders of magnitude better than that
of the Gauss–Seidel method and ten orders of magnitude better than the Jacobi method. This
trend becomes even more pronounced with higher matrix dimensions. The most interesting
case will be very high dimensional matrix of size 10,000 × 10,000. The results for this case
are presented on Figure 4. Here, just for 14 iterations, the Monte Carlo method achieves a
relative error of 10−16, while for the same number iterations Gauss–Seidel achieves 10−8

and Jacobi produces 10−5. Consequently, for very high dimensions, the developed Monte
Carlo approach emerges as the most accurate, surpassing other methods by a significant
margin across multiple orders of magnitude.

We conduct also a range of computational experiments involving dense matrices with
dimensions n = 2{6,8,10,12}. These experiments are compared against well-established
deterministic algorithms, specifically the Gauss–Seidel and Jacobi methods, to facilitate a
thorough analysis. Notably, the results reveal consistent superiority in accuracy for the
Gauss–Seidel algorithm compared to the Jacobi method, with a minimum difference of
three orders of magnitude in each computational test. This juxtaposition with Gauss–Seidel
is a distinctive contribution, as prior studies such as [1] exclusively focused on comparing
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with the Jacobi method. Taking the example of a 64 × 64 matrix (illustrated in Figure 5)
after 15 iterations, our Monte Carlo approach demonstrates a relative error approximately
five orders of magnitude lower than Gauss–Seidel and eight orders of magnitude lower
than Jacobi.
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Figure 5. Relative error of random dense matrices n × n for n = 64 (top left), n = 256 (top right),
n = 1024 (bottom left) and n = 4096 (bottom right).

Examining a larger matrix with dimensions 256 × 256 (illustrated in Figure 5) and
restricting the iterations to just 15, we observe that the Monte Carlo approach outperforms
Gauss–Seidel by roughly six orders of magnitude and surpasses the Jacobi method by
approximately ten orders of magnitude in relative error.

As we further elevate the matrix size to 1024 × 1024, the performance differential
becomes even more striking. With just 15 iterations (see Figure 5), the Monte Carlo method
demonstrates a relative error that is seven orders of magnitude superior to Gauss–Seidel
and ten orders of magnitude better than Jacobi. Hence, we can affirm that the performance
disparity between our Monte Carlo approach and the Gauss–Seidel algorithm expands as
we increase the matrix dimensions.

The apex of our analysis is focused on the colossal 4096 × 4096 matrix, the outcomes
for which are illustrated in Figure 5. In a mere 14 iterations, the Monte Carlo methodol-
ogy achieved an impressively low relative error of 10−15. Comparatively, Gauss–Seidel
registered a relative error of 10−8 and Jacobi languished further behind with 10−5. Hence,
for exceedingly large-scale problems, our developed Monte Carlo approach stands out,
surpassing other algorithms by a substantial margin in terms of accuracy.
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5.2. WE versus PCG

We evaluate our outcomes against the optimal deterministic preconditioned conjugate
gradient (PCG) method [57,59,60].

Here’s more detailed information regarding our PCG method implementation. Our
objective is to address a linear system of equations, Bx = b, utilizing the PCG iterative
method. The matrix B in our context is the square and sizable matrix NOS4 from the widely
recognized Harwell-Boeing collection, with the requirement that B is symmetric and posi-
tive definite. The NOS4 matrix is a notable example from this collection, primarily because
of its distinct characteristics and the challenges it presents in computational processing.

The NOS4 matrix is a sparse matrix, a common type found in the Harley-Boeing
collection, known for its large size and sparsity. This matrix is particularly representative
of structural engineering problems, often derived from finite element analysis. The specific
features of the NOS4 matrix are as follows.

The NOS4 matrix exhibits a highly sparse structure, which is characteristic of matrices
derived from finite element methods in engineering. This sparsity is a significant factor in
computational processing, as it requires specialized algorithms that can efficiently handle
non-dense data distributions.

The matrix is relatively large, which adds to the computational challenge. Its size and
the complexity of its elements make it an ideal candidate for testing the scalability and
efficiency of our algorithm.

The matrix typically contains numerical values that represent physical properties in
structural engineering contexts, such as stiffness and material properties. These values are
crucial for accurately simulating and analyzing structural behavior under various conditions.

Specifically, in the context of our study, the NOS4 matrix is utilized to model problems
in constructive mechanics. This involves simulations that are critical for understanding and
predicting the behavior of structures, particularly in the design and analysis of buildings,
bridges, and other infrastructural elements.

In our implementation, the parameters employed are as follows: b represents the
right-hand side vector; tol stands for the required relative tolerance for the residual error,
denoted as b − Bx, signifying that the iteration halts if ∥ b − Bx ∥≤ tol ∗ ∥ b ∥; maxit
denotes the maximum permissible number of iterations; m = m1 ∗ m2 corresponds to
the (left) preconditioning matrix, ensuring that the iteration is theoretically equivalent to
solving by PCG Px = m b, with P = m B; and x0 signifies the initial guess.

Some detailed information about heaviest diagonals and conditioning for the matrix
NOS4 is given on Figure 6. The illustration of the PCG for NOS4 is given on Figure 7. Our
approach, devoid of such an optimization process, yields superior results. It is noteworthy
that the specific matrix (NOS4) appears to pose a challenging test for PCG, but generalizing
this observation is complex, as PCG success depends on the specific functional minimized
in the method. Further analysis is required to determine the conditions under which the
IWE and WE Monte Carlo methods outperform the widely used PCG.

Figure 8 depicts the convergence analysis of the WE Monte Carlo and PCG methods
when applied to the matrix NOS4. This matrix originates from an application involving the
finite element approximation of a problem associated with a beam structure in structural
mechanics [61].

The outcomes depicted in Figure 8 indicate that the WE Monte Carlo exhibits superior
convergence. The curve representing the residual with the number of iterations is smoother,
reaching values as low as 10−6 or 10−7, compared to the PCG curve, which achieves
an accuracy of 10−3. It is important to emphasize that, for the experiments showcased,
the desired accuracy is specified as tol = 10−8. One of the most significant distinctions
between the Preconditioned Conjugate Gradient (PCG) method and our Walk on Equations
(WE) Monte Carlo algorithm lies in their respective operational mechanisms within Krylov
subspaces. While both methods operate within these optimal subspaces, the approach each
takes is fundamentally different, leading to a crucial advantage for the WE algorithm.
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Figure 6. Info for NOS4.

Figure 7. Illustration of PCG for NOS4 matrix.

The PCG method is fundamentally an optimization-based approach. It seeks to
minimize the residual of the solution iteratively within the Krylov subspace. This process,
while effective under certain conditions, inherently runs the risk of becoming ensnared
in local minima. These local minima, which are close but not equivalent to the global
minimum, can significantly hinder the convergence of the PCG method towards the most
accurate solution. This susceptibility is illustrated in Figure 8, where the PCG method’s
trajectory towards convergence is impeded by the presence of a local minimum.

In contrast, our WE algorithm operates within the same Krylov subspaces but di-
verges from the PCG method by eschewing the optimization paradigm entirely. Instead, it
leverages the probabilistic nature of Monte Carlo methods to traverse the solution space.
This approach inherently bypasses the pitfalls of optimization-based methods, such as
getting trapped in local minima. The WE algorithm, by not being constrained to follow
the gradient descent pathway that optimization methods inherently use, is not prone to
stalling or slowing in areas that only represent local solutions. This attribute allows the
WE algorithm to explore the solution space more freely and thoroughly, increasing the
likelihood of reaching the global solution without the hindrance of local minima.



Axioms 2024, 13, 53 26 of 36

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30

re
s
id

u
a

l

# of iterations

MC

CGM

Figure 8. Comparison of the WE MC and the PCG method for NOS4.

Therefore, the fundamental difference in operational philosophy between the PCG and
WE methods not only delineates their theoretical underpinnings but also translates into a
practical advantage for the WE algorithm. By navigating the solution space without the
constraints of an optimization problem, the WE algorithm demonstrates a robustness and
efficiency in finding the global solution, particularly in complex linear algebraic systems
where local minima can be a significant obstacle.

5.3. Testing the Balancing

It is noteworthy that matrix balancing is a crucial concern for deterministic algorithms.
Consequently, an arbitrary matrix necessitates a balancing procedure as part of the prepro-
cessing steps. While MC algorithms are generally less sensitive to balancing, balancing
does influence the convergence of the WE MC algorithm. As it is already established in [1],
in the first instance, illustrated in Figure 9 (top left), we examine two small matrices with
size n = 10. The balanced matrix is characterized by aij = 0.1, resulting in a parameter a
of 0.9. On the other hand, the unbalanced matrix has a = 0.88, with an extreme level of
imbalance (the ratio between the largest and smallest elements by magnitude is 40). It is
worth noting that a ratio is considered large when it reaches 5.

Certainly, for the unbalanced matrix, convergence is entirely absent. In contrast,
the balanced matrix exhibits rapid convergence, albeit with a somewhat erratic red curve,
attributable to the limited number of random trajectories. To explore this further, we
revisited the same matrices, this time augmenting the number of random trajectories to
N = 500. Concurrently, we reduced the number of random trajectories (and consequently
the computational time) for the balanced matrix from N = 50 to N = 30. The outcomes of
this experiment are illustrated in Figure 9 (top right).

The results clearly indicate that the WE algorithm initiates convergence, reaching
three correct digits after approximately 35 to 40 iterations. While the balanced matrix still
demonstrates swift convergence, the red curve retains its roughness, reflective of the limited
number of random trajectories.
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Figure 9. Residual for the WE MC for balanced and extremity unbalanced matrix of size n = 10.
The number of random trajectories is N = 5n (top left); Residual for the WE Monte Carlo for balanced
and extremity unbalanced matrix of size n = 10. The number of random trajectories for the balanced
matrix is N = 5n; for the unbalanced matrix there two cases: (i) N = 3n—red curve; (ii) N = 50n—
green curve. (top right); Residual for the WE MC, the matrix of size is 5000 × 5000. The number of
random MC trajectories is 5n (bottom left); Residual for the WE MC, the matrix of size is 100 × 100.
Matrix elements are additionally perturbed by 5% and by 20% (bottom right).

For randomly generated matrices of size n = 5000, akin results are presented in
Figure 9 (bottom left). The unbalanced matrix results from random perturbations to the
elements of the balanced matrix. Both the green and blue curves pertain to the same unbal-
anced matrix, with the latter achieved by leveraging ten times more random trajectories.
This demonstrates that increasing the number N of random trajectories can enhance con-
vergence, aligning with theoretical expectations.

In our specific numerical experiments depicted in Figure 9 (bottom left), the green
curve is derived from a set of trajectories with N = 5n, while the blue curve is based on
N = 50n trajectories. It is evident that, in the former case, the algorithm fails to converge,
whereas in the latter case, convergence is achieved. These experiments underscore that
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the WE Monte Carlo exhibits an additional degree of freedom, absent in deterministic
algorithms, allowing for enhanced convergence even with severely imbalanced matrices.
However, this improvement in convergence comes at the cost of increased complexity,
or computational time, due to the augmented number of simulation trajectories.

To explore the impact of matrix imbalance on the convergence of the WE Monte Carlo,
we conducted a noteworthy experiment. By randomly generating matrices of varying sizes,
we introduced random perturbations to the matrix elements, progressively increasing the
matrix’s imbalance. The results for a matrix of size n = 100 are illustrated in Figure 9
(bottom right). The matrix’s randomly generated entries were additionally perturbed by
5% and 20%.

Matrix balancing plays a pivotal role in the performance of many computational
algorithms, particularly in solving linear algebraic systems. While MC algorithms, includ-
ing our WE MC algorithm, are generally less sensitive to matrix balancing compared to
deterministic algorithms, the impact of balancing on convergence is non-negligible.

To provide a concrete context for the necessity of matrix balancing, let us consider
a practical example from structural engineering. In finite element analysis, matrices of-
ten represent stiffness or connectivity matrices of a physical structure, like a bridge or
building. These matrices can become imbalanced due to variations in material proper-
ties or non-uniform loading conditions. An imbalanced matrix in such scenarios could
lead to inaccurate or inefficient computational analysis, impacting the reliability of the
structural assessment.

Given the practical implications, it is vital to establish criteria for when and how to
apply matrix balancing:

• Magnitude of Element Variation: Balancing should be considered when there is a sig-
nificant disparity in the magnitude of matrix elements. A practical threshold could
be set; for instance, a ratio of 5 or more between the largest and smallest elements by
magnitude indicates a need for balancing.

• Application-Specific Needs: In fields such as structural engineering or fluid dynamics,
where matrices represent physical phenomena, the need for balancing should be
assessed based on the physical realism of the matrix. If imbalances in the matrix do
not correspond to realistic physical conditions, balancing may be necessary.

• Computational Efficiency: If preliminary runs of the algorithm show a slow convergence
rate, this could signal the need for balancing, especially in large matrices where
computational efficiency is paramount.

5.4. Comparison between the Three WE Algorithms

This subsection is very important, because it will address the issue in which cases the
new algorithm is better than the old algorithm.

We consider randomly chosen matrix 100 × 100 and 1000 × 1000 with values of the
dominancy parameter D = 0.95. While in the case of lower D the two algorithms produce
similar results with the new algorithm being better at high sequential steps, for higher
D the advantage of the new algorithm can be clearly seen—see Table 2. The apex of our
analysis is focused on the 1000 × 1000 matrix, the outcomes for which are illustrated in
Table 2. In a mere 5 iterations, the new Monte Carlo algorithm achieved an impressively
low relative error of 10−12. Comparatively, the old WE registered a relative error of 10−9.
Hence, for exceedingly large-scale problems, our developed Monte Carlo approach stands
out, surpassing the old algorithm by a substantial margin in terms of accuracy.
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Table 2. Weighted residual for the matrix B ∈ R100×100 (1) with a dominancy parameter D = 0.94234
and B ∈ R1000×1000 (2) with a dominancy parameter D = 0.947989.

N New WE for (1) Old WE for (1) New WE for (2) Old WE for (2)

1 5.61119e−03 2.48318e−02 5.13837e−03 2.23855e−02

2 2.26076e−05 5.17592e−04 2.74535e−05 5.36106e−04

3 1.35103e−07 1.0521e−05 1.27667e−07 1.17095e−05

4 5.60699e−10 3.10678e−07 6.27896e−10 2.69074e−07

5 3.05923e−12 7.04298e−09 3.09402e−12 6.63235e−09

We can see the comparison between the three algorithms on Figure 10. The correspond-
ing dominancy numbers are D = 0.466,D = 0.484,D = 0.484,D = 0.489. We can observe
similar behavior between the three algorithms with the slight advantage to the hybrid and
the new WE algorithm due to the fact that the dominancy number D is closer to 0.5. When
we increase the dominancy number the advantage of the new algorithm versus the old al-
gorithm become more evident—see the results on Figure 11. The corresponding dominancy
numbers are D = 0.5618,D = 0.5899,D = 0.6033,D = 0.6069. When we augment the
dominancy number, the superiority of the new algorithm over the old algorithm becomes
increasingly pronounced. As the dominancy number, which characterizes the influence of
the diagonal elements within a system, grows, the effectiveness and efficiency of the new
algorithm become more evident in comparison to the older method. This trend suggests
that the performance gap between the two algorithms widens as the system’s key features
gain greater prominence, underscoring the enhanced adaptability and efficacy of the new
algorithm in handling scenarios with elevated dominancy numbers. This observation
reinforces the notion that the advantages of the new algorithm are particularly prominent
and advantageous in situations where dominant factors play a more significant role. When
we decrease the dominancy number the advantage of the hybrid algorithm versus the old
and new algorithm become more evident—see the results on Figure 12. The corresponding
dominancy numbers are D = 0.2863,D = 0.3349,D = 0.3333,D = 0.3468. It is worth
mentioning that in case of low dominancy numbers the difference between the old and the
new algorithm is very similar. This fact could be explained by the proof of Theorem 7, but
needs more careful analysis and will be an object of a future study.

Here we describe the significance of the dominancy number D and its impact on
the performance of our new Monte Carlo algorithm compared to traditional methods.
To provide a clearer understanding of how the dominancy number relates to real-world
systems, we will establish a link between the bands of this parameter and their applications
in various scenarios.

5.4.1. Dominancy Number in Real Systems

1. Structural Engineering and Mechanics: In structural engineering, matrices derived
from finite element analysis often have dominancy numbers reflecting the stiffness of the
structure. A higher dominancy number (closer to 1) might indicate a structure with more
uniform material properties or loading conditions, whereas a lower dominancy number
(closer to 0) could represent a structure with highly variable stiffness or irregular load
distribution. For instance, in a uniformly loaded beam, the stiffness matrix would likely
exhibit a higher dominancy number, indicating the potential effectiveness of our new
algorithm in such scenarios.

2. Electrical Networks and Circuit Analysis: In electrical engineering, matrices repre-
senting circuit networks often have dominancy numbers that reflect the distribution of
resistances or impedances. A circuit with evenly distributed resistances across components
may present a higher dominancy number, suggesting a system where our new algorithm
could be particularly efficient.
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3. Fluid Dynamics and Heat Transfer: Systems modeled for fluid dynamics or heat trans-
fer can have matrices with varying dominancy numbers depending on the homogeneity
of the medium or the boundary conditions. For example, a heat transfer problem in a
homogenous medium might have a higher dominancy number, indicating the suitability of
our new algorithm for such cases.

Figure 10. Relative error of random dense matrices n × n for n = 100 (top left), n = 1000 (top right),
n = 5000 (bottom left) and n = 10,000 (bottom right).

5.4.2. Practical Implications of Dominancy Number Bands

- High Dominancy Band (D ≈ 0.6–1.0): Systems with high dominancy numbers are likely
to benefit more from our new algorithm. These systems typically exhibit more uniform
properties or conditions, making our algorithm more efficient in handling them.

- Medium Dominancy Band (D ≈ 0.4–0.6): In this range, the performance of our new
algorithm is comparable to traditional methods, with slight advantages in certain
scenarios. Systems in this band often exhibit moderate variability in their properties.

- Low Dominancy Band (D ≈ 0.0–0.4): Systems with low dominancy numbers might not
exhibit a significant performance difference between our new algorithm and traditional
methods. These systems often represent highly variable or irregular conditions.

The dominancy number is a critical parameter in determining the suitability and effi-
ciency of our new Monte Carlo algorithm for various real-world systems. By understanding
the implications of different dominancy number bands, practitioners can better assess the
applicability of our algorithm to specific scenarios, ranging from structural engineering to
electrical networks.
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Figure 11. Relative error of random dense matrices n × n for n = 100 (top left), n = 1000 (top right),
n = 5000 (bottom left) and n = 10,000 (bottom right).

Figure 12. Relative error of random dense matrices n × n for n = 100 (top left), n = 500 (top right),
n = 1000 (bottom left) and n = 2000 (bottom right).
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6. Discussion

In this section we will discuss the most important features of the new algorithm. We
will discuss its advantages over the original algorithm. As can be seen the advantage of
the new algorithm versus the old one depends on the newly presented parameter in this
paper—the so called dominancy number.

We may observe the following key elements of the presented algorithms.

• Performance enhancement through strategic relaxation parameter selection, leading
to reduced computation time and relative errors within a fixed number of iterations.

• Optimization potential by balancing the iteration matrix, demonstrating improve-
ments in the algorithm’s original form.

• The introduced random variable serves as an unbiased estimator for the solution
vector. The stochastic error’s structure is analyzed in detail.

• The analysis of the stochastic error structure reveals that the convergence rate of the
proposed WE Monte Carlo algorithm is influenced by matrix balancing. Although this
influence is less pronounced compared to deterministic algorithms, it is still a factor
to consider.

• Application of a sequential Monte Carlo method by John Halton, based on the control
variate method, for further optimization .

• Analysis of the relative stochastic error structure, revealing a dependency on matrix
balancing for the convergence rate of the WE algorithm.

• Comparative analysis of numerical outcomes with the most optimal deterministic
method, the Preconditioned Conjugate Gradient (PCG), indicating superior results for
the WE Monte Carlo method in certain cases.

• The proposed WE Monte Carlo algorithm, in conjunction with the sequential Monte
Carlo for computing all solution components, demonstrates significantly faster con-
vergence compared to certain well-known deterministic iterative methods, such as the
Jacobi and Gauss–Seidel methods.

• The proposed WE Monte Carlo algorithm, in conjunction with the sequential Monte
Carlo for computing all solution components, shows faster convergence compared
to the old algorithm when the dominancy number is close to 1. This trend is con-
sistent across matrices of various sizes, with a more pronounced effect observed for
larger matrices.

Now, when we consider the impact of the dominancy number on the performance of
algorithms, particularly the comparison between a new and an old algorithm, the following
dynamics come into play:

The dominancy number reflects the diagonally dominance in the system. As this
number increases, it implies that specific elements or features have a more substantial
influence on the overall system behavior.

The old algorithm might have been designed or optimized based on certain assump-
tions or characteristics of the problem. However, if the dominancy number is low, the im-
pact of the dominance may not have been fully exploited or addressed by the old algorithm.

The new algorithm, on the other hand, may have been specifically developed or
adapted to handle scenarios with higher dominancy numbers. It could incorporate tech-
niques that capitalize on the influence of diagonally dominance. As the dominancy number
increases, the advantages of these tailored approaches become more apparent.

The observed performance difference between the old and new algorithms is indicative
of the latter’s adaptability and efficacy in scenarios where certain factors play a more
critical role. The new algorithm may dynamically adjust or scale its strategies based on the
prominence of diagonally dominance, leading to improved outcomes in these situations.

In essence, the correlation between the dominancy number and algorithmic perfor-
mance emphasizes the importance of algorithmic design that considers and leverages the
influential factors within a given problem. As the dominancy number grows, the advan-
tages of the new and the hybrid algorithm specifically crafted to handle such conditions
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become increasingly evident, showcasing the importance of adaptability and specialization
in algorithmic solutions.

However, there is another issue to be addressed. The need for increased simulation tra-
jectories to achieve convergence, especially when dealing with imbalanced matrices, raises
questions about efficiency and practicality, particularly in comparison to canonical methods.

To address this critical point, it is possible to apply a number of strategies to achieve a
balance between convergence speed and the number of simulation trajectories:

• Adaptive Trajectory Sampling: By implementing an adaptive sampling technique, the al-
gorithm can dynamically adjust the number of trajectories based on the convergence
rate. When the algorithm is far from convergence, fewer trajectories can be used.
As it approaches the solution, the algorithm can increase the number of trajectories
to fine-tune the accuracy. This adaptive approach helps in reducing unnecessary
computational overhead in the early stages of the algorithm.

• Parallel Computing and Optimization: The inherently parallel nature of Monte Carlo
simulations makes our WE algorithm particularly amenable to parallel computing
techniques. By distributing the simulation trajectories across multiple processors or a
GPU, we can significantly reduce the overall CPU time. Furthermore, optimizing the
code for specific hardware architectures can also lead to substantial improvements in
computational efficiency.

• Hybrid Methodologies: Combining the WE algorithm with deterministic methods can
offer a compromise between the robustness of Monte Carlo approaches and the
speed of traditional methods. Starting with a deterministic method to reach a closer
approximation to the solution and then switching to the WE algorithm for fine-tuning
could reduce the total number of simulation trajectories required.

• Improving the Dominancy Number Calculation: As our research highlights the importance
of the dominancy number in the algorithm’s performance, refining the calculation or
estimation of this number can lead to a more efficient trajectory planning. This could
involve developing predictive models that estimate the optimal dominancy number
based on matrix characteristics.

• Advanced Stochastic Techniques: Incorporating advanced stochastic techniques, such as
importance sampling or variance reduction strategies, could improve the efficiency of
the simulation trajectories. These techniques aim to focus computational effort on the
most critical parts of the solution space, thereby reducing the number of trajectories
required for a given level of accuracy.

To summarize, while the increase in CPU time due to additional simulation trajecto-
ries is a valid concern, especially for imbalanced matrices, the strategies outlined above
provide viable pathways to optimize the trade-off between convergence speed and compu-
tational effort. Our future work will focus on further investigating and implementing these
strategies to enhance the practical applicability of the WE algorithm.

7. Conclusions

Linear systems hold significance not just for their mathematical elegance but for their
pervasive influence across various disciplines, serving as a foundational language to articu-
late and comprehend the complexities of the world. Linear Algebraic Equations are more
than mere problems to solve; they act as a vital link between abstract theories and practical
realities in scientific and engineering applications. Whether navigating simulations in com-
putational fluid dynamics or optimizing structures in engineering, they offer a mathematical
framework to perceive, understand, and tackle intricate challenges. As computational
capabilities expand, addressing large-scale linear algebraic problems has become a focal
point, pushing the boundaries of both analytical techniques and computational hardware.

In our research, we have introduced and thoroughly investigated a novel Monte Carlo
method designed explicitly for large systems of algebraic linear equations. This innovative
approach is based on the “Walk on Equations” Monte Carlo model, a recent development
attributed to Ivan Dimov, Sylvain Maire, and Jean Michel Sellier. Additionally, we present
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a new hybrid algorithm, a combination of the two methods, introducing a crucial element—
the dominancy number—for algorithmic performance. Notably, our study breaks new
ground by providing a comparative analysis with the Jacobi and Gauss–Seidel algorithms,
focusing on matrices of considerable dimensions—an aspect largely unexplored in existing
scholarly discussions.

To validate our approach, we conduct numerical experiments, including a significant
case involving a large system from finite element approximation in structural mechanics,
specifically addressing a beam structure problem. Our work contributes to advancing the
understanding and effective solution of large-scale linear algebraic problems, showcasing
the relevance and potential applications of our proposed Monte Carlo method in practical,
real-world scenarios.

Looking ahead to the future landscape of scholarly endeavors in this field, we antici-
pate a comprehensive and rigorous evaluation that juxtaposes traditional computational
methods with our cutting-edge Monte Carlo technique. Moreover, we need to investigate
how the proposed method change to nonlinearities, and what possible criteria can be done
in this case. Additionally, we aim to broaden the scope of our innovative algorithm by
applying it to various matrices drawn from the well-known Harwell-Boeing collection.
This initiative seeks to underscore the adaptability and effectiveness of our approach in
solving linear algebraic equations crucial to a variety of practical, real-world scenarios.
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