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Abstract: A Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle (HQGAFARA)
is introduced in this work to determine the optimal placements for Unmanned Aerial Vehicles
(UAVs) aimed at maximizing coverage in disaster-stricken areas. The HQGAFARA is a hybrid
quantum fuzzy meta-heuristic that uses the Deutsch–Jozsa quantum circuit to generate quantum
populations synergistically working as haploid recombination and mutation operators that take
advantage of quantum entanglement, providing exploitative and explorative features to produce
new individuals. In place of the conventional lookup table or mathematical equation, we introduced
a fuzzy heuristic to adapt the rotation angle employed in quantum gates. The hybrid nature of
this algorithm becomes evident through its utilization of both classical and quantum computing
components. Experimental evaluations were conducted using two distinct test sets. The first set,
termed the “best case”, represents conditions that are the most favorable for determining the UAV
positions, while the second set, the “worst-case”, simulates highly challenging conditions for locating
the UAV positions, thereby posing a significant test for the proposed algorithm. We carried out
statistical comparative analyses, assessing the HQGAFARA against other hybrid quantum algorithms
that employ different rotation angles and against the classical genetic algorithm. The experimental
results demonstrated that the HQGAFARA performed comparably, if not better, to the classical genetic
algorithm regarding precision. Furthermore, quantum algorithms showcased their computational
prowess in experiments related to the convergence time.

Keywords: quantum-inspired algorithms; hybrid quantum algorithms; adaptive rotation angle;
Unmanned Aerial Vehicles; fuzzylogic

MSC: 68Q12

1. Introduction

Natural disasters are generally unplanned events that can cause significant losses and,
unfortunately, take the lives of thousands of people. Every year, a hurricane, flooding,
volcanic eruption, earthquake, or tropical cyclone unleashes its fury and damages some
parts of the planet. For example, in 2014, hurricane Odile affected the peninsula of Baja
California Sur in Mexico. Although authorities noted that no deaths were registered, at least
239,000 people were left without electricity, representing 90% of the state’s population [1]. In
2015, a devastating earthquake struck Nepal (India) with a magnitude of 7.8 Mw (moment
magnitude scale), resulting in over 8700 casualties. This event marked the deadliest
earthquake in Nepal since the 8.4 Mw mega-quake of 1934 [2]. The aftermath left hundreds
of thousands of Nepalese homeless, and entire villages were flattened. In 2017, Hurricane
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Maria, boasting wind speeds of 250 km per hour, wreaked havoc in Puerto Rico. The
estimated death toll varied between 793 and 8498 victims, with total economic losses
reaching approximately US $92 billion [3]. In 2018, an earthquake occurred 70 km north
of Palu, Indonesia. In the aftermath of the earthquake, a devastating tsunami damaged
several areas around Palu Bay [4]. In 2021, Haiti registered a magnitude 7.2 earthquake that
resulted in approximately 2248 deaths and a total damage cost of around US $1.6 billion [5].
About 60,000 people die in a natural disaster annually [6]. Hence, it is imperative to keep
communication systems active to keep people alive and avoid more people dying.

Recently, the use of UAVs as aerial base stations (BSs) has received significant attention
due to their low cost, high mobility, cost-effectiveness, and flexible deployment [7,8]. The
use of UAVs as aerial BSs to obtain a maximum coverage area in disaster zones has been
explored in the last few years. Due to the many possible configurations for locating UAVs,
this problem is considered an NP-hard problem [9].

One of the approaches to finding strategic locations for UAVs in disaster zones is
meta-heuristics; these algorithms can deal with the above problem, since they can generate
high-quality solutions for complex optimization problems [10]. For example, the work
in [11] presents a genetic algorithm to locate UAVs in disaster zones. It compares two
different representations: binary and floating-point. The experimental results showed that
the binary representation performed better. Another similar study using a (1+1) evolution
strategy (ES) is shown in [12]. The authors conducted experiments to verify the ES’s
performance by varying the number of channels. They concluded that a mobile user
perceives less destructive interference as the number of channels per UAV increases. In
contrast, the authors in [13] proposed an approximation algorithm based on a Tabu search
for positioning UAVs in a disaster zone, such that the throughput is maximized. The results
show that strategically placing UAVs can achieve an average throughput improvement
of 26%. Work in [14] maximized the area coverage with a given number of UAVs in a
post-disaster flood. The authors assumed that the area was obstacle-free. A Particle Swarm
Optimization algorithm was used to solve the optimization problem. The results suggest
that when the flight height of the UAV is above 120 m, coverage is enhanced by 34% in
comparison with a flight height of 100 m. In [15], a hybrid meta-heuristic was introduced to
optimize emergency logistics during a disaster. The authors amalgamated two algorithms,
Discrete Particle Swarm Optimization (DPSO) and Harris Hawks Optimization (HHO),
to address the problem. The outcomes showcased superior accuracy, favoring the hybrid
meta-heuristic over other meta-heuristic approaches.

Consequently, the authors in [16] used UAVs to provide coverage when the com-
munications infrastructure is damaged due to a natural disaster. Four multi-objective
optimization algorithms were implemented to optimize the placement of available UAVs
to provide quality service (QoS) requirements while minimizing energy consumption and
maximizing the number of covered targets. An aerial mesh network (AMN) based on
IEEE 802.11g technology was used in its optimization model. This technology works in
the 2.4 GHz frequency band with a network range of a few meters. Therefore, to provide
coverage in extensive affected areas, the number of UAVs may be increased considerably,
which conflicts with the constrained number of UAVs that the first responders may have.
In contrast, the work presented in [17] optimized UAV locations to maximize the cov-
erage of the emergency first responders (EFRs) while considering the UAV flight time
constraint. Nevertheless, in a natural disaster scenario, it is also essential to consider
communication services for affected people so that they can ask for help from EFRs, and
consequently, EFRs may be aware. Regarding the phenomena that impact the wireless
network’s performance, the authors only considered path loss. However, in the design of a
wireless network, it is necessary to consider the interference experienced by other EFRs
or UAVs, since interference severely deteriorates the quality of a signal. If interference is
not considered, it could interrupt the communication services of the EFRs. An emergency
network assisted by UAVs was presented by [18]. This network uses the combination of a
genetic algorithm and a heuristic approach to optimize the deployment of the minimum
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number of UAVs required to ensure connectivity for points of interest (POIs) in regions
with a high population density. It is important to note that this approach does not consider
the presence of first responders within these POIs. The results indicate that the proposed
strategy effectively covers all designated POIs. However, the omission of first responders
within the POIs implies that individuals in distress in these areas might not be able to
access help from stationed first responders. A genetic algorithm was used to optimize
the UAVs’ locations in a disaster scenario in [19]. It designs a heterogeneous public safety
communication (PSC) network based on LTE-Advanced mobile technology. The UAVs are
used as unmanned aerial base stations (UABs) to improve the spectral efficiency (SE) by
applying the cell range expansion (CRE) parameter and enhanced intercell interference
coordination (eICIC). The potential gains of the SE give the QoS. The results show the
network’s performance with different path-loss models and network parameters. Although
the results show the suitability of the study, a large number of UAVs are required to provide
coverage. In [20], a k-means algorithm is used to find the location of a UAV to minimize the
average outage probability in a disaster scenario. The k-means algorithm creates clusters
of users according to their positions. Each cluster has a cluster head and cluster members.
The nodes use device-to-device (D2D) communication, including multi-hop, to improve
the cellular downlink performance. However, it introduces additional delays in the packets
delivered. In addition, the network considers just one UAV. In this case, if the UAV fails, the
possibility of service continuity may be affected. The service continuity in an emergency
scenario may be the difference between the life and death of the people. Therefore, the use
of several UAVs could ensure service continuity.

The works mentioned above present classical meta-heuristics to find strategic locations
for UAVs. Classical meta-heuristics are algorithms that are implemented in classical
computers. These algorithms have demonstrated effectiveness in solving this kind of
NP-hard problem. However, we hypothesize that goodness could be improved using a
quantum algorithm.

Quantum computing has very interesting properties, such as superposition, quan-
tum entanglement, and quantum parallelism. All of these characteristics make quantum
computing a powerful methodology for solving optimization problems. Evolutionary algo-
rithms are meta-heuristics that evolve a set of solutions (population) using operators based
on biological evolution. Additionally, they can take advantage of quantum computing
properties to solve NP-hard problems, for example, the Knapsack Problem (KP) [21], the
Traveling Salesman Problem (TSP) [22], and the problem of finding strategic locations for
UAVs to maximize the network coverage [11].

Many studies on evolutionary quantum computing and UAVs primarily focus on the
design of path planning. The objective of the path planning task is to find the optimal
route from an initial point to a final point, avoiding obstacles [23,24]. In [25], a quantum-
behavior-based enhanced fruit fly optimization algorithm (QFOA) for UAV path planning
is shown. The QFOA aims to accelerate algorithm convergence and avoid local optimality
by incorporating quantum theory into the fruit fly optimization algorithm (FOA). The
experimental results demonstrate a better searching ability, stability, and robustness than
the FOA. Another swarm intelligence optimization algorithm for solving a UAV path
planning problem was proposed in [26]. Here, the authors implemented an adaptive
operator and combined the properties of quantum computing with the pigeon-inspired
optimization algorithm (PIO) to create a quantum-behaving pigeon-inspired optimization
algorithm (QPIO). The adaptive operator improved the global convergence speed of the
QPIO. The comparison results indicate that the QPIO performs better than the PSO and the
PIO regarding the accuracy and convergence.

A quantum-entanglement pigeon-inspired optimization algorithm for UAV path plan-
ning was proposed in [27]; the natural behavior of homing pigeons served as the inspiration
for the PIO algorithm. When the PIO was combined with quantum entanglement prop-
erties, its convergence velocity and robustness improved. The above was compared with
classical evolutionary algorithms. Finally, in [28], a quantum genetic algorithm was used
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to provide a practical solution for distributed task allocation in an unknown environment
with a large-scale network of UAVs. The simulation results demonstrate the superior
performance of the proposed methodology compared with that of the NSGA-II.

The results presented by quantum algorithms have demonstrated superiority regard-
ing their accuracy and robustness compared with classical algorithms solving UAV path
planning problems [25–28] Although path planning problems are not the main objective
of this paper, this kind of problem is classified as NP-hard [29] just like the problem ad-
dressed here. Therefore, quantum algorithms have the potential to solve NP-hard problems
efficiently.

This work presents three contributions to the state-of-the-art technology:

1. We introduce the first algorithm that is capable of running on a quantum computer,
efficiently addressing the challenge of locating UAVs in disaster zones.

2. To enhance the performance of our HQGAFARA (Hybrid Quantum Genetic Algorithm
with Fuzzy Adaptive Rotation Angle), we incorporate fuzzy logic, a technique that
effectively manages uncertainties in complex mathematical models. Implementing
a fuzzy adaptive rotation angle enables flexible manipulation of the quantum gate
rotation angle. In contrast, using an adaptive rotation angle based on a mathematical
equation restricts qubit-state rotation to a single direction.

3. Our approach integrates a quantum recombination operator based on the Deutsch–
Jozsa circuit. This addition endows the algorithm with quantum advantages, in-
cluding quantum parallelism, entanglement, and quantum haploid recombination
and mutation, which all synergistically enhance its capabilities. These attributes are
unattainable with classical computing methods.

The organization of this paper is as follows: Section 2 shows the main theoretical con-
cepts involved in this paper. Section 3 depicts the structure of the proposed HQGAFARA to
locate the strategic positions of UAVs in an affected area. Section 4 presents the experiments
and results obtained when implementing HQGAFARA in the IBM Qiskit simulator. Finally,
Section 5 contains the findings, and we give some directions for future work.

2. Theoretical Framework

Quantum computing is a field that leverages principles from quantum mechanics,
including quantum entanglement, superposition, and quantum parallelism, to formulate
quantum algorithms. These quantum characteristics enable quantum computers to pro-
cess information millions of times faster than the most powerful supercomputer in the
world [30,31]. Considering the characteristics above, the design of quantum algorithms is
becoming increasingly attractive.

At present, quantum bits (qubits) are very noisy, generating inaccurate results. This
noise imposes some restrictions on the application of quantum algorithms in real appli-
cations, such as a limited number of physical qubits available for developing algorithms,
quantum circuit depth, decoherence of information, and the loss of qubit states due to the
propagation time. The above-mentioned restrictions are part of the noisy intermediate-scale
quantum (NISQ) era [32].

A method used to decrease the coherency lost in quantum computations is the use of
hybrid quantum programming, which uses classical and quantum calculations to perform
a programming task. The classical computer will submit a job to the quantum computer to
perform algorithmic tasks; the results are returned to the classical computer. The classical
computer will create quantum circuits, which are sent again as a job to the quantum
computer. This process is repeated until a termination criterion is satisfied.

Quantum-inspired algorithms are methods that were developed when quantum com-
puters were not available. Therefore, the first attempts were executed on classical computers.
Although they use some quantum mechanics principles, such as superposition and quan-
tum entanglement, they cannot exploit these quantum characteristics. In the literature, most
quantum-inspired algorithms address path-planning problems (see Section 1). Compared
with classical algorithms, our approach offers the previously mentioned quantum advantages.
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2.1. Quantum Computing

A classical computer uses bits to store information, whereas a quantum computer uses
quantum bits or qubits. A qubit is a unit of information described in a two-dimensional
Hilbert space [33]. Mathematically, a qubit, say |ψ⟩, is represented as a matrix of the
complex numbers c0 and c1,

|ψ⟩ = c0|0⟩+ c1|1⟩ ≡
(

c0
c1

)
(1)

where |c0|2 + |c1|2 = 1. Thus, |c0|2 and |c1|2 represent the probability of finding the qubit
after being measured in the states |0⟩ and |1⟩, respectively [33,34]. Quantum systems use
the Dirac notation to describe their states. For each “ket” |ψ⟩, there is a corresponding “bra”
⟨ψ|; both are dual, that is,

⟨ψ| = c∗0⟨0|+ c∗1⟨1| = (c∗0c∗1). (2)

A qubit is always in the superposition state. This is the ability to exist simultaneously
in more than one location or, mathematically speaking, to be in two different basis states, in
our case, the computational basis |0⟩, |1⟩. Similarly, a quantum register of n-qubits can be
found in superpositions in any of the possible 2n states |00 . . . 0⟩, |00 . . . 1⟩, . . . , |11 . . . 1⟩. In
general, the state of a quantum register of two qubits is represented as

|ψ⟩ = c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩ (3)

where |c0|2 + |c1|2 + |c2|2 + |c3|2 = 1. This means that we can handle many bit strings in a
single quantum register.

The general form used to represent a quantum register of n-qubits is

|ψ⟩ = c0|00 . . . 0⟩+ c1|00 . . . 1⟩+ . . . + c2n−1|11 . . . 1⟩=
2n−1

∑
i=0

ci|i⟩, (4)

where ∑2n−1
i=0 |ci|2 = 1 and |i⟩ represent the eigenstates of the computational base whose bit

values are equivalent to the decimal number expressed in base notation 2.

2.2. Quantum Inspired Algorithms

In 1996, quantum mechanics concepts were introduced in [35] to develop more efficient
quantum evolutionary methods. Their primary goal was to compare the performances of
classical and quantum-inspired algorithms in solving the Traveling Salesman Problem (TSP).
The experiments showcased the superiority of the quantum-inspired algorithm in terms of
both the convergence rate and the final results compared to the classical algorithm. Another
analogous proposal was put forth in [36], where the authors recognized the potential of a
quantum algorithm for addressing NP-hard problems.

The two pioneering works in evolutionary quantum computing are the Genetic Quan-
tum Algorithm (GQA) [37] and the Quantum-Inspired Evolutionary Algorithm (QEA) [38].
The GQA is based on the concepts and principles of quantum mechanics, such as superpo-
sition and entanglement. The 0–1 Knapsack Problem (0–1 KP) was employed to assess the
GQA’s performance. The results illustrated the efficacy and applicability of the GQA for
solving the 0–1 KP [37]. All experiments were conducted on a classical computer.

Quantum genetic algorithms have excellent global searchability due to the popula-
tion’s diversity caused by its probabilistic representation of superposed information. This
capability causes the quantum handling of information to surpass conventional representa-
tion, storage, and handling. For example, for problems requiring only one quantum register
of 32 qubits, a classical computer would need 4,294,967,296 memory registers to handle the
same quantity of information, which is significant.

The QEA is the improved version of the GQA. The QEA was also designed to solve
the 0–1 KP. The process of finding the optimal solution is similar to that used in the GQA.
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The main difference between both proposals is the migration concept introduced by the
QEA. This process induces a variation in the probabilities of quantum chromosomes [39].

The interaction between quantum computing and evolutionary computation can be
described in three ways [40]: The first is known as the Evolutionary-Designed Quantum
Algorithm (EDQA). In this case, we use genetic programming to create new algorithms. The
second approach is the Quantum Evolutionary Algorithm (QEA). The QEA was designed
to develop evolutionary algorithms for quantum computers. Lastly, a Quantum-Inspired
Evolutionary Algorithm (QIEA) is presented. The QIEA uses some quantum mechanics
concepts to create evolutionary methods for implementation on classical computers. The
Quantum-Inspired Acromyrmex Evolutionary Algorithm is a novel methodology proposed
in this category [41]. Nowadays, various companies, including Google [42], IBM [43], and
D-wave [44], have developed quantum computers with the goal of achieving quantum
supremacy. Quantum supremacy entails the ability of a quantum computer to solve a
problem in seconds or minutes, whereas a classical computer would require years to
accomplish the same task.

At present, we are in the noisy intermediate-scale quantum (NISQ) era, which is
characterized by imperfect control over the qubits because of the noise, introducing errors
that play an essential role in the results. The most viable option so far is to combine classical
computing components with quantum computing, i.e., to design hybrid algorithms [32,45].
These classic elements perform several tasks, such as data preparation, parameter selection,
post-processing, and analysis, and play specific but powerful roles in the acceleration or
co-processing of certain problems.

2.3. The Deutsch–Jozsa Algorithm

The physicist David Deutsch introduced a quantum algorithm that predicts quantum
supremacy over classical computers. This quantum algorithm is the Deutsch algorithm
and can solve a problem faster than a classic algorithm. The problem is as follows: Let x be
a binary number of n bits, and f (x) be a function that generates a single output value (0 or
1) for each value of x. In advance, it is known that the function can only have two states:
constant, if f (x) returns the same value for all n inputs, or balanced, if f (x) generates
half of the outputs with a value (for example, 0) and the other half with a different value
(for example, 1) [46]. Deutsch and Richard Jozsa presented improvements to the original
algorithm, obtaining the Deutsch–Jozsa algorithm [47]. In this algorithm, f (x) is a “black
box” function (also called an Oracle), which always provides the correct value to a given
input value x. By calling the Oracle, we can determine whether f (x) is constant or balanced;
this quantum algorithm requires only one call to provide the correct answer independently
of the input size. On the other side, a classical computer would need to call the Oracle
2n−1 + 1 times using classical programming [46,48–50]; thus, the number of times that
the Oracle is called grows exponentially as the input (bit string) becomes more extensive.
Therefore, the quantum computer provides exponential acceleration. Figure 1 shows the
Deutsch–Jozsa circuit that implements this algorithm. The circuit comprises Hadamard
gates and an Oracle-based on C-NOT quantum gates represented by U f . The C-NOT gates
operate with two qubits: a control qubit and a target qubit. In the figure, the last qubit
(from top to bottom) is the target qubit; the rest are control qubits. In this case, the target
qubit should be in state one (|1⟩) to provide a phase kickback to the information presented
to this Oracle; otherwise, a Pauli-X gate should be added to this input.

Figure 1 shows the structure of the Deutsch–Jozsa quantum circuit. The process
used to evaluate the x inputs, where x = x1, x2, . . . , xn, is as follows: first, we need to
set n qubits in z-basis states according to |ψ0⟩ = |0⟩⊗n|1⟩, where n is the number of
qubits. Next, we apply Hadamard gates to each of the qubits to set them in a superpo-
sition state, as shown in |ψ1⟩ = 1√

2n+1 ∑2n−1
x=0 |x⟩(|0⟩ − |1⟩). The Oracle works as follows:
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U f (|x⟩⊗n|y⟩) = |x⟩⊗n|y⊕ f (x)⟩, where |y⟩ = |−⟩ = |0⟩−|1⟩√
2

, and for each x, the value of
f (x) can be 0 or 1. Therefore, by applying the quantum Oracle to |ψ1⟩, we have

|ψ2⟩ =
1√

2n+1

2n−1

∑
x=0
|x⟩(| f (x)⟩ − |1⊕ f (x)⟩)

=
1√

2n+1

2n−1

∑
x=0
|x⟩(||0⟩⟩ − |1⟩)

. (5)

Figure 1. Quantum circuit implementing the Deutsch–Jozsa algorithm. U f represents the Oracle
(black-box) or the f (x) function. The Oracle can handle x inputs of n-bits string (|0⟩, |0⟩, . . . , |1⟩), and
it returns a single output, 0 or 1.

At this point, quantum entanglement has been achieved. Here, we do not need to
measure the last qubit; hence, we apply Hadamard gates to control the qubits to obtain
Equation (6), where x · y is given by x0y0 ⊗ x1y1 ⊗ · · · xn−1yn−1:

|ψ3⟩ =
1√
2n

2n−1

∑
x=0

(−1) f (x)
[ 2n−1

∑
y=0

(−1)x·y|y
]

=
1√
2n

2n−1

∑
y=0

[ 2n−1

∑
x=0

(−1) f (x)(−1)x·y|y
]. (6)

The last step is to measure the control qubits. Note that the probability used to measure
a zero state is |0⟩⊗n = | 1

2n ∑2n−1
x=0 (−1) f (x)|2.

HQGAFARA uses the Deutsch–Jozsa circuit as a quantum operator that mimics hap-
loid recombination and performs mutations. Using this circuit, we found that convergence
to optimal values could be improved without sacrificing exploratory features.

2.4. Disaster Zone Model

Approximately 60,000 people die due to natural disasters each year, representing
0.1% of global deaths [6]. Often, these fatalities are a result of communication systems
collapsing during a natural disaster. It is crucial for emergency services to be well-prepared
to respond immediately and prevent further losses of lives. One potential solution is
to equip first responders with UAVs that can be temporarily deployed as airborne base
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stations, connecting victims and emergency personnel. Identifying strategic locations for
deploying UAVs in the affected area is essential to cover as many mobile users (MUs)
as possible within the disaster zone. UAVs function as LTE access points that facilitate
information routing through the network.

Figure 2 visually portrays the scenario developed for the simulation in this study.
The simulated area affected by the natural disaster is outlined as a two-dimensional space
confined within L × L m2 [12]; it is limited by [−Xmax, Xmax] and [−Ymax, Ymax], with
its origin at (0, 0). The set of UAVs is M = {(x1, y1), · · · , (xm, ym)}, where (xi, yi) is the
Cartesian coordinate of a UAV. i is the index of the set of UAVs, ranging from 1 to m, where
m =| M |. The set of MUs is N = {(x1, y1), · · · , (xn, yn)}, where (xj, yj) is the Cartesian
coordinate of a MU. j is the index of the set of MUs, ranging from 0 to n, where n =| N | [12].

Figure 2. The figure illustrates the arrangement of UAVs and MUs in the simulation scenario,
highlighting the coexistence of n MUs and m UAVs.

2.5. Objective Function and Restrictions

Given several MUs with known locations, the objective function in (7) aims to find
UAVs’ locations to maximize the network coverage, as follows [11,12]:

Maximize C = v/n. (7)

In this context, v represents the specific count of MUs covered by the UAVs, while
n denotes the total number of MUs within the affected area (n ̸= 0). Let us consider a
hypothetical scenario involving an emergency rescue team equipped with a fleet of four
UAVs, tasked with managing a total of 400 MUs (n) in the disaster area. Within this fleet,
only 120 MUs (v) are effectively covered by the deployed UAVs. The coverage metric (C)
can be computed as the ratio of covered MUs to the total nymber available, resulting in a
value of C = 0.3 or 30 percent. This implies that, by utilizing the available four UAVs, the
rescue team can effectively attend to 30 percent of the individuals requiring assistance on
the ground. The optimal coverage value, denoted by 1, signifies a scenario where 100% of
the MUs are encompassed within the UAVs’ coverage area. This benchmark represents
complete coverage, indicating the ideal state where all individuals in need are reached by
the UAVs.
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We apply the Hata propagation model for urban areas and an operation frequency fc
of 700 MHz to calculate the path loss. The path loss Lp between the i-th UAV and the j-th
MU is given by

Lp((xi ,yi),(xj ,yj))
(dB) = A + B log10(d((xi ,yi),(xj ,yj))

) (8)

where A and B are constants. d((xi ,yi),(xj ,yj))
is the distance between the Cartesian coordi-

nates of the i-th UAV and the Cartesian coordinates of the j-th MU.
This paper considers the quality of service (QoS) in a signal-to-interference ratio (SIR),

which indicates how much interference a MU perceives when a set of MUs is transmitted
over the same channel.

The SIR in the j-th MU is given by [12]:

SIR(xj ,yj)
(dB) = Ptx(xi ,yi)

+ Lp((xi ,yi),(xj ,yj))
− I (9)

where Ptx(xi ,yi)
is the transmission power of the i-th UAV. Lp((xi ,yi),(xj ,yj))

is the path loss
from the i-th UAV to the j-th MU in the desired signal (see Figure 3). I is the total interference
and is given by

I = ∑
k∈K

Ptx(xk ,yk)
− dδ

((xk ,yk),(xj ,yj))
(10)

where Ptx(xk ,yk)
is the transmission power of the k-th MU interferer. k refers to the MU

transmitting on the identical channel as the j-th MU within the desired signal, as depicted
in Figure 3. The above strategy is referred to as spectrum sharing [51]. The variable k falls
within the range of 0 ≤ k ≤| K |, where K represents the set of MUs transmitting on the
same channel. This set is commonly known as the set of interferers. The term d((xk ,yk),(xj ,yj))

denotes the Euclidean distance between the k-th interferer and the j-th MU. The parameter
δ represents the attenuation factor, taking a value between 2 and 4.

Figure 3 depicts the SIR in the j-th MU in the desired signal. The interferers are (x2, y2)
and (x5, y5), since they transmit over the same channel as (x1, y1).

Figure 3. This figure illustrates the signal-to-interference ratio (SIR) calculation for the j-th mobile
user (MU) within the desired signal. The interferers, located at (x2, y2) and (x5, y5), share the same
channel as the transmitter at (x1, y1).
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The association between the j-th MU and the i-th UAV occurs based on adherence to
the following constraints [12]:

d((xi ,yi),(xj ,yj))
≤ 2000 m, (11)

Lp((xi ,yi),(xj ,yj))
≤ 120 dB, (12)

SIR(xj ,yj)
≥ 3 dB, (13)

Nj ∈ Mi ∴ Nj /∈ Ml ∀l ̸= i. (14)

The condition described in (11) indicates the inclusion of the j-th MU within the
coverage area of the i-th UAV. Consequently, the equation stated in (12) governs the
permissible path loss between the i-th UAV and the j-th MU, ensuring it remains within the
predefined threshold value. The thresholds, defined in Equations (11) and (12), are derived
from exhausted simulations aimed at mitigating interference. Moreover, Equation (13)
stipulates that successful voice transmission is contingent upon maintaining the SIR above
3 dB at the j-th MU. Finally, Equation (14) delineates the sole association of the j-th MU
with the i-th UAV, where 0 < l ≤ m, 0 < i ≤ m, and 0 ≤ j ≤ n.

3. Materials and Methods

An HQGAFARA to locate UAVs to maximize coverage in disaster zones is presented
in this section. The HQGAFARA uses a Deutsch–Jozsa circuit (see Figure 1) and quantum
rotation gates as a quantum operator to update the quantum population. The Deutsch–
Jozsa circuit works similarly to the recombination operator used in classical evolutionary
algorithms; quantum rotation gates with adaptive rotation angles refine the final solutions
to improve the convergence of the HQGAFARA.

Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle

The quantum circuit of the HQGAFARA is presented in Figure 4. This quantum circuit
uses one of the main characteristics of quantum algorithms, quantum parallelism. With a
single Oracle query, we can determine the state of 2n possible configurations [48–50]. All
experiments were executed on the IBM Qiskit quantum simulator.

Figure 4. Quantum circuit of the HQGAFARA implemented in the IBM Qiskit environment to solve
the problem of locating UAVs in disaster zones. In the figure, the Oracle is represented by a square
dotted line.

The following quantum gates were used to design the quantum circuit shown in
Figure 4: qubit qm is an ancillary qubit that controls the C-NOT (Controlled NOT) gates.
This qubit should be in state one (|1⟩). The C-NOT gates generate entanglement between
the qubits; these gates are part of the Oracle. This Oracle is the same as that shown in
Figure 1. Hadamard gates are used to place the qubits in the superposition state. Finally,
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the rotation gates (Ry(θ)) are used to generate new quantum individuals which, in turn,
are measured to update the classical population.

The length of a quantum circuit is defined as the count of quantum gates (quantum
operations) within the circuit when represented as a sequence of operations. Essentially, it
gauges the depth of the circuit, indicating the number of computational steps or operations
necessary to execute the quantum algorithm. A shorter length typically suggests a more
efficient or less complex quantum circuit. As such, it stands as a key characteristic reflecting
the complexity of a quantum circuit [46].

Figure 5 depicts the behavior of the HQGAFARA in a block diagram. On the left are
the steps executed by the classical computer (CC); the steps that the quantum computer
(QC) runs are shown on the right side. In the CC, the HQGAFARA imports the user’s
coordinates and transmission channels and configures the number of users, UAVs, and
available channels, the amounts of UAV transmission power and user transmission power,
and the maximum number of generations. Also, a classical population P(t) is created; then,
P(t) is mapped with the UAVs’ coordinates and evaluated in the fitness function. Finally,
the best solutions are stored as a set of best solutions B(t). The quantum population Q(t) is
created, measured, and updated using the Deutsch–Jozsa circuit and Ry rotation gates in
the simulator or QC. A fuzzy adaptive rotation angle is implemented on the Ry gate for the
updated step.

Algorithm 1 describes the implementation of our HQGAFARA to locate UAVs to
maximize coverage in disaster zones. The inputs of HQGAFARA are the parameters
of the problem, the maximal number of generations MAX_GEN, and the number n of
quantum chromosomes. For the experiments, a single quantum chromosome was used.
The output of the proposed algorithm is the maximum coverage C given by the UAVs. Like
its evolutionary counterparts, the HQGAFARA begins by initializing a generation counter
t. Step 3 creates the scenario by locating N mobile users in the affected area. Two areas of
100 and 900 km2 were created for the experiments.

Algorithm 1 Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle

Require: The number p of quantum chromosomes, the maximal number of generations
MAX_GEN, the total number of mobile users N, the total number of UAVs M

Ensure: Maximum coverage C as shown in Equation (7)
Begin
t←− 0;
Randomly generate the positions of N
Initialize Q(t) using a Deutsch–Jozsa circuit and Ry quantum rotation gates
while t < MAX_GEN do

Measure Q(t) using Equation (19) to generate P(t)
Map P(t) with random UAVs’ coordinates. A UAV_P(t) population is created
Evaluate UAV_P(t) using the fitness function in Equation (7)
Generate the new population Q(t) using the Deutsch–Jozsa circuit
Update Q(t) using Ry quantum rotation gates with a fuzzy adaptive rotation angle
Store the best solution b of UAV_P(t) in B(t)
t = t + 1

End

In step 4 of Algorithm 1, a set of quantum chromosomes, i.e., an initial quantum
population Q(t) = [|Ψt

1⟩, |Ψt
2⟩, . . . , |Ψt

p⟩] is defined, where p is the size of the population
and t is the generation number. A quantum chromosome is defined as follows:

|Ψt
i⟩ =

[
|ψt

i,0⟩ |ψt
i,1⟩ . . . |ψt

i,m⟩
]

(15)

where m is the number of qubits and i = 1, 2, . . . , p. In this case, |ψt
i,0⟩ = αi,0 + βi,0,

|ψt
i,1⟩ = αi,1 + βi,1, . . . , |ψt

i,m⟩ = αi,m + βi,m, where |α|2 + |β|2 = 1. Thus, |α|2 and |β|2
represent the probabilities of finding the qubit after being measured in states |0⟩ and |1⟩,
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respectively. The length of a qubit string is the same as the number of UAVs. In Figure 4,
q0 = |ψt

i,0⟩, q1 = |ψt
i,1⟩, . . . , qm = |ψt

i,m⟩. For each quantum chromosome |Ψi⟩, the following
operations are performed (see Figure 4): First, we apply a Pauli-X gate to our target qubit
(last qubit, from top to bottom), as follows: X|0⟩ → |1⟩. Then, we apply Hadamard gates to
all qubits

|Ψt
i⟩ =

H⊗m
−−→ 1√

2m

2m−1

∑
qm=0
|qm⟩

1√
2
(|0⟩ − |1⟩), (16)

and afterward, we apply the Oracle

U f−→ 1√
2m

2m−1

∑
qm=0

(−1) f (qm)|qm⟩
1√
2
(|0⟩ − |1⟩). (17)

Finally, in the last stage, we apply Hadamard gates again

H⊗m⊗1−−−−→ 1√
2m

2m−1

∑
qm=0

(−1) f (qm) (H ⊗ H ⊗ · · · ⊗ H)︸ ︷︷ ︸
m

|qm⟩
1√
2
(|0⟩ − |1⟩). (18)

The results obtained in Equation (18) are implemented in Ry quantum rotation gates;
because initial rotation angles of Ry gates are zero, there is no effect on the results men-
tioned above.

Step 5 of Algorithm 1 is a whole loop that will finish when the maximum number of
generations MAX_GEN is reached. In step 6, the quantum population Q(t) is measured
(observed) to generate the classical population (0 and 1) according to |ψ⟩ = α|0⟩+ β|1⟩. In
quantum mechanics, we characterize an observable using a Hermitian operator featuring a
spectral decomposition O = ∑ λiPi, where λi denotes the distinct eigenvalues of the opera-
tor O, i depicts any given state, and Pi are the projectors associated with the eigenspaces of
O. The spectral decomposition breaks down the operator O in terms of its eigenvalues and
associated projectors. A projector is the probability of transitioning to an eigenvector and
is characterized by idempotence and orthogonality and collectively sums to the identity
∑ Pi = I [52]. By applying Born’s rule, the probability of measuring λi is computed as
follows: P(λi) = ⟨ψ|Pi|ψ⟩ [53]. Then, we can calculate the post-measured state |ψ′⟩ using

|ψ′⟩ = Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

. (19)

In step 7 of Algorithm 1, we generate random UAVs’ coordinates M = {(x1, y1), · · · , (xm,
ym)}; these coordinates simulate the positions of UAVs in the disaster zone. Then, we
create a UAV_P(t) population associating each UAV position (xm, ym) with a classical
chromosome of P(t), as shown in Figure 6. In UAV_P(t) (see Figure 6), the bits with a value
of 1 denote that the m− th UAV is selected, and a bit with a value of 0 means that it is not.

The UAV_P(t) population is evaluated in the fitness function (step 8), as shown in
Algorithm 2. The algorithm presented above was proposed in [11].

The inputs of Algorithm 2 are the number of mobile users N and the number of UAVs
M. The output is the maximum coverage C. Algorithm 2 initializes the UAV counter m
(step 2); this counter indicates the index of a determined UAV. Step 3 is a whole loop that
will finish after all of the UAVs have been verified. In step 4, the mobile users’ counter n is
initialized. The next step (step 5) is a conditional that verifies whether a UAV is selected
(Um = 1) or not (Um = 0); if the conditional is true, i.e., Um = 1, the Algorithm 2 continues
in step 6 and verifies whether the n − th MU (associated mobile user) is not related to
any UAV Um. If this is fulfilled, we continue in step 8 to calculate the Euclidean distance
dnm between Um and MUn. If dnm complies with the constraints in Equation (11), then we
must calculate the path loss Lpnm (step 10). If Lpnm satisfies the condition presented in
Equation (12), then we proceed to calculate the SIR (step 12) of MUn. If the SIR of a MUn
complies with the constraints of Equation (13), then the MUn is associated with the Um
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(step 14). Finally, the associated users MUn that the Um covers are added to obtain the
value V. Then, the fitness value C (see Equation (7)) is determined.

Figure 5. Hybrid quantum genetic algorithm. The classical computer’s steps are illustrated on the
left side, while the steps executed by the quantum computer or quantum simulator are depicted on
the right side. In the figure, UAV_P(t) denotes the classic population after being mapped with the
classic population, and MAX_GEN signifies the maximum number of generations. Mobile users are
represented by MUs. C represents the maximal number of MUs covered by the set of UAVs.

Figure 6. Mapping UAV coordinates to the conventional population P(t). The upper part (zeros and
ones) illustrates the classical population P(t), while the lower segment portrays the UAV positions
stored in M. Here, Um signifies the correspondence between a gene in P(t) and a UAV coordinate in
M. A UAV_P(t) population is established.
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Algorithm 2 Fitness function used to evaluate UAV_P(t)

Require: Number of mobile users N, number of UAVs M
Ensure: Maximum coverage C as shown in Equation (7)

1: Begin
2: m = 0
3: while m < M do
4: n = 0
5: if Um = 1 then
6: while n < N do
7: if MUn = 0 then
8: Compute the Euclidean distance dnm between Um and MUn
9: if dnm ≤ 2 then

10: Compute the pathloss Lpnm
11: if Lpnm < 120dB then
12: Compute the SIR of the MUn
13: if SIRn ≥ 3dB then
14: Associate MUn with Um

15: n = n + 1
16: Add the associated MUn
17: m = m + 1
18: Calculate C
19: End

Once the objective function has been calculated, the best solution b is stored in a
set of best solutions B(t) (step 11, Algorithm 1). Next, Algorithm 1 generates a new
quantum population Q(t) (step 9) with a Deutsch–Jozsa circuit and updates (step 10) with
Ry(θ) quantum rotation gates with a fuzzy adaptive rotation angle. The Deutsch–Jozsa
circuit operates analogously to a classical recombination operator. The Ry(θ) rotation gate
improves the output of the Deutsch–Jozsa circuit. The j-th qubit value (αj, β j) is updated as[

α′j
β′j

]
=

[
cos(θj) − sin(θj)
sin(θj) cos(θj)

][
αj
β j

]
. (20)

To determine the rotation angle of the quantum gate Ry(θ), a Fuzzy Inference System
(FIS) was designed. There is one input and one output in the FIS. The membership functions
(MFs) of the input and the output are shown in Figure 7 and Figure 8, respectively. The
input variable is the coverage (C) percentage, calculated by the fitness function. Here
are eight linguistic terms: VLC, NC, LC, SC, C, GC, VGC, and OC. The percentage is
used to measure the universe of discourse of the input, where zero represents 0% and one
represents 100%, respectively.

Figure 8 depicts the FIS output. The output variable is the rotational angle θ used in
the quantum rotational gate Ry(θ). In Figure 8, there are seven linguistic terms: DAL, DL,
DEL, DNDI, IL, IAL, and IAL2. Radians are used to measure the universe of discourse of
the output, from −2π (−6) to 2π (6).

Table 1 shows the types and parameter values of the MFs. Table 2 describes the FIS
fuzzy rules. Here, the letters presented in bold are the inputs (C), and the others are the
outputs (θ). For instance, if C is LC (Low Coverage), then θ is IL (Increase a Little). For the
inputs, VLC, NC, LC, SC, and C mean very low coverage, no coverage, low coverage, small
coverage, and coverage, respectively. GC, VGC, and OC represent good coverage, very
good coverage, and optimal coverage, respectively. For the outputs, IAL2, IAL, IL, DEL,
DL, and DNDI are increase a lot 2; increase a lot; increase a little; decrease a little; decrease
a lot; and do not decrease or increase. The differences between IAL2 and IAL are the type
of membership function and the range.
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Figure 7. Membership functions of the fuzzy inference system input in the HQGAFARA. The
horizontal axis depicts the coverage (C) percentage given by the set of UAVs. The vertical axis µ(C)
represents the coverage percentage membership for a given fuzzy set.

Figure 8. Membership functions of the fuzzy inference system output in the HQGAFARA. The
horizontal axis θ depicts the rotational angle for the quantum rotational gate Ry(θ). The vertical axis
µ(θ) represents the rotational angle membership for a given fuzzy set.
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Table 1. Linguistic input and output variables and terms for the FIS. In the first column, the variable
name represents the input (C) and output (θ) of the fuzzy system; in the second column, the term
name is the name assigned to each membership function; in the third column, the type represents the
shape of the membership functions; and finally, in the last column, the parameter depicts the range of
the universe of discourse for each membership function.

Variable Name Term Name Type Parameters

C VLC Trapezoidal [0, 0, 0.1, 0.2]
C NC Triangular [0.1, 0.2, 0.3]
C LC Triangular [0.2, 0.3, 0.4]
C SC Triangular [0.3, 0.4, 0.5]
C C Triangular [0.4, 0.5, 0.6]
C GC Triangular [0.5, 0.6, 0.7]
C VGC Triangular [0.6, 0.7, 0.8]
C OC Trapezoidal [0.7, 0.8, 1, 1]
θ DAL Trapezoidal [−2π, −2π, −3π/2, −π]
θ DL Triangular [−3π/2, −π, −π/2]
θ DEL Triangular [−π, −π/2, 0]
θ DNDI Triangular [−π/2, 0 , π/2]
θ IL Triangular [0, π/2, π]
θ IAL Triangular [π/2, π, 3π/2]
θ IAL2 Trapezoidal [π, 3π/2, 2π, 2π]

Table 2. Fuzzy rule matrix of the FIS.

VLC NC LC SC C GC VGC OC

IAL2 IAL IL DEL DL DEL DNDI DNDI

4. Results

We designed three sets of experiments to determine the performance of our proposed
HQGAFARA and its contributions compared with different versions of the HQGAARA and
a classical genetic algorithm. We analyzed the overall performance and performed statistical
tests for the convergence time, accuracy, and precision. The three sets of experiments were
divided into two cases:

• Case 1: The worst-case scenario where the UAVs had only one transmission channel
to provide connectivity to mobile users.

• Case 2: The best case scenario is that the UAVs had more than one transmission
channel to assist the affected area.

In both cases, experiments with five (M = 5), ten (M = 10), and twenty (M = 20) UAVs
were carried out; also, a total of 500 mobile users (N= 500) in the disaster area were used.
In the three sets of experiments, 30 runs with 1000 generations were performed.

Table 3 presents the values used to design the emergency network. These parameters
were obtained from [11]. Here, the transmission power of a mobile user is represented by
PTn, and the transmission power of each UAV is PTm. The altitudes of a UAV Um and a
mobile user MUn are the values that lead to lower path losses. Lastly, the frequency that is
expected to be used by Public Safety Communications (PSC) to provide LTE broadband
communications is represented by fc [54].

The first set of experiments aims to determine the overall performance of the quantum
and the classical algorithms. For the best case scenario (Case 2), five transmission channels
were used. Table 4 presents the comparison results of different versions of HQGAARA
and the classical genetic algorithm (GA) using five, ten, and twenty UAVs within the
affected area. In Table 4, the first column corresponds to the number of UAVs in the disaster
area. The second column lists the name of the algorithm used. The third, fourth, and fifth
columns show the best, mean, and worst solutions obtained using the algorithm. The sixth
and seventh columns show each algorithm’s standard deviation and confidence interval.
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In the experiments with five and ten UAVs, the affected area was 100 km2; therefore, the
covered areas per UAV were 20 and 10 km2, respectively. With twenty UAVs (M = 20)
the covered area per UAV would be 5 km2; this covered area is too small for each UAV
considering the parameters shown in Table 3. To test the performance of the algorithms, we
decided to increase the affected area in the experiments with 20 UAVs from 100 to 900 km2.
The application of the Hata propagation model restricts considerations solely to man-made
structures, neglecting the analysis of the terrain profile between the transmitter and receiver.
In scenarios where natural obstacles, such as hills, intersect with the transmission path, the
model fails to incorporate the resultant shadowing effects on signal propagation.

Table 3. Parameters used in the emergency LTE mobile network.

Parameter Values

MUn transmit power PTn 24 dBm
Um transmit power PTm 73 dBm

Altitude of Um 150 m
Height of MUn 1.5 m
Frequency fc 700 MHz

Table 4. Experimental results for the best-case scenario. M represents the number of UAVs in the
affected area, and CI represents the confidence interval. The best results are presented in bold.

M Algorithm Best Mean Worst Std CI

5

GA 0.36 0.33 0.296 1.47 × 10−2 6.92 × 10−3

HQGAARA-θ1 0.356 0.338 0.328 6.65 × 10−3 3.13 × 10−3

HQGAARA-θ2 0.358 0.336 0.322 8.78 × 10−3 4.13 × 10−3

HQGAFARA 0.348 0.33 0.318 7.48 × 10−3 3.52 × 10−3

10

GA 0.604 0.539 0.496 2.64 × 10−2 1.24 × 10−2

HQGAARA-θ1 0.578 0.556 0.532 1.22 × 10−2 5.74 × 10−3

HQGAARA-θ2 0.582 0.551 0.532 1.37 × 10−2 6.46 × 10−3

HQGAFARA 0.572 0.550 0.532 9.62 × 10−3 4.52 × 10−3

20

GA 0.534 0.457 0.36 5.06 × 10−2 2.38 × 10−2

HQGAARA-θ1 0.538 0.470 0.422 2.46 × 10−2 1.16 × 10−2

HQGAARA-θ2 0.49 0.447 0.416 1.70 × 10−2 8.01 × 10−3

HQGAFARA 0.538 0.462 0.426 2.44 × 10−2 1.15 × 10−2

The key distinction between HQGAARA-θ1 and HQGAARA-θ2 lies in the maximal
rotation angle θmax and the minimal rotation angle θmin applied to the quantum rotation gate
Ry(θ). Broadly speaking, HQGAARA-θ1 utilizes a range between θmin = 2π and θmax = 0,
while HQGAARA-θ2 employs θmin = 1.5π and θmax = 0. To determine the optimal
rotation angle, HQGAFARA employs a fuzzy inference system. This is different from
the approaches used in HQGAARA-θ1 and HQGAARA-θ2, which rely on mathematical
equations. The fuzzy system’s universe of discourse spans from 2π to−2π. Table 5 presents
the average of the most suitable rotation angles for each quantum algorithm. For the GA, a
tournament selection operator was employed, a two-point crossover operator was used in
the recombination process, and a bit-flip mutation operator was applied. In all experiments,
a population of 100 chromosomes, a recombination rate of 0.5, and a mutation rate of 0.1
were consistently used.

In Table 4, the GA generated the highest-quality solution with five (M = 5) and ten
(M = 10) UAVs, outperforming quantum algorithms. The results presented in the columns
Best, Mean, and Worst represent the best, mean, and worst solutions, respectively. For
instance, in the Best column, the GA with five UAVs (M = 5) achieved a coverage level of
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0.36, signifying that only 36% of the mobile users (MUs) are covered by this particular set
of UAVs.

Table 5. Average of the most suitable rotation angles for each quantum algorithm. M depicts the
number of UAVs in the affected area. Best case and worst case represent the average rotation angles
for the best case and worst case scenarios, respectively.

M Algorithm Best Case Worst Case

5
HQGAARA-θ1 (7/10)π π
HQGAARA-θ2 (5/10)π (7/10)π
HQGAFARA (12/10)π (15/10)π

10
HQGAARA-θ1 (9/10)π (8/10)π
HQGAARA-θ2 (3/10)π (3/10)π
HQGAFARA (1/10)π (16/10)π

20
HQGAARA-θ1 (11/10)π π
HQGAARA-θ2 (2/10)π (2/10)π
HQGAFARA (3/10)π (16/10)π

When employing five UAVs (refer to Table 4), the best solutions from quantum algo-
rithms are, on average, 1.6% less effective than those generated by the GA. However, the
quantum algorithms consistently delivered superior results in terms of mean and worst
solutions. All the quantum meta-heuristics produced higher-quality solutions for the mean
and worst values compared to the GA, with improvements of 1.4% and 8.2%, respectively.
Also, their standard deviation (Std) was notably better, being 48% smaller than its classical
counterpart. The results of experiments with ten UAVs are quite similar to those shown
with five UAVs. The best solutions from the GA are 4.4% higher than those from quantum
algorithms. However, in terms of the mean and worst solutions, quantum algorithms yield
higher values, surpassing those of the GA by 2.4% and 6.8%, respectively. Additionally, the
precision of the quantum algorithms is superior, as evidenced by a standard deviation (Std)
that is 55.2% smaller than that of the GA. Transitioning to experiments involving 20 UAVs,
the outcomes deviate from those previously detailed. In these scenarios, HQGAARA-θ1
and HQGAFARA exhibit more favorable solutions than the Genetic Algorithm (GA) in
terms of both the best (1% higher) and mean (2% higher) values (see the Best and Mean
columns in Table 4). For the worst and Std solutions, all quantum algorithms showed
better results than the GA; these results were 14.6% and 56.5% higher than those of the
classical algorithm, respectively. The difference between the results shown with five and
ten UAVs and the results with 20 UAVs is the search space generated by the algorithms; the
GA creates a search space of 100 chromosomes (possible solutions), whereas all quantum
algorithms generate a search space of 2M (where M = 20 is the number of UAVs) possible
solutions. This number of solutions increases the possibility of finding the optimal value.
This characteristic is called superposition, and it is one of the most significant properties of
quantum computing. Concerning confidence intervals (CI), all quantum algorithms show
lower values than the GA. A small confidence interval in quantum algorithms indicates
that the real value is more precise than the confidence interval in a GA. A confidence value
of 99% was used.

Table 6 presents the experimental results of quantum algorithms and the classical
algorithm in the worst-case scenario (Case 1) with five, ten, and twenty UAVs. The columns
labeled Best, Mean, and Worst convey the same information as presented in Table 4. Here,
we use a single transmission channel. The results with five UAVs (M = 5) show the
effect of the number of transmission channels on the area covered by UAVs. HQGAARA-
θ2, HQGAFARA, and GA cover one transmission channel of about 17.2% (0.172). If we
increase the number of transmission channels as in the best-case scenario (see Table 4), the
maximum coverage area increases too. This occurs because mobile users are distributed
among the assigned channels, causing less interference, which allows more mobile users
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to connect with the UAVs. As seen in the table, hybrid quantum algorithms have higher
mean values than the GA; this demonstrates better accuracy in locating UAVs in a disaster
zone. Furthermore, the quantum algorithms have a smaller standard deviation than the
GA, showing better precision.

Table 6. Experimental results for the worst-case scenario. M represents the number of UAVs in the
affected area, and CI represents the confident interval. The best results are presented in bold.

M Algorithm Best Mean Worst Std CI

5

GA 0.174 0.155 0.142 7.27 × 10−3 3.42 × 10−3

HQGAARA-θ1 0.168 0.160 0.152 3.82 × 10−3 1.80 × 10−3

HQGAARA-θ2 0.17 0.159 0.148 6.23 × 10−3 2.93 × 10−3

HQGAFARA 0.172 0.160 0.154 5.31 × 10−3 2.50 × 10−3

10

GA 0.266 0.246 0.22 1.20 × 10−2 5.66 × 10−3

HQGAARA-θ1 0.268 0.253 0.242 6.11 × 10−3 2.88 × 10−3

HQGAARA-θ2 0.274 0.253 0.238 7.54 × 10−3 3.55 × 10−3

HQGAFARA 0.264 0.253 0.242 5.42 × 10−3 2.55 × 10−3

20

GA 0.246 0.207 0.156 2.50 × 10−2 1.18 × 10−2

HQGAARA-θ1 0.256 0.214 0.198 1.24 × 10−2 5.82 × 10−3

HQGAARA-θ2 0.238 0.208 0.19 1.03 × 10−2 4.86 × 10−3

HQGAFARA 0.244 0.206 0.19 1.20 × 10−2 5.62 × 10−3

The second set of experiments focused on analyzing the statistical performance of
quantum and classical algorithms. The experiments aim to determine if statistical differ-
ences exist between quantum and classical algorithms regarding accuracy and precision.
Therefore, hypothesis tests were performed using the data for the worst-case and best-case
scenarios with five, ten, and twenty UAVs. For every scenario, we ran three experiments,
the first with five UAVs (M = 5), the second with ten UAVs (M = 10), and the third with
twenty (M = 20) UAVs. In conclusion, six experiments represented in the Tables 7–12 were
run in this set of experiments.

The following procedure was used to determine which hypothesis test should be
applied in each scenario, parametric or non-parametric.

1. Perform the Shapiro–Wilk test to determine if the results have a normal distribution
(H0 equals True) or not. Afterward, a parametric or non-parametric test should be
applied. A significant level of α = 0.01 was used in all experiments, meaning that the
probability of rejecting the H0 hypothesis when it is true is 0.01. Tables 7–17 show
these results. The variables N and W in the tables mentioned above represent the
number of samples and the statistical value in the Shapiro–Wilk test, respectively.

2. At this point, three possible cases are considered.

(a) All results obtained by the Shapiro–Wilk test are true (H0 is True); this means
that the results presented by the algorithms have a normal distribution. We
use a parametric Welch t-student test with α = 0.001.

(b) All the results obtained by the Shapiro–Wilk test are false (H0 is False); this
means the results presented by the algorithms have a non-normal distribution.
Here, we use a non-parametric Wilcoxon signed ranks test with α = 0.001.

(c) Some results have a normal distribution, while others do not. In this case, we
perform a Bootstrapping procedure to convert non-normally distributed data
into a normal distribution. Then, we can apply a Welch t-student test. These
results are shown in tables, with a ”boots” label next to the algorithm name.

Tables 7–9 present the statistical tests of the hypothesis using five, ten, and twenty
UAVs in the best-case scenario. The GA was compared with three quantum algorithms.
Here, we can see that the degrees of freedom (d.o.f.) are different in each algorithm. To
calculate the d.o.f., the standard deviation and the number of samples (N) in each algorithm
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were considered. Although the scenario is the same (best-case), the number of UAVs affects
the standard deviation result. The Shapiro–Wilk test demonstrated that all algorithms had
a normal distribution (H0 = true); therefore, a parametric test was performed. The results
presented in the three tables showed that no significant difference exists between classical
and quantum algorithms, since the hypothesis H0 was confirmed (true) in each algorithm.
However, in the mean and Std solutions from Table 4, all the quantum algorithms showed
better solutions for situations with five, ten, and twenty UAVs. In the best-case scenario,
quantum algorithms performed better in terms of accuracy and precision. If we only
compare quantum algorithms, HQGAARA-θ1 is the algorithm with the best accuracy.

Table 7. Statistical test regarding the accuracy and precision in the best-case scenario with five UAVs.
α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
N 30 30 30 30
W 0.978 0.960 0.964 0.942

Critical value 0.9 0.9 0.9 0.9
p-value 0.758 0.303 0.398 0.101

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
d.o.f. 40 47 43

t-value −2.830 −2.038 −0.045
Critical value 3.551 3.515 3.538

Hypothesis H0 True True True

Table 8. Statistical test regarding the accuracy and precision in the best-case scenario with 10 UAVs.
α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
N 30 30 30 30
W 0.970 0.973 0.940 0.972

Critical value 0.9 0.9 0.9 0.9
p-value 0.533 0.627 0.089 0.583

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
d.o.f. 41 44 37

t-value −3.150 −2.257 −2.169
Critical value 3.551 3.526 3.574

Hypothesis H0 True True True

Tables 10–12 present the statistical results regarding the accuracy and precision in
the worst-case scenario. Here, the hypothesis tests in the three tables indicate that no
significant difference exists between classical genetic algorithms and quantum algorithms.
However, Table 6 showed that quantum algorithms outperform the GA in the mean and
Std solutions, exhibiting better accuracy and precision, respectively. Furthermore, quantum
algorithms have lower confidence intervals (CI), demonstrating more accurate results than
their classical counterpart. In summary, both tests (best and worst case) indicate that there is
no significant difference between a classical algorithm and quantum algorithms regarding
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the accuracy and precision, but previous results shown in Tables 4 and 6 demonstrate the
superiority of quantum algorithms in this set of experiments.

Table 9. Statistical test regarding the accuracy and precision in the best-case scenario with 20 UAVs.
α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA_boots
N 30 30 30 30
W 0.950 0.965 0.964 0.986

Critical value 0.9 0.9 0.9 0.9
p-value 0.171 0.408 0.386 0.953

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA_boots
d.o.f. 42 35 29

t-value −1.284 1.011 −0.741
Critical value 3.538 3.591 3.659

Hypothesis H0 True True True

Table 10. Statistical test regarding the accuracy and precision in the worst-case scenario with five
UAVs. α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
N 30 30 30 30
W 0.962 0.955 0.962 0.849

Critical value 0.9 0.9 0.9 0.9
p-value 0.356 0.223 0.347 0.0006

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
d.o.f. 44 57 53

t-value −3.512 −2.441 −3.365
Critical value 3.526 3.46 3.496

Hypothesis H0 True True True

Table 11. Statistical test regarding the accuracy and precision in the worst-case scenario with 10 UAVs.
α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
N 30 30 30 30
W 0.972 0.974 0.945 0.972

Critical value 0.9 0.9 0.9 0.9
p-value 0.601 0.655 0.125 0.598

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
d.o.f. 43 49 40

t-value −2.970 −2.771 −3.262
Critical value 3.526 3.496 3.551

Hypothesis H0 True True True
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Table 12. Statistical test regarding the accuracy and precision in the worst-case scenario with 20 UAVs.
α represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2 HQGAFARA_boots
N 30 30 30 30
W 0.952 0.967 0.930 0.968

Critical value 0.9 0.9 0.9 0.9
p-value 0.194 0.468 0.051 0.480

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2 HQGAFARA_boots
d.o.f. 29 39 29

t-value −1.541 −0.233 0.057
Critical value 3.659 3.558 3.659

Hypothesis H0 True True True

Tables 13–15 present the statistical results regarding the convergence time in the
best-case scenario with five, ten, and twenty UAVs, respectively. A Wilcoxon signed
ranks test was used to determine the statistical results in Table 13 since hypothesis H0
in the Shapiro–Wilk test for each algorithm was false. Statistical results demonstrated
no significant difference between the GA and quantum algorithms. However, the mean
solutions presented in Table 13 exhibit a lower convergence time, favoring the classical
GA instead of quantum algorithms. These results are due to the size of the GA population.
Since quantum algorithms have a population of 32 possible solutions, 25, where five is the
number of UAVs and qubits used by each algorithm. While the GA uses a population of
100 classical chromosomes, it has a clear advantage in the search space for finding the best
solutions compared to quantum algorithms.

Table 13. Statistical test regarding the convergence time in the best-case scenario with five UAVs.
α represents the significance level value; R+ and R- mean the sum of positive and negative ranks,
respectively; W is the statistical value generated by the non-parametric test.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
Mean 233 346 310 449

N 30 30 30 30
W 0.723 0.820 0.773 0.901

Critical value 0.9 0.9 0.9 0.9
p-value 3.39 × 10−6 1.55 × 10−4 2.16 × 10−5 8.83 × 10−3

Hypothesis H0 False False False False

Wilcoxon signed ranks test (α = 0.001)

Algorithms GA HQGAARA-θ1 HQGAARA-θ2 HQGAFARA
N 30 30 30
W 174.5 186.5 102.5

Critical value 78 78 78
R+ 174.5 186.5 102.5
R- 290.5 278.5 362.5

p-value 2.37 × 10−1 3.49 × 10−1 6.19 × 10−3

Hypothesis H0 True True True

Table 14 shows the statistical test regarding the convergence time in the best-case
scenario with 10 UAVs. Here, the results obtained in the Shapiro–Wilk test demonstrate
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that all algorithms have a normal distribution; therefore, a Welch t-student test should be
applied. The parametric test indicated no significant difference between the two quan-
tum algorithms (HQGAARA-θ1_boots and HQGAFARA) and the GA. However, between
HQGAARA-θ2_boots and GA, hypothesis H0 is false, meaning that there is a significant
difference between these two algorithms. The difference favors the quantum algorithm,
since it takes fewer generations (198) to reach the optimal value. In this experimental test,
it is possible to see how the number of qubits affects the quantum algorithm’s performance.
With 10 UAVs, the quantum algorithm initializes its quantum chromosome (quantum regis-
ter) with 1024 possible solutions (210), since one UAV is equal to one qubit in each quantum
algorithm. This number of qubits increases the probability of finding the optimal value.
Quantum algorithms have an advantage over the GA, since the GA has a population of
100 chromosomes in all experiments. However, HQGAARA-θ2_boots is the only algorithm
with a lower mean generation than the GA. The range in the rotation angle θ is responsible
for this result.

Table 14. Statistical test regarding the convergence time in the best-case scenario with 10 UAVs. α

represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
Mean 368 470 198 556

N 30 30 30 30
W 0.959 0.980 0.906 0.950

Critical value 0.9 0.9 0.9 0.9
p-value 0.287 0.828 0.011 0.167

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
d.o.f. 36 34 57

t-value −2.570 4.369 −3.342
Critical value 3.582 3.601 3.46

Hypothesis H0 True False True

The Shapiro–Wilk test from Table 15 indicates that all algorithms have a normal
distribution. Therefore, a parametric Welch t-student test was applied. In this experiment,
the power of quantum computing is shown since, with 20 UAVs (20 qubits per quantum
algorithm), the quantum register of each quantum algorithm has 1,048,576 (220) possible
solutions, compared with the 100 possible solutions (classical chromosomes) generated by
the GA. Therefore, to find an optimal solution in the same search space, the GA needs a
population of 1,048,576 chromosomes, increasing the execution time of the algorithm, since
the GA has an exponential computational complexity [55].

Tables 16–18 show the statistical tests regarding the convergence time in the worst-case
scenario with five, ten, and twenty UAVs, respectively. Table 16 describes the Shapiro–
Wilk tests of the GA and quantum algorithms. The results indicate that all algorithms
have a normal data distribution. Therefore, a Welch t-student was applied. The statistical
test shows a significant difference between quantum algorithms and the GA regarding
the convergence time. The difference favors the GA, since it takes fewer generations (on
average) to reach the optimal value than with quantum algorithms. Here, the number of
transmission channels and UAVs affects the quantum algorithms’ performance. With five
UAVs, the search space for each quantum algorithm is equal to 32 (25) possible solutions.
The GA, on the other hand, has a population of 100 chromosomes (possible solutions),
making it three times more likely that a better solution can be obtained in fewer generations
than quantum algorithms. Additionally, the number of transmission channels affects both
algorithms’ convergence times. A single transmission channel increases the interference
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between mobile users and UAVs, causing the signal-to-interference ratio (SIR) to decrease,
causing inefficient communication.

Table 15. Statistical test regarding the convergence time in the best-case scenario with 20 UAVs. α

represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA-boots HQGAARA-θ1_boots HQGAARA-θ2 HQGAFARA
Mean 851 458 163 464

N 30 30 30 30
W 0.980 0.949 0.973 0.948

Critical value 0.817 0.163 0.9 0.9
p-value 8.17 × 10−1 0.1625 0.618 0.148

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA-boots HQGAARA-θ1_boots HQGAARA-θ2 HQGAFARA
d.o.f. 48 38 30

t-value 42.638 53.478 7.882
Critical value 3.505 3.566 3.646

Hypothesis H0 False False False

Table 16. Statistical test regarding the convergence time in the worst-case scenario with five UAVs. α

represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA_boots HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
Mean 211 490 449 500

N 30 30 30 30
W 0.964 0.949 0.959 0.962

Critical value 0.9 0.9 0.9 0.9
p-value 0.398 1.58 × 10−1 2.94 × 10−1 3.47 × 10−1

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA_boots HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
d.o.f. 40 35 30

t-value −23.451 −14.840 −6.385
Critical value 3.551 3.591 3.646

Hypothesis H0 False False False

The results presented in Table 17 are quite similar to those shown in Table 14. The
main differences are the numbers of transmission channels and UAVs. The results shown
in Table 17 indicate that no significant difference exists between HQGAARA-θ1_boots
and GA and HQGAFARA and GA. Regarding HQGAARA-θ2_boots, the Welch t-student
test shows a significant difference compared with the GA. The results favor the quantum
algorithm. Here, the transmission channel’s number does not affect the statistical results,
since the statistical results are the same in the best-case scenario (see Table 14). These results
show the robustness of quantum algorithms compared with the GA, because the number
of transmission channels does not impact quantum algorithms’ performance in terms of
placing UAVs efficiently in natural disaster areas.

The results presented in Table 18 strongly demonstrate the power of quantum al-
gorithms compared to the GA, as presented in the best-case experiments regarding the
convergence time (see Table 15). Quantum algorithms have shown better performances
regarding the precision and accuracy. Furthermore, regarding convergence times with
20 UAVs, the statistical results indicate the need for fewer generations to find the most
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suitable values to solve the problem addressed in this paper. These results reaffirm the main
advantage of quantum algorithms over classical ones, the superposition state. In this state,
quantum algorithms create a larger search space than classical algorithms. They use even
fewer qubits (bits) than classical algorithms, generating better solutions and decreasing
convergence times.

Table 17. Statistical test regarding the convergence time in the worst-case scenario with 10 UAVs. α

represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
Mean 391 424 202 502

N 30 30 30 30
W 0.916 0.948 0.964 0.953

Critical value 0.9 0.9 0.9 0.9
p-value 2.11 × 10−2 1.46 × 10−1 3.87 × 10−1 2.08 × 10−1

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA HQGAARA-θ1_boots HQGAARA-θ2_boots HQGAFARA
d.o.f. 37 31 54

t-value −0.770 4.753 −1.692
critical value 3.574 3.633 3.496

Hypothesis H0 True False True

Table 18. Statistical test regarding the convergence time in the worst-case scenario with 20 UAVs. α

represents the significance level value; d.o.f. means the degrees of freedom.

Shapiro–Wilk test (α = 0.01)

Algorithms GA-boots HQGAARA-θ1_boots HQGAARA-θ2 HQGA-Fuzzy
Mean 846 522 148 498

N 30 30 30 30
W 0.911 0.979 0.965 0.972

Critical value 0.9 0.9 0.9 0.9
p-value 1.61 × 10−2 8.00 × 10−1 4.23 × 10−1 5.95 × 10−1

Hypothesis H0 True True True True

Welch t-student test (α = 0.001)

Algorithms GA-boots HQGAARA-θ1_boots HQGAARA-θ2 HQGA-Fuzzy
d.o.f. 35 34 29

t-value 27.006 52.306 7.413
Critical value 3.591 3.601 3.659

Hypothesis H0 False False False

5. Discussion

A Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle (HQGA-
FARA) was presented in this study to position UAVs to maximize coverage in a disaster
zone strategically. Several experiments were conducted to evaluate the performance of the
quantum algorithm. Additionally, comparisons were made between two hybrid quantum
genetic algorithms utilizing different rotation angles and a classical Genetic Algorithm (GA).
Each study case involved two different scenarios, namely the best-case and worst-case
scenarios, with three different numbers of UAVs. The experiments were conducted as
follows: a best-case scenario with five, ten, and twenty UAVs and a worst-case scenario
with five, ten, and twenty UAVs. This proposal introduces three significant contributions
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to the existing state-of-the-art method, all of which have been statistically demonstrated.
These contributions are as follows:

1. The inclusion of the Deutsch–Jozsa quantum circuit within quantum meta-heuristics.
This circuit was employed to generate new individuals mimicking a haploid recom-
bination and the mutation operation. This expedited the evolutionary process by
leveraging the superposition to generate new individuals, a concept that is applicable
to solve various problems.

2. A novel fuzzy operator was introduced to adapt the rotation angle effectively. The
proposal yielded better average results compared to existing methods, particularly
in the worst-case experiments, where the conditions challenged the efficiency and
robustness of the algorithms.

3. The introduction of a novel meta-heuristic named HQGAFARA, which was statisti-
cally proven to outperform the classical GA.

The experimental results underscore the superiority of quantum algorithms over
the GA. In terms of the accuracy, the quantum algorithms outperformed the GA in the
best-case scenario with five, ten, and twenty UAVs by 1.3%, 2.3%, and 0.4%, respectively.
Furthermore, quantum algorithms exhibited an average standard deviation that was 53%
smaller than the GA in terms of the precision. Similar results were observed for the worst-
case scenario. The statistical analysis concerning the convergence time highlights the
computational power of quantum algorithms as the number of qubits (UAVs) increases.
These results led to the conclusion that combining the Deutsch–Jozsa quantum algorithm
and the fuzzy adaptive rotation angles enhances the exploitative characteristics of the
quantum algorithm while preserving diversity in the search process.

Comparing quantum algorithms alone, it is evident that, in most experimental tests,
HQGAARA-θ1 is the algorithm that yields the best results. However, our proposed HQGA-
FARA demonstrates superior average solutions in the worst-case scenario.

Certain limitations are encountered when developing quantum circuits using the IBM
Qiskit simulator. Firstly, there is a constraint on the number of qubits that the simulator can
use, which is essential for covering larger areas with more UAVs. The ibmq_qasm_simulator
used in this study supports a maximum of 32 qubits, allowing for the generation (the lo-
cation) of 32 UAVs. While the IBM Qiskit framework offers simulators with more qubits,
these simulators do not support the quantum gates used in the Deutsch–Jozsa circuit imple-
mented in this work. Moreover, the limitations of the current state of quantum technology
in the NISQ era restrict the number of available qubits and the depth of quantum circuits.

Another limitation lies in the testing of the quantum algorithm on a quantum computer,
as IBM has recently imposed limitations on its use. Additionally, the processing time
required for the simulator to produce results presents a significant hurdle.

Despite these limitations, implementing hybrid quantum algorithms has emerged as
the most promising and viable approach for solving NP-hard problems, such as the one
addressed in this study.

In our forthcoming research efforts, we aim to evaluate our quantum proposal in more
expansive geographical areas while concurrently increasing the number of UAVs (referred
to as qubits) to enhance the scope of our coverage.This undertaking will require access
to an IBM Qiskit quantum simulator with a larger qubit count or a quantum computer
suitably equipped with the necessary qubits. Furthermore, we intend to craft or implement
a specialized quantum circuit that leverages the existing quantum gates integrated into
the updated IBM quantum framework as part of our recombination process. Finally, we
will refine our hybrid quantum algorithm to determine the optimal path between the UAV
and the previously identified strategic position. This entails a fusion of path planning and
strategic positioning in disaster zones.
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