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Abstract: This paper presents a novel count time-series model, named integer-valued Split-BREAK
process of the first order, abbr. INSB(1) model. This process is examined in terms of its basic stochastic
properties, such as stationarity, mean, variance and correlation structure. In addition, the marginal
distribution, over-dispersion and zero-inflation properties of the INSB(1) process are also examined.
To estimate the unknown parameters of the INSB(1) process, an estimation procedure based on
probability generating functions (PGFs) is proposed. For the obtained estimators, their asymptotic
properties, as well as the appropriate simulation study, are examined. Finally, the INSB(1) process
is applied in the dynamic analysis of some real-world series, namely, the numbers of serious traffic
accidents in Serbia and forest fires in Greece.

Keywords: time series; power-series family of distributions; noise indicator; parameter estimation;
simulation; forecasting
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1. Introduction

Non-negative integer-valued (NNIV) time series are the subject of numerous research
studies (see, among the more recently published, e.g., [1–6]) on the modeling and analysis
of count time series. In the class of NNIV series, some of the frequently used models are the
so-called integer-valued autoregressive (INAR) processes (see, among the more recently
published, e.g., [7–14]). Our main motivation in this study is to introduce an integer-valued
process based on the autoregressive principle, which would have a more general form than
ordinary INAR-based time-series models. The proposed generalization can be viewed in
the next two different aspects:

The first motive is the formation of the NNIV stochastic model based on a principle
similar to that of the so-called Split-BREAK process, introduced by Stojanović et al. [15,16]
and later also discussed by Jovanović et al. [17] and Ljajko et al. [18]. The Split-BREAK
process is proposed there as a stochastic model intended for the description and analysis
of time series with accentuated and persistent fluctuations, whereby different forms of
continuous stochastic distributions (such as Gaussian, Laplace and Cauchy) are used as its
innovations. Therefore, the model proposed here is based on similar ideas, i.e., it describes
pronounced fluctuations in count time-series dynamics.
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Another motive is the use, as innovation series, of NNIV distributions known as
power-series (PS) distributions. These distributions represent a very general class of NNIV
stochastic distributions, to which many well-known distributions belong as special cases
(see, for instance, Stojanović et al. [19–21]).

In this way, a first-order integer-valued Split-BREAK process (abbr. INSB(1) process) is
proposed here. It is worth pointing out that this model, similar to the Split-BREAK process
with continuous-type distributions, can be seen as a generalization of some well-known
count time-series models, such as INAR-based models. Also, as will be explained further,
it can be applied to the examination of more pronounced fluctuations in some real-world
time series. The definition and the basic features of the INSB(1) process are described
in next section, Section 2. Then, some of the more important stochastic features of this
process are presented in Section 3. The next section, Section 4, is devoted to a recent
estimation technique called probability-generating function (PGF) estimation method. For
the estimators thus obtained, asymptotic properties and efficiency, under some regulatory
conditions, are also analyzed. Section 5 presents Monte Carlo simulations of the PGF
estimators for some specific innovations, such as the Poisson and geometric distributions,
which can be seen as special cases of PS-distributed innovation series. In both cases, the
asymptotic properties of the obtained estimates are examined. The application of the
INSB(1) process in modeling the dynamics and empirical distribution of some real-world
time series, namely, the numbers of traffic accidents and forest fires, is described in Section 6.
Also, the INSB(1) model is compared here with the ordinary INAR(1) model and is shown
that the proposed model has the same or even better efficiency and forecasting accuracy.
Finally, Section 7 provides some concluding details.

2. Definition and Structure of the INSB(1) Process

Similarly as in Stojanović et al. [19–21], we firstly introduce the independent identically
distributed (i.i.d.) time series with power-series (PS) distribution.

Definition 1. The i.i.d. integer-valued time series (εt), t ∈ Z, is PS-distributed if its probability
mass distribution (PMF) is as follows:

pε(x; a) := P{εt = x} =
m(x) ax

f (a)
, x ∈ S , (1)

where S ⊆ Z+ = {0, 1, 2, . . . } is discrete set of values of the series (εt); m(x) ≥ 0 is the mass
function; a > 0 is the (unknown) parameter; and

f (a) := ∑
x∈S

m(x) ax

is the increasing function, which converges on some interval a ∈ (0, R).

As is shown in Table 1, for certain choices of functions m(x) and f (a), Equation (1)
gives some of the most well-known types of discrete distributions. Notice that the condition
0 ∈ S holds for them, which will henceforth be assumed to be satisfied, in order to examine
the zero-inflation property of our model. Furthermore, using some simple calculations (see,
e.g., [19]) for the mean and variance of the random variables (RVs) (εt), one obtains

µε := E[εt] =
1

f (a) ∑
x∈S

m(x) x ax = a
f ′(a)
f (a)

= a g′(a)

σ2
ε := Var[εt] =

1
f (a) ∑

x∈S
m(x) x2 ax − µ2

ε = a2 f ′′(a)
f (a)

+ a
f ′(a)
f (a)

−
(

a
f ′(a)
f (a)

)2

= µε + a2 g′′(a),

(2)

where g(a) = ln f (a).
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Table 1. Some specific PS distributions, along with their over-dispersion indices and PGFs.

Distributions S m(x) (0, R) f (a) µε Dε(a) Gε(u; a) R/a

1. Bernoulli {0, 1} 1 (0, ∞) 1 + a
a

1 + a
− a2

(1 + a)2
1 + au
1 + a

∞

2. Binomial {0, . . . , n}
(

n
x

)
(0, ∞) (1 + a)n na

1 + a
− na2

(1 + a)2

(
1 + au
1 + a

)n
∞

3. Poisson {0, . . . , ∞} 1
x!

(0, ∞) exp(a) a 0 exp(a(u − 1)) ∞

4. Geometric {0, . . . , ∞} 1 (0, 1)
1

1 − a
a

1 − a
a2

(1 − a)2
1 − a

1 − au
1/a

5. Negative binomial {0, . . . , ∞} Γ(x + n)
x! Γ(n)

(0, 1)
1

(1 − a)n
na

(1 − a)n
na2

(1 − a)2

(
1 − a

1 − au

)n
1/a

Furthermore, if we define the over-dispersion index Dε(a) := σ2
ε − µε = a2g′′(a), then

inequality Dε(a) > 0 holds if and only if g
′′
(a) > 0, ∀a ∈ (0, R). Thus, the series (εt) is

over-dispersed if and only if g(a) is a convex function on (0, R). Finally, the PGF of the first
order of PS-distributed RVs (εt) can be obtained as follows:

Gε(u; a) := E[uεt ] =
1

f (a) ∑
x∈S

m(x) (au)x =
f (au)
f (a)

, u ∈ [−1, 1].

Clearly, the above sum converges when u ∈ (0, R/a) and allows for the simple
calculation PGFs of some specific PS distributions, as also presented in Table 1. Below is a
definition of the INSB(1) process, as well as some basic notes about it.

Definition 2. Let (Ω,F , P) be the probability space, expanded by some filtration F = (Ft), where
t ∈ Z is the set of time indices. The INSB(1) process is represented by the following time series,
defined on an expanded basis (Ω,F , P, F):
(i) (εt) is the i.i.d. time series with PS distribution, given by Equation (1).
(ii) (Xt) is a series of martingale means given by recurrence relation:

Xt = α ◦ (Xt−1 + qt−1 εt−1), (3)

where α ∈ (0, 1) is a (unknown) parameter; α ◦ X := ∑X
j=1 Bj(α) is the binomial thinning

operator, where Bj(α) are mutually independent (and also independent of X) Bernoulli RVs, with
P{Bj = 1} = 1 − P{Bj = 0} = α; and

qt = I(εt−1 ≥ c) =
{

1, εt−1 ≥ c,
0, εt−1 < c

(4)

is the noise indicator with critical value c > 0.
(iii) (Yt) is a basic INSB series given by the additive decomposition

Yt = Xt + εt. (5)

Note that in a practical interpretation, the filtration (Ft) is a set of “information” about
some (real-world) time series at time t. Thus, PS-distributed RVs (εt) are Ft-adaptive, for
each t ∈ Z, and constitute the deviation (noise) component of the INSB(1) process. On the
contrary, series (Xt) is Ft−1-adaptive and represents the predictive and stability component
of the INSB(1) process. Finally, the parameter c > 0 is the critical value of the reaction,
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which indicates the importance of the earlier realizations of (εt) for the inclusion of its
current values in Equation (3). In other words, when qt−1 = 0, the martingale mean Xt does
not exceed its previous value Xt−1, and the basic INSB series (Yt), given by Equation (5), is
then realized with “low” fluctuation. Otherwise, the case qt−1 = 1 indicates a pronounced
fluctuation in the series (Yt). In this way, the critical value c > 0 determines not only the
fluctuation intensity of the basic series (Yt) but also the stochastic structure of the INSB(1)
process, which represents a certain generalization of some well-known integer time-series
models. For instance, according to Equation (4), larger values of c imply that qt → 0. Thus,
Equation (3) becomes Xt = α ◦ Xt−1, that is, Xt

as
= 0, where “as” means “almost surely”.

According to Equation (5), the series (Yt) is then reduced to the innovation series (εt). On
the other hand, when c → 0, it follows that qt

as
= 1, and the structure of the series (Xt),

as well as (Yt), is then the same as with first-order integer-valued autoregressive (abbr.
INAR(1)) models.

Figure 1 shows realizations of all mentioned INSB series, where as PS-distributed
innovations, the Poisson distribution with parameter a = 2 is taken. It is easy to see that
the series (Xt) of martingale means has the most pronounced zero inflation, which will be
formally confirmed further on.

(a) (b)

Figure 1. (a) Realizations of the INSB(1) time series. (b) Empirical frequency distributions of the
INSB(1) time series (parameters are α = 0.5, a = 2, c = 1).
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3. Main Properties of the INSB(1) Process

Here, some stochastic features of the INSB(1) process are examined. The following
statement gives the integer-valued moving average representation of the infinite order
(abbr. INMA(∞) representation) of corresponding series of this process.

Theorem 1. Suppose that PS-innovations (εt), given by Equation (1), have finite first moment
µε = µε(a), which is uniformly bounded on a ∈ (0, R). Then, the INSB(1) series (Xt), defined by
Equation (3), has an INMA(∞) representation:

Xt
d
=

∞

∑
k=1

αk ◦ ξt−k, (6)

where ξt = qtεt, t ∈ Z. Similarly, series (Yt), defined by Equation (5), has a representation:

Yt
d
= εt +

∞

∑
k=1

αk ◦ ξt−k, (7)

where both sums above converge almost surely.

Proof. Using a similar procedure to that in Stojanović et al. [19] (see Theorem 2.1), it can be
proved that RVs (ξt) are mutually uncorrelated with the mean and variance, respectively,

µξ := E[ξt] = E[qt]E[εt] = µqµε(a) = µqag′(a)

σ2
ξ := Var[ξt] = E[ξ2

t ]− µ2
ξ = µq

a f ′(a) + a2 f ′′(a)
f (a)

− µ2
q

(
a

f ′(a)
f (a)

)2

= µqa
f ′(a)
f (a)

+ µqa2 f ′′(a) f (a)− µq( f ′(a))2

( f (a))2

= µξ + µq a2
[

g′′(a) + Fε(c)
(

g′(a)
)2
]
,

(8)

where µq := E[qt] = P{εt ≥ c} = 1 − Fε(c) and Fε(c) := P{εt < c} is the cumulative
distribution function (CDF) of RVs (εt). Further, according to assumptions of the theorem,
there is an L > 0 such that

∞

∑
k=1

P{εt ≥ k} =
∞

∑
k=1

kP{εt = k} = µε(a) ≤ L < +∞, ∀a ∈ (0, R).

Based on that and independence of RVs εt and qt, for each t ∈ Z, it follows that

∞

∑
k=1

P{ξt ≥ k} =
∞

∑
k=1

P{εt ≥ k}P{qt = 1} = P{εt ≥ c}
∞

∑
k=1

kP{εt = k}

= µqµε(a) ≤ µqL < +∞.

where the sum above converges uniformly on a ∈ (0, R). In addition, as 1/k, k = 1, 2, . . . is
a monotone and bounded sequence, the Abelian criterion for convergence of infinite sums
implies that

∞

∑
k=1

1
k

P{ξt ≥ k} = µq

∞

∑
k=1

1
k

P{εt ≥ k} < +∞. (9)

Moreover, the above convergence is uniform on a ∈ (0, R), and using Theorem 2.1 in
Alzaid and Al-Osh [22], it follows that inequality (9) is sufficient for the equality

GX(u; θ) =
∞

∏
k=1

Gξ

(
1 + αk(u − 1); θξ

)
, (10)
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where

Gξ(u; θξ) := E[uξt ] = 1 + µq

(
f (au)
f (a)

− 1
)

(11)

is the PGF of RVs (ξt), GX(u; θ) := E[uXt ] is the PGF of RVs (Xt), while θξ = (a, µq)′ and
θ := (a, α, µq)′ are vectors of (unknown) parameters. Furthermore, the above product
absolutely converges for every u ∈ [−1, 1], so using the bijective correspondence between
PGFs and PMFs of arbitrary RVs, it follows that Equation (10) is equivalent to the INMA(∞)
representation in Equation (6).

To prove the almost sure convergence in Equation (6), note that using Equation (3),
for any k = 1, 2, . . . , it holds that

Xt
d
= αk ◦ Xt−k +

k

∑
j=1

αj ◦ ξt−j. (12)

Now, let us consider a random event:

A :=
{

lim
k→∞

k

∑
j=1

αj ◦ ξt−j = Xt

}
=

{
lim
k→∞

αk ◦ Xt−k = 0
}

=
⋂
δ>0

∞⋃
n=1

∞⋂
k=n

{
0 ≤ αk ◦ Xt−k < δ

}
=

∞⋃
n=1

∞⋂
k=n

{
αk ◦ Xt−k = 0

}
=

∞⋃
n=1

An,

where An :=
⋂∞

k=n{αk ◦ Xt−k = 0}. According to Equation (12), for any m, n = 1, 2, . . . ,
one obtains

αn ◦ Xt−n
d
= αm+n ◦ Xt−m−n +

m+n

∑
j=n+1

αj ◦ ξt−j.

From here, using the probability continuity property and the definition of the thinning
operator, for events An, we obtain

P(An) = P

(
lim

m→∞

m+n⋂
k=n

{
αk ◦ Xt−k = 0

})

= lim
m→∞

(
P
{

αm+n ◦ Xt−m−n = 0
}
×

m+n

∏
j=n+1

P
{

αj ◦ ξt−j = 0
})

= lim
m→∞

(
∞

∑
k=0

(
1 − αm+n)kP{Xt−m−n = k}

)
× lim

m→∞

m+n

∏
j=n+1

(
∞

∑
k=0

(
1 − αj

)k
P
{

ξt−j = k
})

= lim
m→∞

GX(1 − αm+n; θ)× lim
m→∞

m+n

∏
j=n+1

Gξ(1 − αj; θξ)

= GX(1; θ)×
∞

∏
j=n+1

Gξ(1 − αj; θξ)

=
∞

∏
j=n+1

Gξ(1 − αj; θξ).

By applying again the property of continuity of probability and convergence of the
product in Equation (10), it follows that

P(A) = lim
n→∞

P(An) = lim
n→∞

∞

∏
j=n+1

Gξ(1 − αj; θξ) = 1,
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that is, the sum in Equation (6) converges almost surely. Similarly, using the definition
of the series (Yt), given by Equation (5), the almost sure convergence in Equation (7)
is proved.

Remark 1 (PGFs of the INSB series). By applying a procedure similar to the previous theorem, as
well as some general facts about PGFs of non-negative stationary integer-valued time series (see,
e.g., [20]), explicit expressions for the PGFs of the INSB(1) process can be obtained. Namely, using
Equations (5), (10) and (11), the first-order PGFs of the series (Xt) and (Yt) are

GX(u; θ) =
∞

∏
k=1

[
1 + µq

(
f
(
(1 + αk(u − 1))a

)
f (a)

− 1
)]

,

GY(u; θ) = Gε(u; θ) GX(u; θ) =
f (au)
f (a)

∞

∏
k=1

[
1 + µq

(
f
(
(1 + αk(u − 1))a

)
f (a)

− 1
)]

.

(13)

Furthermore, suppose that u = (u1, . . . , ur)′ ∈ Rr, r ≥ 2, and X(r)
t := (Xt, . . . , Xt+r−1)

′,
Y(r)

t := (Yt, . . . , Yt+r−1)
′, t ∈ Z, are the overlapping blocks of series (Xt) and (Yt), respectively.

The replacement k = 1, . . . , r − 1 in Equation (12) and some calculations give the r-dimensional
PGFs of random vectors X(r)

t and Y(r) as follows:

G(r)
X (u; θ) := E

[
uXt

1 · · · uXt+r−1
r

]
= GX

(
r−1

∏
k=0

(
1 + αk(uk+1 − 1)

)
; θ

)

×
r

∏
ℓ=2

1 + µq

 f
(

∏r−ℓ
k=0

(
1 + αk+1(uk+ℓ − 1)

)
a
)

f (a)
− 1


and

G(r)
Y (u; θ) := E

[
uYt

1 · · · uYt+r−1
r

]
= GX

(
r−1

∏
k=0

(
1 + αk(uk+1 − 1)

)
; θ

)

×
r

∏
ℓ=1

 (1 − µq) f (auℓ) + µq f
(

∏r−ℓ
k=0

(
1 + αk(uk+ℓ − 1)

)
a
)

f (a)

.

(14)

Also, it is worth noting that by using realizations of the (only) observable series (Yt), that is,
the second-order PGF G(2)

Y (u; θ), the parameter estimators of the INSB(1) process will be obtained
(see Section 4, below).

Based on the previous theorem, the following statement concerns the mean, variance
and correlation structure of INSB series.

Theorem 2. Assume that the conditions of Theorem 1 hold, as well as that series (Xt) and (Yt),
given by Equations (3) and (5), respectively, have second-order finite moments. Then, both of these
series are strictly stationary and ergodic. The mean and variance for the series (Xt) are, respectively,

µX :=
αµq

1 − α
ag′(a),

σ2
X := µX +

α2a2µq

1 − α2

[
g′′(a) + Fε(c)

(
g′(a)

)2
]
,

(15)
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and the autocorrelation function (ACF) is ρX(k) = αk, k = 0, 1, . . . Similarly, for the series (Yt),
it is

µY :=
(1 − αFε(c))

1 − α
ag′(a),

σ2
Y := µY +

a2

1 − α2

[
g′′(a)

(
1 − α2Fε(c)

)
+ α2Fε(c)(1 − Fε(c))

(
g′(a)

)2
]
,

(16)

and its ACF is

ρY(k) =


1, k = 0,

αk(σ2
X + µqσ2

ε

)
σ2

X + σ2
ε

, k = 1, 2, . . .

Additionally, both sums in their INMA(∞) representations, given by Equations (6) and (7),
converge in the mean-square sense.

Proof. Using Equation (6) and the well-known features of the binomial thinning operator
(see, e.g., Kella & Löpker [23]), for the mean of the series (Xt), one obtains

µX = E[Xt] =
∞

∑
j=1

E
[
αj ◦ ξt−j

]
= µξ

∞

∑
j=1

αj =
αµξ

1 − α
.

Analogously, the variance of this series is obtained as follows:

σ2
X = Var[Xt] =

∞

∑
j=1

Var
[
αj ◦ ξt−j

]
=

∞

∑
j=1

(
α2jVar

[
ξt−j

]
+ αj(1 − αj)E[ξt−j

])

=
α2σ2

ξ

1 − α2 +

(
α

1 − α
− α2

1 − α2

)
µξ =

αµξ

1 − α2 +
α2σ2

ξ

1 − α2 .

From here, by substituting Equations (8) for the mean value (µξ) and variance (σ2
ξ ) of

the series (ξt), and after some computations, Equations (15) are obtained. Finally, according
to Equation (12), the ACF of the series (Xt) is obtained from the equalities

ρX(k) := Corr[Xt, Xt+k] = Corr
[

Xt, αk ◦ Xt

]
+

k

∑
j=1

Corr
[

Xt, αj ◦ ξt+k−j

]
= αk, k = 0, 1, . . .

Note that previously proven facts imply that RVs (Xt) have finite moments up to
the second order. Then, using again Equation (12) and features of the binomial thinning,
one obtains

E
[

Xt −
k

∑
j=1

αj ◦ ξt−j

]2
= E

[
αk ◦ Xt−k

]2
= α2kE[X2

t−k] + αk(1 − αk)E[Xt−k] −→ 0, k → ∞.

Thus, the mean-square convergence of the sum in Equation (6) holds. Finally, the
statement for the series (Yt) can be proved in a completely analogous way.

According to the previous theorem, in the non-trivial case 0 < µq < 1, the inequalities
ρY(k) < ρX(k), k = 1, 2, . . . obviously hold. Therefore, the basic INSB series (Yt) has a
weaker correlation than (Xt), i.e., compared with the correlation of INAR-based models.
Also, by applying the previous results, the over-dispersion conditions for INSB series can
be described as follows.

Remark 2 (Over-dispersion conditions). Recall that the over-dispersion of the PS series (εt)
depends on the function g(a) = ln f (a). Namely, Equations (2) imply that Dε(a) := σ2

ε − µε > 0
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if and only if g′′ (a) > 0, ∀a ∈ (0, R). On the other hand, the over-dispersion conditions of the
series (ξt) are weaker, because Equations (8) imply that Dξ(a) := σ2

ξ − µξ > 0 holds if and only if

g′′(a) ≥ 0 or Fε(c) > − g′′(a)

(g′(a))2 .

Thereafter, using Theorem 2, that is, Equations (15), it is obtained that

DX(a) := σ2
X − µX =

α2Dξ(a)
1 − α2 ,

so the over-dispersion conditions are the same for both series (Xt) and (ξt). Finally, Equation (16)
implies that DY(a) := σ2

Y − µY > 0 if and only if

g′′(a) ≥ 0 or
α2Fε(c)(1 − Fε(c))

1 − α2Fε(c)
> − g′′(a)

(g′(a))2 .

According to the inequality α2x(1 − x)/(1 − α2x) < x, ∀α, x ∈ (0, 1), it follows that

Fε(c) >
α2Fε(c)(1 − Fε(c))

1 − α2Fε(c)
.

Thus, over-dispersion of the series (Yt) implies over-dispersion for (Xt), that is, (Xt) has
weaker over-dispersion conditions than (Yt).

The Markov properties of the INSB(1) series, their marginal distributions and the
properties of zero inflation are discussed below.

Theorem 3. Let (εt) be the PS-distributed series, with the PMF given by Equation (1). The
martingale mean series (Xt), defined by Equation (3), is a homogeneous Markov process with
one-step transition probabilities:

p(X)
i,j := P{Xt = j | Xt−1 = i} = Fε(c)

(
i
j

)
αj(1 − α)i−j I(i ≥ j) + (1 − Fε(c))

×
∞

∑
k=0

(
i + k

j

)
αj(1 − α)i+k−j pε(k; a)I(i + k ≥ j).

(17)

Similarly, series (Yt), given by Equation (5), is a Markov process with transition probabilities:

p(Y)i,j := P{Yt = j |Yt−1 = i} =
m

∑
k=0

(
i
k

)
αk(1 − α)i−k pη(j − k; θ), (18)

where m = min{i, j} and

pη(x; θ) :=
(
1 − Fε(c)

)
pε(x; a) + Fε(c)

∞

∑
k=0

∞

∑
ℓ=k

(
ℓ

k

)
αk(1 − α)ℓ−k pε(x + k; a) pε(ℓ; a) (19)

is the PMF of the series ηt := εt − α ◦ εt−1(1 − qt−1), t ∈ Z.
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Proof. Using Equations (3) and (4), as well as the definition of conditional probabilities
and binomial thinning, for the conditional distribution of Xt on a given Xt−1, one obtains

p(X)
i,j = P{α ◦ (Xt−1 + ξt−1) = j | Xt−1 = i}

= P{α ◦ Xt−1 = j | Xt−1 = i}P{qt−1 = 0}
+ P{α ◦ (Xt−1 + εt−1) = j | Xt−1 = i}P{qt−1 = 1}

= Fε(c)pi(j; α)I(i ≥ j) + (1 − Fε(c))
∞

∑
k=0

P{α ◦ (Xt−1 + k) = j | Xt−1 = i}pε(k; a)

= Fε(c)pi(j; α)I(i ≥ j) + (1 − Fε(c))
∞

∑
k=0

pi+k(j; α)pε(k; a)I(i + k ≥ j),

where

pi(j; α) :=
(

i
j

)
αj(1 − α)i−j, j = 0, 1, . . . , i

is the PMF of binomial distribution B(i; α). From here, Equation (17) is directly obtained.
On the other hand, notice that for the series (Yt), it is valid that

Yt = Xt + εt = α ◦ (Xt−1 + qt−1εt−1) + εt = α ◦ (Yt−1 − εt−1 + qt−1εt−1) + εt

d
= α ◦ Yt−1 + ηt,

(20)

where using conditional probabilities, the PMF of the series (ηt) is obtained as follows:

pη(x; θ) = P{εt = x}P{qt−1 = 1}+ P{εt − α ◦ εt−1 = x}P{qt−1 = 0}

= (1 − Fε(c))pε(x; a) + Fε(c)
∞

∑
k=0

P{εt = x + k}P{α ◦ εt−1 = k}

= (1 − Fε(c))pε(x; a) + Fε(c)
∞

∑
k=0

pε(x + k; a)
∞

∑
ℓ=0

pℓ(k; α)pε(ℓ; a)I(ℓ ≥ k).

It can easily be seen that the last obtained equality is equivalent to Equation (19).
According to this, for the conditional distribution of Yt on a given Yt−1, one obtains

p(Y)i,j = P{α ◦ Yt−1 + ηt = j |Yt−1 = i} =
m

∑
k=0

P{α ◦ Yt−1 = k |Yt−1 = i}pη(j − k; θ)

=
m

∑
k=0

pi(k; α)pη(j − k; θ),

which proves Equation (18), as well as the theorem completely.

Remark 3 (Distributional properties). Note that the first summand in Equation (17) exists
if and only if martingale means (Xt) pass from the state Xt−1 = i to the non-increasing state
Xt = j ≤ i. In addition, the transition probabilities given by Equations (17) and (18) give the
marginal PMFs of the INSB series (Xt) and (Yt):

pX(x; θ) := P{Xt = x} =
∞

∑
k=0

P{Xt = x | Xt−1 = k}P{Xt−1 = k} =
∞

∑
k=0

p(X)
k,x pX(k; θ),

pY(y; θ) := P{Yt = y} =
∞

∑
k=0

P{Yt = y |Yt−1 = k}P{Yt−1 = k} =
∞

∑
k=0

p(Y)k,y pY(k; θ).
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Finally, using the PGFs of the INSB series (Xt) and (Yt), given by Equations (13), the PMFs
of these two series can also be expressed as follows:

pX(k; θ) =
1
k!

∂k GY(u; θ)

∂uk

∣∣∣∣
u=0

, pY(k; θ) =
1
k!

∂k GY(u; θ)

∂uk

∣∣∣∣
u=0

. (21)

In a similar way to INAR processes with zero inflation (see, e.g., Li et al. [24,25]), the
distribution of zero lengths of INSB(1) processes is examined below. For this purpose, recall
that we have assumed that the condition 0 ∈ S is satisfied and observe the distribution of
zero “runs”, as the number of zeros occurrences between two distinct non-zero values. The
following statement gives the expected lengths of zeros in INSB(1) model.

Theorem 4. The expected lengths of zero runs for the series (Xt) and (Yt) are, respectively,

L(X)
0 =

f (a)− µq[ f (a)− f (a(1 − α))]

µq[ f (a)− f (a(1 − α))]
,

L(Y)
0 =

pη(0)
1 − pη(0)

,

(22)

where µq := 1 − Fε(c) and pη(0) is the proportion of zeros in the RVs (ηt).

Proof. Using Equation (17), as well as Equation (1) for the PS distributions family, the
probabilities of transitions from zero to zero and from zero to non-zero values of the series
(Xt) are obtained as follows:

p(X)
0 := P{Xt = 0 | Xt−1 = 0} = Fε(c) + (1 − Fε(c))

∞

∑
k=0

(1 − α)k pε(k; a)

= 1 + µq

[
1

f (a)

∞

∑
k=0

m(k)(a(1 − α))k − 1

]

= 1 + µq

[
f (a(1 − α))

f (a)
− 1
]

,

1 − p(X)
0 = µq

[
1 − f (a(1 − α))

f (a)

]
.

It can easily be seen (see, e.g., Stojanović et al. [21]) that zero lengths of the series (Xt)

have a geometric distribution with parameter 1 − p(X)
0 . Therefore, the expected length of

zero is

L(X)
0 =

p(X)
0

1 − p(X)
0

,

and from here the first equality in Equations (22) immediately follows. Similarly, according
to Equation (18) and using the same procedure as the previous one, the second equality
in (22) is easily obtained.

Remark 4 (Zero-inflation properties). Based on the previous results, the proportions of zeros in
the INSB series can be easily computed. Indeed, using the definition of series (εt) and (ξt), given by
Definition 1 and Theorem 1, one obtains

pε(0; a) := P{εt = 0} =
f (0)
f (a)

,

pξ(0; θξ) := P{qtεt = 0} = P{qt = 0}+ P{qt = 1}P{εt = 0} = 1 + µq[pε(0; a)− 1].
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From here, we obtain

pξ(0; θξ)− pε(0; a) = (1 − µq)[1 − pε(0; a)] > 0,

i.e., RVs (ξt) have a more pronounced zero inflation than (εt). On the other hand, using the PGFs of
the series (Xt) and (Yt), that is, Equations (13) and (21), the zero proportions of these two series are

pX(0; θ) := P{Xt = 0} = GX(0; θ) =
∞

∏
k=1

[
1 + µq

(
f
(
a(1 − αk)

)
f (a)

− 1
)]

,

pY(0; θ) := P{Yt = 0} = GY(0; θ) =
f (0)
f (a)

∞

∏
k=1

[
1 + µq

(
f
(
a(1 − αk)

)
f (a)

− 1
)]

.

Note that these proportions are products of convex combinations of values f
(
a(1 − αk)

)
/ f (a),

k = 0, 1, 2, . . . , and constant 1. Since the function f (a) is monotonically increasing, it follows that

f (0)
f (a)

<
f
(
a(1 − αk)

)
f (a)

< 1 + µq

(
f
(
a(1 − αk)

)
f (a)

− 1
)
< 1, k = 1, 2, . . .

and this implies pY(0; θ) < pε(0; θ) < pX(0; θ). Thus, the basic INSB series (Yt) has a less
pronounced zero inflation compared with the other mentioned series. Finally, martingale means
(Xt) have the most pronounced zero inflation and can be an adequate stochastic model in the fitting
real-world series with pronounced zero values.

4. Parameter Estimation Procedure

Due to the specific structure of the INSB(1) process, its parameter estimation procedure
is more complex compared with most known count time-series models. For instance,
according to Equation (20), it follows that the (only) observable series (Yt) has an INAR(1)
structure, but with 1-dependent innovations ηt := εt − α ◦ εt−1(1 − qt−1). Therefore, the
conditional mean of this series is

E[Yt+1 |Yt] = αYt + µε − α ◦ εt(1 − qt),

and it depends on realizations of (unobservable) noise indicator qt = qt(c). Thus, some
of the widely used estimation methods, e.g., conditional last squares (CLS) method [26],
as well as conditional maximum likelihood (CML) method [27], cannot be used here.
Moreover, according to Theorem 2 and Equations (15) and (16), it is clear that even some
moment-based estimation methods, i.e., the well-known Yule–Walker (YW) estimators [28],
cannot simply obtain the above (see Section 6).

In order to obtain efficient parameter estimators of the INSB(1) process, an estimation
technique called probability-generating function (PGF) method is examined here. It is worth
to notice that some general results of PGF estimation theory were given in Esquìvel [29].
Thereafter, some more specific PGF estimation procedures were recently examined in
Stojanović et al. [19–21], as well as in Cadena et al. [30]. Also, it can be emphasized that
the main idea of the PGF method is close to the empirical characteristic function (ECF)
estimation method introduced by Yu [31]. Similar to the ECF method, the goal of the PGF
method is minimizing the “distance” between the theoretical PGF of the series (Yt), given
by Equation (14), and its appropriate empirical PGF (of order r ∈ N):

G̃(r)
T (u) :=

1
T − r + 1

T−r+1

∑
t=1

uYt
1 · · · uYt+r−1

r . (23)
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where u = (u1, . . . , ur)′ ∈ Rr and {Y1, Y2, . . . , YT} is a finite realization of the basic INSB(1)
series (Yt). Since the stationarity and ergodicity of the series (Yt) was proved in Theorem 2,
it follows that

E
[

G̃(r)
T (u)

]
= G(r)

Y (u; θ0), (24)

where θ0 ∈ (0, R)× (0, 1)2 is the true value of unknown parameters θ = (a, α, µq)′. Hence,

G̃(r)
T (u) is an unbiased estimator of G(r)

Y (u; θ0). In addition, the PGF G(r)
Y (u; θ) is well

defined on the set [−1, 1]r, so the objective function can be given as follows:

Q(r)
T (θ) :=

∫ 1

−1
· · ·

∫ 1

−1
w(u)

(
G(r)

Y (u; θ)− G̃(r)
T (u)

)2
du, (25)

where du := du1 · · ·dur and w : Rr → R+ is a weight function, integrable on [−1, 1]r.
Then, PGF estimators are usually obtained through minimization of the objective function
given by Equation (24), with respect to parameters θ. More precisely, PGF estimates are
solutions to the equation

θ̂T = arg min
θ∈Θ

Q(r)
T (θ), (26)

where Θ = (0, R) × (0, 1)2 is a parameter space of the regular and stationary INSB(1)
process. In order to solve Equation (26), some of the numerical integration procedures can
be used, which is described in the next section, Section 5. Similar to Stojanović et al. [20],
the following statement examines the strict consistency and asymptotic normality (AN) of
PGF estimators of the INSB(1) process under certain regulatory conditions.

Theorem 5. Let θ0 be the true value of the parameter θ and θ̂T , T = 1, 2, . . ., be solutions to
Equation (26). Additionally, assume that the following regularity conditions hold:

(A1) θ0 ∈ Θ and θ̂T ∈ Θ, for T large enough.
(A2) The function

Q(r)
0 (θ) :=

∫ 1

−1
· · ·

∫ 1

−1
w(u)

(
G(r)

Y (u; θ)− G(r)
Y (u; θ0)

)2
du

has a unique minimum Q(r)
0 (θ0) = 0 at the point θ = θ0.

(A3)
∂G(r)

Y (u; θ0)

∂θ

∂G(r)
Y (u; θ0)

∂θ′
is a non-zero matrix uniformly bounded by some positive and

w-integrable function W : Rr → R+.

(A4)
∂2Q(r)

T (θ0)

∂θ ∂θ′
is a regular matrix.

Then, θ̂T is a strictly consistent and AN estimator of the parameter θ.

Proof. To prove the statement of theorem, we use a procedure based on some general
results related to PGF estimators, described in Stojanović et al. [20]. First, the consistency
of the estimator θ̂T should be checked. As the INSB(1) series (Yt) is ergodic, Equation (24)
and the strong law of large numbers (SLLN) give

G̃(r)
T (u) as−→ G(r)

Y (u; θ0), T → ∞. (27)

Furthermore, by assumption (A1), the set Θ = [0, R]× [0, 1]2 is a compact, with θ0

belonging to its interior. Therefore, the continuous functions G(r)
Y (u; θ) and G̃(r)

T (u) are
bounded on compacts [−1, 1]r × Θ and [−1, 1]r, respectively, so that for some M1, M2 > 0
is valid:

max
(u; θ)∈[−1,1]r×Θ

∣∣∣G(r)
Y (u; θ)

∣∣∣ ≤ M1 < +∞, max
u∈[−1,1]r

∣∣∣G̃(r)
T (u)

∣∣∣ ≤ M2 < +∞.
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According to this and similarly as in Stojanović et al. [20], it follows that∣∣∣Q(r)
T (θ)− Q(r)

0 (θ)
∣∣∣ ≤ (3M1 + M2)

∫ 1

−1
· · ·

∫ 1

−1
w(u)

∣∣∣G(r)
Y (u; θ0)− G̃(r)

T (u)
∣∣∣du,

which, along with Equation (27), implies that

sup
θ∈Θ

∣∣∣Q(r)
T (θ)− Q(r)

0 (θ0)
∣∣∣ as−→ 0, T → +∞.

Thus, Q(r)
T (θ) converge almost surely and uniformly to Q(r)

0 (θ). According to this, as
well as assumption (A2) and Theorem 2.1 in Newey and McFadden [32], one obtains

θ̂
(r)
T − θ0

as−→ 0, T → +∞,

that is, θ̂T is a strictly consistent estimator of the parameter θ.
In order to prove the property of AN for θ̂T , note that the partial derivatives up to the

first two orders of the function Q(r)
T (θ) are continuous functions. Therefore, they can then

be differentiated under the integral sign, as follows:

∂Q(r)
T (θ)

∂θ
= 2

∫ 1

−1
· · ·

∫ 1

−1
w(u)

[
G(r)

Y (u; θ)− G̃T(u)
]∂G(r)

Y (u; θ)

∂θ
du, (28)

∂2Q(r)
T (θ)

∂θ ∂θ′
= 2

∫ 1

−1
· · ·

∫ 1

−1
w(u)

{
∂G(r)

Y (u; θ)

∂θ

∂G(r)
Y (u; θ)

∂θ′

+
[

G(r)
Y (u; θ)− G̃T(u)

]∂2G(r)
Y (u; θ)

∂θ ∂θ′

}
du. (29)

From here, taking the mean values at θ = θ0, one obtains

E

[
∂Q(r)

T (θ0)

∂θ

]
= 0r×1, E

[
∂2Q(r)

T (θ0)

∂θ ∂θ′

]
= 2W, (30)

where

W =
∫ 1

−1
· · ·

∫ 1

−1
w(u)

∂G(r)
Y (u; θ0)

∂θ

∂G(r)
Y (u; θ0)

∂θ′
du.

According to assumption (A3), for the function W : Rr → R+, it is valid that

0 <

∥∥∥∥∥∂G(r)
Y (u; θ0)

∂θ

∂G(r)
Y (u; θ0)

∂θ′

∥∥∥∥∥ ≤ W(u), ∀u ∈ [−1, 1]r,

where ∥ · ∥ is some matrix norm on Rr ×Rr. Therefore, it follows that

0 < ∥W∥ ≤
∫ 1

−1
· · ·

∫ 1

−1
g(u)W(u)du < +∞,

and using Equations (30) and SLLN, it is obtained that(
∂Q(r)

T (θ0)

∂θ
,

∂2Q(r)
T (θ0)

∂θ ∂θ′

)
as−→ (0, 2W), T → +∞. (31)
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Further, according to Equations (23) and (28), the gradient of function Q(r)
T (θ) is

as follows:
∂Q(r)

T (θ)

∂θ
=

2
T − r + 1

T−r+1

∑
t=1

C(r)
t (θ), (32)

where

C(r)
t (θ) :=

∫ 1

−1
· · ·

∫ 1

−1
w(u)

[
G(r)

Y (u; θ)− uXt
1 · · · uXt+r−1

r

]∂G(r)
Y (u; θ)

∂θ
du,

and E[C(r)
t (θ0)] = 0 holds. Using some general facts on ECF theory (see, e.g., [30,31]),

absolute summability of covariance γY(k) := Cov(Yt, Yt+k), k = 0,±1, . . . of the series (Yt)
is sufficient for a non-zero finite value:

V2 := lim
T→∞

Var

[
1√

T − r + 1

T−r+1

∑
t=1

C(r)
t (θ0)

]
= lim

T→∞

1
T − r + 1

E

[
T−r+1

∑
t=1

C(r)
t (θ0)

]2

= lim
T→∞

1
(T − r + 1)2

T−r+1

∑
t=1

T−r+1

∑
s=1

Cov
[
C(r)

t (θ0), C(r)
s (θ0)

]
.

(33)

According to Theorem 2, for each α ∈ (0, 1), it is valid that

+∞

∑
k=−∞

γY(k) = σ2
Y

(
2
+∞

∑
k=1

αk(σ2
X + µqσ2

ε

)
σ2

X + σ2
ε

+ 1

)
=

2α
(
σ2

X + µqσ2
ε

)
1 − α

+ σ2
Y < +∞,

so the central limit theorem for stationary processes [33], as well as Equations (32) and (33),
gives

√
T − r + 1

∂Q(r)
T (θ0)

∂θ

d−→ N (0r×1, 4V2), T → +∞, (34)

where “d” means the convergence in distribution.
On the other hand, according to the Taylor expansion of the function ∂Q(r)

T (θ)/∂θ at
θ = θ0, it follows that

∂Q(r)
T (θ)

∂θ
=

∂Q(r)
T (θ0)

∂θ
+

∂2Q(r)
T (θ0)

∂θ ∂θ′
(θ − θ0) + o(θ − θ0).

From here, using assumption (A4) and the equality ∂Q(r)
T (θ̂T)/∂θ = 0, one obtains

θ̂T − θ0 = −
[

∂2Q(r)
T (θ0)

∂θ ∂θ′

]−1
∂Q(r)

T (θ0)

∂θ
+ o
(
θ̂T − θ0

)
. (35)

Finally, Equations (31), (34) and (35) give

√
T − r + 1

(
θ̂
(r)
T − θ0

)
d−→ N (0r×1, W−1V2W−1), T → +∞,

and the theorem is fully proved.

Remark 5. Using similar considerations as in ECF estimation theory (see, e.g., Yu [31]), the PGF
estimators of the (true) parameter θ = θ0 can be calculated using the realization of a two-dimensional
random vector Y(2)

t := (Yt, Yt+1)
′. In that case, the objective function Q(2)

T is given as a double
integral that can be approximately calculated by applying some well-known cubature formulas (see
the next section, Section 5). To this end, the two-dimensional PGF of the basic INSB(1) series (Yt)
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should be determined. By replacing r = 2 in Equation (14) and using Equation (13), this PGF can
be obtained in the following way:

G(2)
Y (u1, u2; θ) =

∞

∏
k=1

[
1 + µq

(
f
(
a(1 + αk(u − 1))

)
f (a)

− 1
)]

×
[
(1 − µq) f (au1) + µq f (au)

]
f (au2)

( f (a))2 ,

(36)

where u = u1(1 + α(u2 − 1)). Figure 2 shows, as an illustration, the theoretical and empirical
PGFs of the series (Yt) with geometrically distributed PS innovations.

(a) (b)

Figure 2. Two-dimensional (a) theoretical PGFs; (b) empirical PGF of the series (Yt). Innovations are
PS-distributed RVs with geometric distribution and parameters a = α = µq = 0.5 (c = 1).

5. Numerical Simulations

In this part, numerical simulations of the PGF estimation procedure for the unknown
parameters θ = (a, α, µq)′ of the INSB(1) process were performed. To that aim, as mentioned
earlier, different PS-distributed innovations (εt) can be considered. For some practical
reasons, related to the application of the INAR(1) process that will be further explained,
two different PS-distributions of the innovations (εt) were examined, one with a Poisson
distribution and the other with a geometric distribution. Using Monte Carlo simulations,
samples of length T = 1000 were generated in both cases, based on 500 independent
realizations of the PS series (εt). According to that, by applying Equations (3) and (5),
respectively, the series of martingale means (Xt) and the basic INSB series (Yt) were then
generated. In that way, the realizations {Y1, . . . , YT} of the INSB-based series (Yt) were
obtained, on which the PGF method could be applied.

The estimators of parameters θ = (a, α, µq)′ were calculated by minimizing the double
integral

Q(2)
T (θ) =

∫ 1

−1

∫ 1

−1
w(u1, u2)

(
G(2)

Y (u1, u2; θ)− G̃(2)
T (u1, u2)

)2
du1du2, (37)

where w : [−1, 1]2 → R+ is the weight function, and G(2)
Y (u1, u2; θ) is the two-dimensional

PGF of the INSB(1) series (Yt). For some specific PS-distributed innovations, this PGF can
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be obtained after some computation, by using Equation (36). In that way, for PS innovations
with Poisson distribution, one obtains

G(2)
Y (u1, u2; θ) =

∞

∏
k=1

[
1 + µq

(
exp

(
αk(u − 1)a

)
− 1
)]

exp
(
(u1 + u2 − 2)a

)
×
[
1 + µq

(
exp

(
αu1(u2 − 1)a

)
− 1
)]

,

while for PS innovations with geometric distribution, it follows that

G(2)
Y (u1, u2; θ) =

∞

∏
k=1

[
1 +

µq αk(u − 1)a
1 −

(
1 + αk(u − 1)

)
a

]
·
(1 − a)2(1 − a

(
µqu1 + (1 − µq)u

))
(1 − au1)(1 − au2)(1 − au)

,

where u = u1(1 + α(u2 − 1)). It is worth mentioning that these PGFs are not obtained in
closed form, but they can be easily approximated by finite k-terminal products and with
arbitrary precision.

After that, the integral in Equation (37) is approximately calculated using the cubature
formula:

I(h; w) :=
∫ 1

−1

∫ 1

−1
w(u1, u2)h(u1, u2)du1du2 ≈

N

∑
j=1

wj h(u1j, u2j),

where (u1j, u2j) are the cubature nodes and wj are the weight coefficients. In this case,
the Gaussian cubature formulas with N = 36 nodes were used, where two-dimensional
weights are based on the Gegenbauer orthogonal polynomials, i.e.,

wk(u1, u2) =
(
(1 − u2

1)(1 − u2
2)
)(k−1)/2

,

where k = 0, 1, 2. Obviously, these cubatures reduce to the well-known Gauss–Chebyshev
cubatures of the first type (when k = 0), Gauss–Chebyshev cubatures of the second
type (when k = 2) and Gauss–Legendre cubatures (when k = 1). These cubatures were
calculated within software package “Orthogonal polynomials” in Wolfram Mathematica
language, authorized by Cvetković and Milovanović [34]. Thereafter, minimization of
the objective function given by Equation (37) was performed using the box-constrained
optimization procedure “nlminb” [35] in the statistical programming language R. At the
same time, realizations of a uniform distribution U (0, 1) were taken as the initial values of
the parameters.

Table 2 presents the summary statistics of the thus obtained PGF estimates, that is, their
minimums (Min.), mean values (Mean), maximums (Max.), as well as the mean squared
estimation errors (MSEEs), for all proposed weights and both innovation distributions
considered. Additionally, the values of the objective functions ŜT are given, as reference
errors in the estimation. Regarding to the results presented, it is seen that the PGF procedure
provides efficient parameter estimates, with similar properties, for both innovation series
(εt). Notice that slightly smaller estimation errors are observed with weight w2(u1, u2).
This is expected, because this weight emphasizes points around the coordinate origin. On
the contrary, somewhat larger errors in the estimation are observed with weight w0(u1, u2),
which “forces” ends of the interval [−1, 1]. Finally, when k = 1, Gauss–Legendre orthogonal
polynomials with weight w1(u1, u2) ≡ 1 are obtained. Their accuracy is also satisfactory,
and due to their simplicity, similarly to what is reported in Stojanović et al. [19,21], they
will be used in some practical applications of the PGF method.

In addition, Table 2 contains the AN test results, where Anderson–Darling normality
test was performed. The test statistic, denoted as AD, as well as the corresponding p-values,
were calculated using the procedure from the software package “nortest” [36], within the
statistical programming language R (version 4.3.2). According to the values thus obtained,
it is easy to see that the property of AN is verified for most PGF estimates of parameters
θ = (a, α, µq)′, at the significance level of 0.01 < p < 0.05. At the same time, it is worth
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emphasizing that estimates of critical value c can be simply obtained from the estimates of
parameter µq and the equality

c = inf
x=0,1,...

{
Fε(x) ≥ 1 − µq

}
. (38)

Table 2. The summary statistics, estimation errors and AN testing of parameter estimates of INSB(1)
process (true parameters are a = α = 0.5, c = 1).

Poisson (µq ≈ 0.3935) Geometric (µq = 0.5)
Sample

â α̂ µ̂q

S(2)
T

â α̂ µ̂q

S(2)
T

Min. 0.3904 0.4358 0.3677 3.14 × 10−4 0.3898 0.4397 0.3950 3.45 × 10−4

Mean 0.5105 0.4989 0.3897 9.69 × 10−3 0.5082 0.5019 0.4997 3.62 × 10−3

Max. 0.7619 0.5499 0.4361 3.05 × 10−2 0.7142 0.5760 0.6197 1.33 × 10−2

MSEE 4.54 × 10−3 2.77 × 10−3 1.09 × 10−4 – 1.99 × 10−3 2.27 × 10−4 1.18 × 10−4 –

w
0(

u 1
,u

2)

AD 0.5576 0.3708 0.8099 – 0.7178 0.2457 0.5065 –
(p-value) (0.1303) (0.3892) (0.0337 *) – (0.0593) (0.7524) (0.1967) –

Min. 0.3836 0.4523 0.3559 1.59 × 10−4 0.3904 0.4255 0.4056 1.55 × 10−4

Mean 0.5091 0.5002 0.3905 1.41 × 10−2 0.5091 0.5018 0.5016 1.15 × 10−3

Max. 0.7421 0.5493 0.4234 4.18 × 10−2 0.6832 0.5694 0.5913 8.01 × 10−3

MSEE 2.27 × 10−3 7.65 × 10−4 1.02 × 10−4 – 2.06 × 10−3 2.06 × 10−4 1.17 × 10−4 –

w
1(

u 1
,u

2)

AD 0.2437 0.2861 0.3188 – 0.5911 0.2410 0.5262 –
(p-value) (0.7589) (0.6178) (0.5301) – (0.1191) (0.7613) (0.1714) –

Min. 0.3951 0.4765 0.3807 1.12 × 10−4 0.4065 0.4175 0.4070 2.38 × 10−4

Mean 0.5068 0.5012 0.3914 8.98 × 10−3 0.5070 0.4987 0.5018 1.12 × 10−3

Max. 0.7581 0.5471 0.4284 2.88 × 10−2 0.6486 0.5607 0.6179 6.52 × 10−3

MSEE 2.57 × 10−3 6.17 × 10−4 3.08 × 10−4 – 1.98 × 10−3 2.09 × 10−4 9.23 × 10−5 –

w
2(

u 1
,u

2)

AD 0.2694 0.3384 0.5972 – 0.2123 0.9120 0.3959 –
(p-value) (0.6497) (0.4734) (0.1182) – (0.8513) (0.0195 *) (0.3645) –

* 0.01 < p < 0.05.

6. Application of the Model

Some practical applications of the INSB process in real-world data modeling are dis-
cussed here, taking two sets of actual data. The first series, named Series A, represents
the number of traffic accidents with a fatal outcome in the Republic of Serbia, collected
according to the official statistics of the Office for Information Technologies and Egov-
erment [37], in the period from 1 January 2015 to 31 December 2021. The second one
(Series B) represents the number of forest fires in Evros, one of the largest regional units
of the Republic of Greece, with data taken from the official website of the Hellenic Fire
Service [38], from 1 January 2019 to 31 December 2021. In that way, count time series of
lengths T1 = 2541 and T2 = 1096, respectively, were obtained, and their dynamics are
shown in Figure 3.

Figure 3. Daily dynamics of the number of traffic accidents with fatalities in the Republic of Serbia
(Series A) and the number of wild fires in the Evros region of the Republic of Greece (Series B).
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Summary statistics of both series are shown in Table 3, where their specific descriptive
characteristics can already be observed. For instance, with Series A, a slight over-dispersion
is noticeable. Using the previous theoretical results, it appears that its dynamics can be
modeled by an INSB(1) process with Poisson-distributed innovations (εt). Namely, in
this case, g(a) = ln f (a) = a holds, and according to Equation (15) in Theorem 2, the
over-dispersion index is DY(a) := σ2

Y − µY = α2a2µqFε(c)/(1 − α2) > 0. On the other
hand, when Series B is observed, it is noticeable that the over-dispersion is much more
pronounced, as are the properties of zero inflation. Thus, it appears that geometrically
distributed PS innovations can be used to model its dynamics.

Table 3. The summary statistics, stationarity testing and the correlation structure of real-world data.

Statistics Series A Series B

Minimum 0 0
Maximum 7 18
Mode 0 0
Median 1 0
Mean 1.261 1.116
St. deviation 1.256 1.763
Variance 1.577 3.109
Skewness 1.062 2.931
Kurtosis 4.099 14.44

ADF-test −7.705 −5.667
(p-value) (<0.01) (<0.01)

ACF(1) 0.150 0.535
ACF(2) 0.119 0.427
· · · · · · · · ·

ACF(10) 0.115 0.255
· · · · · · · · ·

ACF(40) 0.083 0.007

Further, the augmented Dickey–Fuller (ADF) test was conducted, with the alternative
hypothesis that the observed series are stationary, which was confirmed in both cases. Also,
the estimated values of the autocorrelation functions (ACFs) of both series are decreasing, as
is shown in Figure 4. In addition, it is noticeable that the decrease in both ACFs, especially
for Series A, is slower than in the case of the regular INAR(1) process. In accordance with
previous theoretical results, primarily Theorem 2, this suggests the possibility of modeling
the dynamics of both series with the INSB(1) procedure.

Figure 4. Autocorrelation functions (ACFs) of the considered time-series data.

On the other hand, the weak correlation in Series A indicates the possibility that the
hypothesis of the absence of correlation in the members of this time series is valid here.
Therefore, the following null hypotheses are tested here:

H0 : ρx(k) = 0 and ρ|x|(k) = 0, at individual lag k ≥ 1,

H0 : ρx(k) = 0 and ρ|x|(k) = 0, for cumulative k = 1, . . . , m,
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where ρx(k) and ρ|x|(k) are the kth-order correlations of the series (xt) and (|xt − E(xt)|),
respectively. Using the results given by Dalla et al. [39], the above hypotheses are tested
using the robust statistics

Jx;|x|(k) =
n2

n − k

(
ρ̂x(k) + ρ̂|x|(k)

)
, Cx;|x|(k) =

m

∑
k=1

Jx;|x|(k),

where ρ̂x(k) and ρ̂|x|(k) are estimated kth correlations of the above series, respectively.
Alternatively, the absence of correlation in the series (xt) and (xt − E(xt))2 is also tested,
via the hypotheses

H0 : ρx(k) = 0 and ρx2(k) = 0, at individual lag k ≥ 1,

H0 : ρx(k) = 0 and ρx2(k) = 0, for cumulative k = 1, . . . , m,

where ρx(k) and ρx2(k) are the appropriate kth-order correlations. Like previously, the
statistics used for testing are

Jx;x2(k) =
n2

n − k

(
ρ̂x(k) + ρ̂2

x(k)
)

, Cx;x2(k) =
m

∑
k=1

Jx;x2(k).

For all the above statistics, the following convergences hold:

Jx;|x|(k), Jx;x2(k)
d−→ χ2

2, Cx;|x|(k), Cx;x2(k)
d−→ χ2

2m,

where χ2
2 and χ2

2m are the RVs with chi-square distributions. Figure 5 reports the test
results of both observed series, at the significance level α = 5% (showed with dashed lines),
obtained using the function “iid.test()“ within the R-package “testcorr“.

Figure 5. Tests for i.i.d. properties of the considered time-series data: the testing of individual data
((left) diagrams); the cumulative testing of data series ((right) diagrams).
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In the case of individual testing, it is obvious that the null hypothesis is rejected up
to a certain correlation lag. Specifically, with Series A, the i.i.d. property appears for the
first time when k = 74, where the appropriate p-values of the statistics Jx;|x|(k) and Jx;x2(k)
are equal to 0.144 and 0.114, respectively. Similarly, with Series B, the first i.i.d. case is
when k = 30. On the other hand, following the cumulative tests, it is clear that the null
hypothesis of non-correlation of the observed series does not hold at any level. Thus, the
assumption about their possible modeling using the INSB(1) process can be justified.

To compare INSB(1) modeling with INAR(1) process modeling, both of these stochastic
models were formed based on the observed data. First, by applying equality Yt = α ◦Yt−1 +
εt, where t = 1, 2, . . . , T, the INAR(1) model was constructed, whose parameters (a, α) can
be estimated using some well-known procedures. Here, the CLS estimation method was
applied, based on the minimization of the function

ST(θ) :=
T

∑
t=2

(
Yt − E[Yt |Yt−1]

)2
=

T

∑
t=2

(
Yt − αYt−1 − µε

)2, (39)

and the CLS-estimates α̃, µ̃ε, same as in the regression procedure, are easily computed
by differentiating Equation (39) and equating it to zero. Notice that in the case of the PS
distributions family, by using the estimator µ̃ε, estimates of the parameter a can be also
easily determined (see, c.f. Table 1). Hence, for the Poisson and geometric distributions, the
corresponding estimates are ã = µ̃ε and ã = µ̃ε/(1 + µ̃ε), respectively. By applying some
basic results of CLS theory [40], the asymptotic properties of the CLS estimators obtained
in this way can be proven. The results of this estimation procedure are given in the upper
part of Table 4.

Taking as initial values the estimates obtained from the previous CLS procedure, the
PGF method is then applied. PGF estimates of parameters θ = (a, α, µε)′ are calculated
using the previously described estimation procedure, that is, by minimizing the double
integral given by Equation (37). In doing so, Gauss–Legendre orthogonal polynomials
with weight w1(u1, u2) ≡ 1 are used, and the estimated values for both series, along with
the corresponding estimated standard errors, are also presented in Table 4. Additionally,
parameter estimates of critical value c can be computed using Equation (38), and for Series
A and B, these values are c = 0 and c = 1, respectively. Accordingly, this means that both
series can be equally modeled by the regular INAR(1) or INSB(1) model, although the
INSB(1) model appears to have slightly better fitting capabilities.

Table 4. Estimated parameters of the INAR(1) and INSB(1) processes, their respective estimation
errors and predictive test statistics.

Parameters/Statistics Series A Series B

(Stand. Errors) INAR(1) INSB(1) INAR(1) INSB(1)

a 1.0713 1.0911 0.3422 0.3624
(5.24 × 10−2) (4.07 × 10−2) (7.79 × 10−3) (7.47 × 10−3)

α 0.1500 0.1697 0.5348 0.4837
(2.94 × 10−2) (1.96 × 10−2) (4.26 × 10−3) (4.06 × 10−3)

µq – 0.6290 – 0.4503
(1.96 × 10−2) (4.06 × 10−3)

Q(2)
T 1.39 × 10−2 4.63 × 10−3 7.74 × 10−3 3.04 × 10−3

MSEE 1.89 × 10−2 1.82 × 10−2 2.48 × 10−2 1.99 × 10−2

AIC −661.95 −698.43 −531.39 −553.12

DM 2.6741 ** 2.4683 **
(p-value) (3.77 × 10−3) (6.86 × 10−3)

** p < 0.01.
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To confirm this fact, the efficiency of fitting is analyzed for both stochastic models
and both of the mentioned estimation procedures. For this purpose, using previously
obtained estimated parameter values, 500 Monte Carlo simulations of INAR(1) and INSB(1)
time series are generated, while the efficiency of the fit to the real-world data used here is
checked using the MSEE statistics and Akaike’s information criterion (AIC). Their average
values, as well as the values of objective function Q(2)

T (θ), are presented in the middle part
of Table 4. It is worth noting that fitting statistics, as well as the estimated parameter values,
are close for both series, i.e., for both estimation methods and both stochastic models.
However, it is noticeable that the fitting errors are slightly less when the INSB(1) model
is applied. This is somewhat more emphasized in the case of Series B, for which it can
be concluded that the INSB(1) process represents a more suitable stochastic fitting model.
Some of the aforementioned facts can also be observed in the above plots of Figure 4, where
the empirical and fitted frequencies of both time series (as well as both stochastic models)
are shown.

Finally, for both of these models, the analysis of forecast accuracy based on them is
examined. To this end, the time interval from 1 January 2023 to 30 April 2023 was taken as
the horizon of the forecast length (h = 120). The testing procedure was carried out using
a one-tailed Diebold–Mariano test of predictive accuracy [41]. More precisely, the null
hypothesis was that the INAR(1) and INSB(1) models have the same predictive accuracy,
while the alternative hypothesis was that the INSB(1) model has better accuracy. The test
statistic, labeled DM, as well as the corresponding p-values, were calculated within the
package “forecast” [42] in the statistical programming language R and are presented in the
lower part of Table 4. Based on this, it can be seen that the INSB(1) model has better forecast
accuracy, which is in accordance with the previous results obtained. As an illustration,
the lower diagrams in Figure 6 show the frequency distribution of both models, based on
forecast data.

Figure 6. Plots above: Frequency distributions of the observed data fitted by the INAR(1) and INSB(1)
processes. Plots below: Prediction features of INAR(1) and INSB(1) processes.
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7. Conclusions

A novel count time-series model, named INSB(1) process, is presented here. Using
the general form of PS-distributed innovations, as well as the noise indicator series, this
stochastic model can be viewed as a generalization of some related models, primarily the
INAR(1) processes. The key properties of the proposed model, as well as the procedure for
estimating its parameters based on probability-generating functions (PGF method), were
discussed in detail. Through Monte Carlo simulations, the consistency of PGF estimators,
as well as a practical application of the INSB(1) process in real-world data fitting, was
examined. In order to verify the effectiveness of the proposed model, it was applied in
fitting distributions and for forecasting two accident-based real-world time series: the
number of serious traffic accidents and the number of forest fires. At the same time, the
INSB(1) model was also compared with the regular INAR(1) model. Based on the obtained
results, that is, the fitting errors and DM-statistics presented in the previous section, the
proposed model has the same or even better fitting possibilities with the observed data.
According to the above, the better characteristics of the INSB model can be observed,
especially in the prediction of future values of the considered time series.

Let us notice that as members of the PS distributions family, two special cases of the
INSB(1) model, with Poisson-distributed and geometrically distributed innovations, were
considered. For both, the fitting procedures were examined in various aspects, as well as
prediction accuracy. The obtained results indicate the appropriateness of the proposed
model, which at the same time represents a motivation for further research. This can
be conducted, for instance, in defining a higher-order INSB processes or, similar to the
General Split-BREAK (GSB) model, to use some other discrete-type stochastic distribution
as the innovation series. Finally, it should be mentioned that there are integer-valued
distributions that do not belong to the family of PS distributions, which may be a limitation
of the proposed model.
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