
Citation: Pérez-Ortega, J.; Moreno-

Calderón, C.F.; Roblero-Aguilar, S.S.;

Almanza-Ortega, N.N.; Frausto-Solís,

J.; Pazos-Rangel, R.; Rodríguez-Lelis,

J.M. A New Criterion for Improving

Convergence of Fuzzy C-Means

Clustering. Axioms 2024, 13, 35.

https://doi.org/10.3390/

axioms13010035

Academic Editors: Joao Paulo

Carvalho and Hsien-Chung Wu

Received: 28 November 2023

Revised: 25 December 2023

Accepted: 28 December 2023

Published: 2 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A New Criterion for Improving Convergence of Fuzzy
C-Means Clustering
Joaquín Pérez-Ortega 1,*, Carlos Fernando Moreno-Calderón 1 , Sandra Silvia Roblero-Aguilar 2 ,
Nelva Nely Almanza-Ortega 3, Juan Frausto-Solís 4,* , Rodolfo Pazos-Rangel 4 and José María Rodríguez-Lelis 1

1 Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico;
d19ce059@cenidet.tecnm.mx (C.F.M.-C.); jose.rl@cenidet.tecnm.mx (J.M.R.-L.)

2 Tecnológico Nacional de México/IT Tlalnepantla, Tlalnepantla 54070, Mexico;
sandra.ra@tlalnepantla.tecnm.mx

3 Consejo Nacional de Humanidades, Ciencia y Tecnología/Conahcyt, Ciudad de México 03100, Mexico;
nelva.almanza@conahcyt.mx

4 Tecnológico Nacional de México/IT Cd. Madero, Madero 89440, Mexico; rodolfo.pr@cdmadero.tecnm.mx
* Correspondence: joaquin.po@cenidet.tecnm.mx (J.P.-O.); juan.frausto@itcm.edu.mx (J.F.-S.)

Abstract: One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means;
however, one of its main limitations is its high computational complexity. It is known that the
efficiency of an algorithm depends, among other factors, on the strategies for its initialization and
convergence. In this research, a new convergence strategy is proposed, which is based on the
difference of the objective function values, in two consecutive iterations, expressed as a percentage of
its value in the next to the last one. Additionally, a new method is proposed to optimize the selection
of values of the convergence or stop threshold of the algorithm, which is based on the Pareto principle.
To validate our approach, a collection of real datasets was solved, and a significant reduction in the
number of iterations was observed, without affecting significantly the solution quality. Based on the
proposed method and the experiments carried out, we found it is convenient to use threshold values
equal to 0.73 and 0.35 if a decrease in the number of iterations of approximately 75.2% and 64.56%,
respectively, is wanted, at the expense of a reduction in solution quality of 2% and 1%, respectively.
It is worth mentioning that, as the size of the datasets is increased, the proposed approach tends
to obtain better results, and therefore, its use is suggested for datasets found in Big Data and Data
Science.

Keywords: big data; clustering algorithm; convergence; data science; Fuzzy C-Means

MSC: 62H30; 68W40; 90C70; 91C20

1. Introduction

Technological development has generated an exponential increase in the generation
and storage of data at public and private institutions. It is known that, in those large data
repositories, potentially useful information for institutions might be distilled. Therefore,
there exists a well justified interest in the extraction of that useful knowledge from those
large volumes of data. The knowledge obtained in this way could help make better
decisions or improve our comprehension of the environment. Some disciplines that deal
with this problem are Data Science, Data Mining, and Data Analytics [1,2]. In turn, these
disciplines rely on several techniques; one of them is clustering algorithms.

Data clustering algorithms have been used in different areas. Some of them are the
following: pattern recognition, image segmentation, data mining, medicine, taxonomy, and
business, among others [3,4]. However, one of the limitations of data clustering is its high
computational cost [5,6].

Axioms 2024, 13, 35. https://doi.org/10.3390/axioms13010035 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13010035
https://doi.org/10.3390/axioms13010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3791-1126
https://orcid.org/0000-0002-6597-8427
https://orcid.org/0000-0001-9307-0734
https://doi.org/10.3390/axioms13010035
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13010035?type=check_update&version=1

Axioms 2024, 13, 35 2 of 16

Traditionally, clustering algorithms are divided into hierarchical and partitional [7]. In
turn, partitional algorithms are divided into two: hard and soft [8–10]; their main exponents
are K-Means [11] and Fuzzy C-Means (FCM) [12], respectively. For the rest of this paper,
when we speak of the FCM algorithm, we mean the Bezdek algorithm proposed in [13].

The main characteristic of K-Means is that it generates hard partitions (i.e., each object
belongs to a single cluster); in contrast, FCM generates a fuzzy partition, where objects
have some degree of membership in each cluster. For this reason, one of the advantages
of FCM over K-Means is the quality of results when the interpretation of the results has
a gradated interpretation, which is related to the fuzzy partition concept. However, the
computational complexity of FCM is higher than that of K-Means. Article [14] mentions
that the time complexity of FCM is O(ndc2t), where n is the number of objects, d is the
number of dimensions or objects attributes, c is the number of clusters, and t is the number
of iterations. The clustering problem can be described as follows: let X = {x1, . . ., xn} be the
dataset of n objects to be partitioned, where xi ∈ Rd for i = 1, . . . , n, and c is the number of
clusters where 2 ≤ c ≤ n.

The fuzzy clustering problem was formulated initially as an optimization problem
that consisted of the minimization of an objective function [15,16]. Later, this formulation
was improved by Dunn and Bezdek. Next, the formulation by Bezdek [12] is presented.
Expression (1) shows the objective function. The decision variables are the matrix of
membership degrees U and the set of centroids V.

P : minimize Jm (U ,V) = ∑n

i=1 ∑c
j=1 uij

m (

Axioms 2024, 13, x FOR PEER REVIEW 2 of 16

Traditionally, clustering algorithms are divided into hierarchical and partitional [7].
In turn, partitional algorithms are divided into two: hard and soft [8–10]; their main ex-
ponents are K-Means [11] and Fuzzy C-Means (FCM) [12], respectively. For the rest of this
paper, when we speak of the FCM algorithm, we mean the Bezdek algorithm proposed in
[13].

The main characteristic of K-Means is that it generates hard partitions (i.e., each ob-
ject belongs to a single cluster); in contrast, FCM generates a fuzzy partition, where objects
have some degree of membership in each cluster. For this reason, one of the advantages
of FCM over K-Means is the quality of results when the interpretation of the results has a
gradated interpretation, which is related to the fuzzy partition concept. However, the
computational complexity of FCM is higher than that of K-Means. Article [14] mentions
that the time complexity of FCM is O(ndc2t), where n is the number of objects, d is the
number of dimensions or objects attributes, c is the number of clusters, and t is the number
of iterations. The clustering problem can be described as follows: let X = {x1, …, xn} be the
dataset of n objects to be partitioned, where ∈ ℝ for = 1, … , , and c is the number
of clusters where 2 ≤ ≤ .

The fuzzy clustering problem was formulated initially as an optimization problem
that consisted of the minimization of an objective function [15,16]. Later, this formulation
was improved by Dunn and Bezdek. Next, the formulation by Bezdek [12] is presented.
Expression (1) shows the objective function. The decision variables are the matrix of mem-
bership degrees U and the set of centroids V. ∶ , = ∑ ∑ (−) (1)

subject to ∈ 0,1 ; 1 ≤ ≤ , 1 ≤ ≤ , (2)∑ = 1, 1 ≤ ≤ , (3)= 1 = , (4)0 < ∑ < , 1 ≤ ≤ , (5)

Notation
In this section, the notation needed in this paper is defined:

m: weighting exponent or fuzzy factor, m > 1;
c: number of clusters in X;
n: number of objects in X;
ε: threshold value;
i: index of objects;
j: index of cluster;
t: iteration count;
T: maximum number of iterations;
X = {x1, …, xn}: set of n objects to be partitioned according to a similarity criterion;
U = {uij}: membership degree of object i to cluster j;
V = {v1,…,vc}: set of centroids, where vj is the centroid of cluster j; ∥ − ∥ : distance from object xi to centroid vj using the Euclidean distance;
ΔU: convergence criterion (the difference of the membership degrees values in two con-
secutive iterations);
ΔV: convergence criterion (the difference of the centroids values in two consecutive itera-
tions);
ΔoldJm: convergence criterion (the difference of the objective function values in two consec-
utive iterations);
ΔnewJm: new convergence criterion (the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one).

i −

Axioms 2024, 13, x FOR PEER REVIEW 2 of 16

Traditionally, clustering algorithms are divided into hierarchical and partitional [7].
In turn, partitional algorithms are divided into two: hard and soft [8–10]; their main ex-
ponents are K-Means [11] and Fuzzy C-Means (FCM) [12], respectively. For the rest of this
paper, when we speak of the FCM algorithm, we mean the Bezdek algorithm proposed in
[13].

The main characteristic of K-Means is that it generates hard partitions (i.e., each ob-
ject belongs to a single cluster); in contrast, FCM generates a fuzzy partition, where objects
have some degree of membership in each cluster. For this reason, one of the advantages
of FCM over K-Means is the quality of results when the interpretation of the results has a
gradated interpretation, which is related to the fuzzy partition concept. However, the
computational complexity of FCM is higher than that of K-Means. Article [14] mentions
that the time complexity of FCM is O(ndc2t), where n is the number of objects, d is the
number of dimensions or objects attributes, c is the number of clusters, and t is the number
of iterations. The clustering problem can be described as follows: let X = {x1, …, xn} be the
dataset of n objects to be partitioned, where ∈ ℝ for = 1, … , , and c is the number
of clusters where 2 ≤ ≤ .

The fuzzy clustering problem was formulated initially as an optimization problem
that consisted of the minimization of an objective function [15,16]. Later, this formulation
was improved by Dunn and Bezdek. Next, the formulation by Bezdek [12] is presented.
Expression (1) shows the objective function. The decision variables are the matrix of mem-
bership degrees U and the set of centroids V. ∶ , = ∑ ∑ (−) (1)

subject to ∈ 0,1 ; 1 ≤ ≤ , 1 ≤ ≤ , (2)∑ = 1, 1 ≤ ≤ , (3)= 1 = , (4)0 < ∑ < , 1 ≤ ≤ , (5)

Notation
In this section, the notation needed in this paper is defined:

m: weighting exponent or fuzzy factor, m > 1;
c: number of clusters in X;
n: number of objects in X;
ε: threshold value;
i: index of objects;
j: index of cluster;
t: iteration count;
T: maximum number of iterations;
X = {x1, …, xn}: set of n objects to be partitioned according to a similarity criterion;
U = {uij}: membership degree of object i to cluster j;
V = {v1,…,vc}: set of centroids, where vj is the centroid of cluster j; ∥ − ∥ : distance from object xi to centroid vj using the Euclidean distance;
ΔU: convergence criterion (the difference of the membership degrees values in two con-
secutive iterations);
ΔV: convergence criterion (the difference of the centroids values in two consecutive itera-
tions);
ΔoldJm: convergence criterion (the difference of the objective function values in two consec-
utive iterations);
ΔnewJm: new convergence criterion (the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one).

j
)2 (1)

subject to
Uij ∈ [0, 1]; 1 ≤ i ≤ n, 1 ≤ j ≤ c, (2)

∑c
j=1 Uij = 1, 1 ≤ i ≤ n, (3)

Uij = 1 i f

Axioms 2024, 13, x FOR PEER REVIEW 2 of 16

Traditionally, clustering algorithms are divided into hierarchical and partitional [7].
In turn, partitional algorithms are divided into two: hard and soft [8–10]; their main ex-
ponents are K-Means [11] and Fuzzy C-Means (FCM) [12], respectively. For the rest of this
paper, when we speak of the FCM algorithm, we mean the Bezdek algorithm proposed in
[13].

The main characteristic of K-Means is that it generates hard partitions (i.e., each ob-
ject belongs to a single cluster); in contrast, FCM generates a fuzzy partition, where objects
have some degree of membership in each cluster. For this reason, one of the advantages
of FCM over K-Means is the quality of results when the interpretation of the results has a
gradated interpretation, which is related to the fuzzy partition concept. However, the
computational complexity of FCM is higher than that of K-Means. Article [14] mentions
that the time complexity of FCM is O(ndc2t), where n is the number of objects, d is the
number of dimensions or objects attributes, c is the number of clusters, and t is the number
of iterations. The clustering problem can be described as follows: let X = {x1, …, xn} be the
dataset of n objects to be partitioned, where ∈ ℝ for = 1, … , , and c is the number
of clusters where 2 ≤ ≤ .

The fuzzy clustering problem was formulated initially as an optimization problem
that consisted of the minimization of an objective function [15,16]. Later, this formulation
was improved by Dunn and Bezdek. Next, the formulation by Bezdek [12] is presented.
Expression (1) shows the objective function. The decision variables are the matrix of mem-
bership degrees U and the set of centroids V. ∶ , = ∑ ∑ (−) (1)

subject to ∈ 0,1 ; 1 ≤ ≤ , 1 ≤ ≤ , (2)∑ = 1, 1 ≤ ≤ , (3)= 1 = , (4)0 < ∑ < , 1 ≤ ≤ , (5)

Notation
In this section, the notation needed in this paper is defined:

m: weighting exponent or fuzzy factor, m > 1;
c: number of clusters in X;
n: number of objects in X;
ε: threshold value;
i: index of objects;
j: index of cluster;
t: iteration count;
T: maximum number of iterations;
X = {x1, …, xn}: set of n objects to be partitioned according to a similarity criterion;
U = {uij}: membership degree of object i to cluster j;
V = {v1,…,vc}: set of centroids, where vj is the centroid of cluster j; ∥ − ∥ : distance from object xi to centroid vj using the Euclidean distance;
ΔU: convergence criterion (the difference of the membership degrees values in two con-
secutive iterations);
ΔV: convergence criterion (the difference of the centroids values in two consecutive itera-
tions);
ΔoldJm: convergence criterion (the difference of the objective function values in two consec-
utive iterations);
ΔnewJm: new convergence criterion (the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one).

i =

Axioms 2024, 13, x FOR PEER REVIEW 2 of 16

Traditionally, clustering algorithms are divided into hierarchical and partitional [7].
In turn, partitional algorithms are divided into two: hard and soft [8–10]; their main ex-
ponents are K-Means [11] and Fuzzy C-Means (FCM) [12], respectively. For the rest of this
paper, when we speak of the FCM algorithm, we mean the Bezdek algorithm proposed in
[13].

The main characteristic of K-Means is that it generates hard partitions (i.e., each ob-
ject belongs to a single cluster); in contrast, FCM generates a fuzzy partition, where objects
have some degree of membership in each cluster. For this reason, one of the advantages
of FCM over K-Means is the quality of results when the interpretation of the results has a
gradated interpretation, which is related to the fuzzy partition concept. However, the
computational complexity of FCM is higher than that of K-Means. Article [14] mentions
that the time complexity of FCM is O(ndc2t), where n is the number of objects, d is the
number of dimensions or objects attributes, c is the number of clusters, and t is the number
of iterations. The clustering problem can be described as follows: let X = {x1, …, xn} be the
dataset of n objects to be partitioned, where ∈ ℝ for = 1, … , , and c is the number
of clusters where 2 ≤ ≤ .

The fuzzy clustering problem was formulated initially as an optimization problem
that consisted of the minimization of an objective function [15,16]. Later, this formulation
was improved by Dunn and Bezdek. Next, the formulation by Bezdek [12] is presented.
Expression (1) shows the objective function. The decision variables are the matrix of mem-
bership degrees U and the set of centroids V. ∶ , = ∑ ∑ (−) (1)

subject to ∈ 0,1 ; 1 ≤ ≤ , 1 ≤ ≤ , (2)∑ = 1, 1 ≤ ≤ , (3)= 1 = , (4)0 < ∑ < , 1 ≤ ≤ , (5)

Notation
In this section, the notation needed in this paper is defined:

m: weighting exponent or fuzzy factor, m > 1;
c: number of clusters in X;
n: number of objects in X;
ε: threshold value;
i: index of objects;
j: index of cluster;
t: iteration count;
T: maximum number of iterations;
X = {x1, …, xn}: set of n objects to be partitioned according to a similarity criterion;
U = {uij}: membership degree of object i to cluster j;
V = {v1,…,vc}: set of centroids, where vj is the centroid of cluster j; ∥ − ∥ : distance from object xi to centroid vj using the Euclidean distance;
ΔU: convergence criterion (the difference of the membership degrees values in two con-
secutive iterations);
ΔV: convergence criterion (the difference of the centroids values in two consecutive itera-
tions);
ΔoldJm: convergence criterion (the difference of the objective function values in two consec-
utive iterations);
ΔnewJm: new convergence criterion (the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one).

j, (4)

0 < ∑n
i=1 Uij < n, 1 ≤ j ≤ c, (5)

Notation
In this section, the notation needed in this paper is defined:

m: weighting exponent or fuzzy factor, m > 1;
c: number of clusters in X;
n: number of objects in X;
ε: threshold value;
i: index of objects;
j: index of cluster;
t: iteration count;
T: maximum number of iterations;
X = {x1, . . ., xn}: set of n objects to be partitioned according to a similarity criterion;
U = {uij}: membership degree of object i to cluster j;
V = {v1,. . .,vc}: set of centroids, where vj is the centroid of cluster j;
∥ xi − vj ∥2: distance from object xi to centroid vj using the Euclidean distance;
∆U: convergence criterion (the difference of the membership degrees values in two consec-
utive iterations);
∆V: convergence criterion (the difference of the centroids values in two consecutive iterations);
∆oldJm: convergence criterion (the difference of the objective function values in two consec-
utive iterations);
∆newJm: new convergence criterion (the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one).

Expression (2) indicates that the membership degree of object i to cluster j must be
between 0 and 1. Expression (3) declares that the sum of the membership degrees of any

Axioms 2024, 13, 35 3 of 16

object i to all the clusters must equal 1. Expression (4) states that the membership degree
of an object i to a cluster j must equal 1 if the object xi lies at the same position of centroid
vj. Expression (5) declares that for each cluster j, the sum of the membership degrees of
all the objects to cluster j must be greater than 0 and less than n (i.e., there may not be any
centroid vj such that the sum of the membership degrees of all the objects to vj equals 0).

The solution method mentioned by Bezdek in [12] consists of performing the calcula-
tion of Expressions (6) and (7) alternately, until a convergence criterion is satisfied.

vj =
∑n

i=1
(
uij

)mxi

∑n
i=1

(
uij

)m , 1 ≤ j ≤ c, (6)

uij =
1

∑c
k=1

(
(xi−vj)

2

(xi−vk)
2

)2/(m−1)
, 1 ≤ i ≤ n, 1 ≤ j ≤ c. (7)

Expressions (8) and (9) show two convergence criteria [12,13], whose values are used
to stop the algorithm when a stop condition is met. Usually, the threshold values are
denoted by symbol ε.

∆U(t) = max
(

abs
(

uij
(t−1) − uij

(t)
))

(8)

∆V(t) = max
(

abs
(

vij
(t−1) − vij

(t)
))

(9)

The pseudocode of the FCM Algorithm 1 described next is based on article [13].

Algorithm 1: FCM

Input: dataset X, c, m, ε, T
Output: V, U
1 Initialization:
2 t: = 0;
3 ε: = 0.01;
4 U(t): = {u11, . . ., uij} is randomly generated;
5 Calculate centroids:
6 Calculate the centroids using Equation (6);
7 Calculate membership matrix:
8 Update and calculate the membership matrix using Equation (7);
9 Convergence:
10 If ∆U(t) < ε or t = T:
11 Stop the algorithm;
12 Otherwise:
13 U(t): = U(t + 1) and t: = t + 1;
14 Go to Calculate centroids
15 End of algorithm

According to Algorithm 1, the input parameters are five: dataset X, the number of
clusters c, the weighting exponent m, the threshold value ε, and the maximum number of
iterations T. The output parameters or decision variables are the matrix of membership
degrees U and the set of centroids V. In the initialization phase, the iteration count t is
set to 0, the threshold value ε is set to 0.01, and the initial matrix of membership degrees
is randomly generated. The cycle starts at line 5, where centroids are calculated, and at
line 7, the calculation of the membership matrix is performed. Notice that line 10 defines
a convergence criterion constituted of two stop conditions, such that the algorithm stops
when any one is met.

It is known that the efficiency of the FCM algorithm depends, among other factors, on
the initialization and convergence strategies. In this research, a new convergence strategy
is proposed, which is based on a new indicator defined by the difference of the objective

Axioms 2024, 13, 35 4 of 16

function values, in two consecutive iterations, expressed as a percentage of its value in the
next to the last one. Additionally, a new method is proposed to optimize the selection of
values for the stop threshold based on the Pareto principle.

This paper is organized as follows: Section 2 presents related work. Section 3 shows
the improvement proposal. Section 4 reports the results obtained. Finally, conclusions are
presented in Section 5.

2. Related Work

The FCM algorithm consists of four phases: initialization, centroids calculation, mem-
bership matrix calculation, and convergence [13]. In this article, we will focus on the
last phase.

2.1. Convergence

In the convergence phase of the FCM algorithm, the stop criterion may include one or
two stop conditions. Four stop conditions have been considered: (i) a maximum number
of iterations (T); (ii) the value of indicator ∆U is smaller than a threshold ε; (iii) the value
of indicator ∆V is smaller than a threshold ε; and (iv) the value of indicator ∆oldJm (see
Expression (10)) is smaller than a threshold ε. In those cases where the convergence criterion
consists of two conditions, the algorithm stops when one of them is met.

∆old Jm
(t) = (Jm

(t−1) − Jm
(t)) < ε (10)

Next, on a timeline, the main projects on the convergence phase are briefly described.
In its origins, in 1969–1970, Ruspini used ∆U as convergence indicator [15,16]. However,
he did not propose a value for threshold ε. It is important to mention that Ruspini was the
first to formulate the fuzzy clustering problem as an optimization problem including an
objective function. The solution method that he used was the gradient method. Later, in
1973, Dunn improved the Ruspini model with some changes in the objective function [17].
The solution method used by Dunn was the Lagrange multipliers, and the convergence
indicator was ∆V. The value for the threshold was 0.00001. Following this timeline, Bezdek,
in his PhD dissertation, continued Dunn’s research [12]. In particular, he incorporated
variable m in the term (uij)m, where m is the m-th power of the membership degree of the
i-th object to cluster j.

Table 1 shows the different stop criteria proposed by Ruspini, Dunn, and Bezdek.
The structure of Table 1 is the following: column one indicates the reference to the related
publication, column two presents the author name, column three shows the publication
year, column four presents the threshold values used, column five indicates if a maximum
number of iterations (T) was utilized as a stop condition, column six specifies if the indicator
∆U was used, and column seven indicates if the convergence indicator ∆V was utilized.

Table 1. Threshold values proposed by Ruspini, Dunn, and Bezdek.

Ref. Author Year ε
Convergence Criterion

T ∆U ∆V

[15,16] Ruspini 1969–1970 — ✓
[17] Dunn 1973 0.00001 ✓
[12] Bezdek 1973 0.0001 ✓ ✓

[18,19] Bezdek 1974 0.0001 ✓
[20] Bezdek 1975 0.001 ✓ ✓
[21] Bezdek 1976 0.01 ✓
[22] Bezdek 1981 0.01 ✓
[13] Bezdek 1984 0.01 ✓ ✓
[23] Bezdek 1986 0.001 ✓ ✓

Axioms 2024, 13, 35 5 of 16

In subsequent years and according to the specialized literature, several threshold
values were proposed: for example, 0.1 [24], 0.01 [13,22,23], 0.001 [5,10,23,25,26], 0.0001 [27],
0.00001 [28–30], 0.000001 [31,32], 0.000000001 [33], 0.03 [34]. In some publications, the
authors mention that they obtained good results with the proposed threshold values.
However, to the knowledge of the authors of this article, none of the proposals for threshold
values presents quantitative arguments that relate the quality of the solution obtained to
the threshold values. In this sense, this research proposes a new approach to quantitatively
choose the best threshold values to obtain a good-quality solution.

2.2. Improvements of the FCM Algorithm That Modify the Objective Function

In the specialized literature, there exist several publications that propose FCM variants
of the objective function. A generalization of the objective function is shown in [35]. Other
changes in the objective function are oriented to assign importance weights or weighting
factors, for example, to the Euclidean distance [36,37], objects and clusters [30,38,39], and
attributes [30,40]. These variants include as the convergence indicator the difference of
the objective function values in two consecutive iterations, which is denoted by ∆oldJm; see
Expression (10). It is important to mention that, in the aforesaid variants, the stop criterion
consists of two conditions: one is when a maximum number of iterations is reached, and
the other is when ∆oldJm is smaller than a threshold. Table 2 shows the improvements to
the FCM algorithm that include the convergence indicator ∆oldJm. The structure of Table 2
is the following: column one indicates the reference to the publication, column two shows
the publication year, and column three presents the threshold value ε.

Table 2. Improvements to the FCM algorithm that include the convergence indicator ∆oldJm.

Ref. Year ε

[36] 2004 —
[38] 2008 —
[37] 2008 —
[39] 2016 —
[30] 2019 0.00001
[40] 2023 0.00001

Notice that in Table 2, for publications [36–39], the value of parameter ε is not explicitly
mentioned.

It is important to mention that, in our proposed convergence indicator ∆newJm (see
Expression (11)), as well as for indicator ∆oldJm, the objective values for consecutive it-
erations are used. However, an important limitation of indicator ∆oldJm is the difficulty
selecting the adequate threshold values. Basically, to define an efficient threshold value, it
is necessary to know the range of values of the objective function prior to the conclusion
of the algorithm. In this sense, our proposal for indicator ∆newJm is independent of the
range of values that the objective function may have, since the threshold value is defined
as a percentage of the objective function value. A detailed description of our indicator is
presented in the next section.

3. Proposal

Our improvement proposal for FCM consists of two parts: a new convergence in-
dicator and an improved selection of the stop thresholds for the algorithm through the
Pareto principle.

3.1. Proposal for a New Convergence Indicator

The FCM algorithm uses ∆U as convergence indicator, in particular, the largest change
in the value of elements uij in two iterations. One of the limitations of this approach
is that the indicator value is detached from the values of the objective function. This
hinders the selection of threshold values that allow for providing a balance between the

Axioms 2024, 13, 35 6 of 16

number of iterations and the solution quality. In this sense, a new convergence indicator
is proposed, which is based on the difference of the objective function values, in two
consecutive iterations, expressed as a percentage of its value in the next to the last one; see
Expression (11).

∆new Jm
(t) = 100 ∗

(
Jm

(t−1) − Jm
(t)
)

Jm
(t−1)

(11)

In order to compare the values of indicators ∆newJm
(t) and ∆U(t), a dataset was

solved and, in general, we noticed that they were highly correlated, and in every case,
the correlation was larger than 0.9. The correlation calculation was carried out using
Expressions (12) and (13), which are related to the Pearson correlation. In particular, when
solving the real Abalone dataset [41], a correlation of 0.94 was found. Such a dataset consists
of 4177 objects with seven dimensions.

p(∆Jm, ∆U) =
∑T

t=2

[(
∆Jm

(t) − Y
)(

∆U(t) − ν
)]

√
∑T

t=2

(
∆Jm

(t) − Y
)2√

∑T
t=2

(
∆U(t) − ν

)2
= 0.94, (12)

where:
Y =

1
t ∑T

t=2 ∆Jm
(t) and υ =

1
t ∑T

t=2 ∆U(t). (13)

3.2. Method to Determine Threshold Values

It is known that the Pareto principle [42–45] allows for determining the optimal
relation between effort and benefit when solving a dataset [46,47]. In this case, the effort is
measured by the number of iterations or computer time, and the benefit is the value of the
objective function when the algorithm stops. To apply the Pareto principle, it is necessary
to solve at least one dataset with the same characteristics as those of the dataset that it is
intended to be solved. Once we have the intermediate results of each iteration, the final
value of the objective function and the number of iterations, a series of steps are applied
to obtain the optimal relation between the number of iterations and the solution quality.
In particular, the selection of the optimal relationship is guided by the minimum distance
between the current solution and the ideal solution (0 iterations, 100% efficiency). From
the determination of the optimal relation, the threshold values are established. A detailed
description on the use of the Pareto principle can be found in [46].

In order to illustrate the process we followed to calculate thresholds, the rest of this
section shows the results from applying the Pareto principle to the results obtained from
solving the real Abalone dataset, using FCM and 0.01 as the threshold. It is important
to remark that we chose the value for ε = 0.01 because it is the least restrictive of the
values proposed in Tables 1 and 2. More restrictive threshold values cause the algorithm to
generate more iterations.

Table 3 shows the relation that exists between computational effort and solution
quality effort and solution quality. Column one indicates the iteration count; column
two shows the number of iterations carried out At (expressed as a percentage of the total
number of iterations), where At = 100 ∗ (t/T); column three presents the reduction of
the objective function value in two consecutive iterations, Bt, expressed as a percentage
of the decrease of the objective function from the 1st iteration to the final one, where
Bt = 100 ∗ (Jm

(t−1) − Jm
(t))/(Jm

1 − Jm
T); column four shows the value of the Euclidean dis-

tance Dt between points (At, Ct) and (0, 100), where Dt =
√
(0 − At)2 + (100 − Ct)2;

column five presents the cumulative value of the reduction percentages of the objective
function values, where Ct = Ct−1 + Bt; and column six shows the value of the convergence
indicator ∆newJm for each iteration.

Axioms 2024, 13, 35 7 of 16

Table 3. Some intermediate and final results from FCM when solving Abalone.

Iteration (t) At Bt Dt Ct ∆newJm
(t)

13 4.45 0.59 5.81 96.25 2.36
14 4.79 0.66 5.69 96.92 2.71
15 5.13 0.56 5.72 97.48 2.34
.
17 5.82 0.21 6.14 98.03 0.90
.
29 9.93 0.03 9.98 99.01 0.15
.
292 100 0.00 100 100 0.0024

Figure 1 shows the Pareto diagram for points (At, Ct); see columns two and five of
Table 3. The A-axis indicates the percentages of the total number of iterations, and the
C-axis indicates the cumulative value of the reduction percentages of the objective function.
Therefore, point G with coordinates (4.79, 96.92) means that, with 4.79% of iterations, 96.92%
of the cumulative value of reductions of the objective function was attained. In case the
algorithm is stopped at this point, there will only be a quality decrease of 3.08% of the
objective function.

Axioms 2024, 13, x FOR PEER REVIEW 7 of 16

number of iterations), where At = 100*(t/T); column three presents the reduction of the
objective function value in two consecutive iterations, Bt, expressed as a percentage of the
decrease of the objective function from the 1st iteration to the final one, where Bt =
100*(Jm(t−1) − Jm(t))/(Jm1 − JmT); column four shows the value of the Euclidean distance Dt be-
tween points (At, Ct) and (0, 100), where 𝐷 = (0 − 𝐴) (100 − 𝐶) ; column five pre-
sents the cumulative value of the reduction percentages of the objective function values,
where Ct = Ct−1 + Bt; and column six shows the value of the convergence indicator ΔnewJm
for each iteration.

Table 3. Some intermediate and final results from FCM when solving Abalone.

Iteration (t) At Bt Dt Ct ΔnewJm(t)
13 4.45 0.59 5.81 96.25 2.36
14 4.79 0.66 5.69 96.92 2.71
15 5.13 0.56 5.72 97.48 2.34
… … … … … …
17 5.82 0.21 6.14 98.03 0.90
… … … … … …
29 9.93 0.03 9.98 99.01 0.15
… … … … … …
292 100 0.00 100 100 0.0024

Figure 1 shows the Pareto diagram for points (At, Ct); see columns two and five of
Table 3. The A-axis indicates the percentages of the total number of iterations, and the C-
axis indicates the cumulative value of the reduction percentages of the objective function.
Therefore, point G with coordinates (4.79, 96.92) means that, with 4.79% of iterations,
96.92% of the cumulative value of reductions of the objective function was attained. In
case the algorithm is stopped at this point, there will only be a quality decrease of 3.08%
of the objective function.

Figure 1. Pareto optimality for Abalone, ε = 0.01. Figure 1. Pareto optimality for Abalone, ε = 0.01.

Notice that point G is the one with the smallest distance Dt to point (0, 100), located
in the upper left corner of the diagram. According to the Pareto principle, the aforesaid
point is the one with an optimal relation between effort and benefit. As can be seen in row
two of Table 3, the coordinates of point G correspond to iteration 14 at the intersection with
columns two and five. To determine the optimal value of the threshold, it is necessary to
look at the crossing of row two and column six of the said table, and it is found that the
value of ∆newJm

(t) is 2.71%. This means that, when the difference of the objective function
in two consecutive iterations is less than 2.71% of the value of the objective function in
the preceding iteration, the algorithm stops. It is worth mentioning that, if the algorithm
stopped at this iteration, 95.21% of the iterations could be avoided, and 96.92% of the

Axioms 2024, 13, 35 8 of 16

cumulative value of the reduction percentages of the objective function would be obtained
(see the intersection of row two and column five). The quality decrease of the objective
function would only be 3.08%.

Notice that points F, G, H, I, and J have cumulative values of the reduction percentages
of the objective function equal to 96.25, 96.92, 97.48, 98.03, and 99.01, respectively, and they
correspond to iterations 13, 14, 15, 17, and 29, respectively. As can be observed in Figure 1,
the relation between computational effort and solution quality is not linear. See also that,
as one aims to increase the solution quality, the number of iterations required grows in a
larger proportion.

Table 4 shows some intermediate results when solving the Abalone dataset using
FCM in order to compare values of the solution quality and the computational effort
required. The values in each row correspond to the iteration indicated in column one.
Column one indicates the iteration number, column two shows the percentage of the total
number of iterations that would be reduced if the algorithm stops in the current iteration,
column three presents the cumulative value of the reduction percentages of the objective
function up to this iteration, column four shows the percentage of quality decrease of the
objective function in case the algorithm stops in this iteration, column five presents the
value of the objective function calculated in the iteration, column six shows the value of the
proposed convergence indicator for the iteration, and column seven presents the value of
the traditional convergence indicator of FCM.

Table 4. Results of interest from FCM when solving Abalone.

Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 99.65 -- -- 28.20 -- 0.99
-- -- -- -- -- -- --
14 95.20 96.92 3.08 5.56 2.71 0.44
15 94.86 97.48 2.52 5.43 2.34 0.42
-- -- -- -- -- -- --
17 94.18 98.03 1.96 5.30 0.90 0.22
-- -- -- -- -- -- --
29 90.07 99.01 0.99 5.07 0.15 0.06
-- -- -- -- -- -- --

292 0 100 0 4.84 0.0024 0.0094

The rows of Table 4 show the values for some iterations of interest. Notice that the
values in column three are approximately 96, 97, 98, 99, and 100 percent and correspond to
iterations 14, 15, 17, 29, and 292, respectively. As can be observed, for improving quality
from 96 to 97 percent, only 1 iteration was needed; however, for improving from 99 to
100 percent, 263 iterations were required. The last case shows a possible inefficiency of the
algorithm because a minimal improvement was obtained at the cost of a high computational
cost. In contrast, according to the Pareto principle, the optimal relation between effort
and benefit occurs in iteration 14. Therefore, the value 2.71 is suggested as the stop
threshold using our proposed indicator (column six) instead of the value 0.44 when using
the traditional convergence indicator of FCM (column seven). It is remarkable that the
values of our indicator are more intuitive because they are defined as a percentage of the
objective function value, which does not happen with the traditional indicator of FCM.

It is predictable that each application requires different degrees of solution quality
and, therefore, different convergence thresholds. Thus, for example, if some user needs
a solution quality of 97.5%, a value of 2.34% for the stop threshold is suggested for our
indicator. With this value, there would be reductions of 94.86% in the number of iterations
and only 2.52% in the solution quality.

Algorithm 2, shown next, integrates our proposed improvement to the FCM algorithm,
which we call Pareto Fuzzy C-Means (P-FCM). In particular, we want to call attention to
line 9, where the new convergence indicator is integrated.

Axioms 2024, 13, 35 9 of 16

Algorithm 2: P-FCM

Input: Dataset X, V, c, m, ε
Output: V, U
1 Initialization:
2 t: = 0;
3 U(t): = {u11, . . ., uij} is randomly generated;
4 Calculate centroids:
5 Calculate the centroids using Equation (6);
6 Calculate membership matrix:
7 Update and calculate the membership matrix using Equation (7);
8 Convergence:
9 If ∆newJm

(t) ≤ ε:
10 Stop the algorithm;
11 Otherwise:
12 U(t): = U(t + 1) and t: = t + 1;
13 Go to Classification
14 End of algorithm

As a summary, this section shows the steps of the proposed method to obtain the
thresholds for the FCM algorithm:

Figure 2 shows a diagram of the method to obtain the threshold.

Axioms 2024, 13, x FOR PEER REVIEW 10 of 16

Figure 2. Diagram to obtain thresholds for FCM.

4. Results
For evaluating our proposed approach, three experiments were conducted, where

three real datasets obtained from the UCI repository were used [41]. In the implementa-
tion of FCM, the computation and storage of the values of indicators ΔnewJm and ΔU for
each iteration were included in order to report their values at each iteration.

4.1. Experimental Environment
Algorithm FCM was implemented in the C language and compiled using GCC 7.4.0.

The experiments were carried out on an Acer Nitro 5 computer with the Windows 11 op-
erating system, an Intel® Core™ i7-11800H processor at 2.30 GHz, 16 GB of RAM, a 512
GB SSD, and a 1 TB HDD.

4.2. Description of the Datasets
The datasets were obtained from the UCI Machine Learning Repository [41]. Table 5

shows the characteristics of the datasets. The structure of Table 5 is the following: column
one presents the name of the dataset; columns two and three show the quantity of data
and dimensions, respectively; and column four shows the dataset size, which is the prod-
uct of columns two and three.

Table 5. Real datasets.

Name n d n × d
Abalone 4177 7 29,239

Wine 4898 11 53,878
Urban 360,177 2 720,354

4.3. Test Cases
Test cases are designed for showing how different threshold values can generate dif-

ferent reductions in the number of iterations and solution quality.
The parameters used for executing the FCM algorithm were the same in all experi-

ments. In particular, the values of m = 2 and ε = 0.01 were selected based on article [13],
which mentions that they are reasonable values. The value of c = 50 was chosen because it
is the highest reported in the literature [48]. Furthermore, because the focus of this re-
search is aimed at solving large datasets, it is foreseeable that a larger number of clusters
will also be required.

Figure 2. Diagram to obtain thresholds for FCM.

Step 1: Solve a dataset with parameter values similar to those of the types of datasets
that will be solved.

Step 2: Apply the Pareto principle to the solution results to determine the effort–
quality relationship. It is necessary to store the intermediate and final data of the algorithm
execution.

Step 3: Determine threshold values for dataset type. If necessary, select those thresh-
olds that meet the required solution quality.

Step 4: Incorporate the convergence criterion in the FCM algorithm and solve the
datasets of the selected dataset type.

4. Results

For evaluating our proposed approach, three experiments were conducted, where
three real datasets obtained from the UCI repository were used [41]. In the implementation
of FCM, the computation and storage of the values of indicators ∆newJm and ∆U for each
iteration were included in order to report their values at each iteration.

Axioms 2024, 13, 35 10 of 16

4.1. Experimental Environment

Algorithm FCM was implemented in the C language and compiled using GCC 7.4.0.
The experiments were carried out on an Acer Nitro 5 computer with the Windows 11
operating system, an Intel® Core™ i7-11800H processor at 2.30 GHz, 16 GB of RAM, a
512 GB SSD, and a 1 TB HDD.

4.2. Description of the Datasets

The datasets were obtained from the UCI Machine Learning Repository [41]. Table 5
shows the characteristics of the datasets. The structure of Table 5 is the following: column
one presents the name of the dataset; columns two and three show the quantity of data and
dimensions, respectively; and column four shows the dataset size, which is the product of
columns two and three.

Table 5. Real datasets.

Name n d n × d

Abalone 4177 7 29,239
Wine 4898 11 53,878
Urban 360,177 2 720,354

4.3. Test Cases

Test cases are designed for showing how different threshold values can generate
different reductions in the number of iterations and solution quality.

The parameters used for executing the FCM algorithm were the same in all experi-
ments. In particular, the values of m = 2 and ε = 0.01 were selected based on article [13],
which mentions that they are reasonable values. The value of c = 50 was chosen because it
is the highest reported in the literature [48]. Furthermore, because the focus of this research
is aimed at solving large datasets, it is foreseeable that a larger number of clusters will also
be required.

4.3.1. Description of Experiment I

The first experiment consisted of solving Abalone five times using FCM. Table 4 shows
the execution from which the best efficiency was obtained.

In Table 4, notice that the optimal result, with respect to effort and solution quality,
occurs in iteration 14 with a threshold value of 2.71%. With this value, a decrease of 95.20%
in the number of iterations and a quality reduction of 3.08% were obtained.

4.3.2. Description of Experiment II

The second experiment consisted of solving Wine five times using FCM. Table 6 shows
the execution from which the best efficiency was obtained.

Table 6 shows that the optimal result with respect to effort and solution quality occurs
in iteration 15 with a threshold value of 1.77%. Notice that, for this value, a decrease of
89.78% in the number of iterations and a reduction of 5.98% of the solution quality were
obtained.

4.3.3. Description of Experiment III

The third experiment consisted of solving Urban five times using FCM. Table 7 shows
the execution from which the best efficiency was obtained.

Table 7 shows that the optimal result with respect to effort and solution quality occurs
in iteration 17, where an 83% reduction in iterations and a 9.32% loss of quality were
obtained. The value obtained for the threshold in this iteration was 5.51.

Axioms 2024, 13, 35 11 of 16

Table 6. Results of interest from FCM when solving Wine.

Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 99.27 -- -- 207,288.90 -- 0.15
-- -- -- -- -- -- --
15 89.78 94.02 5.98 82,439.54 1.77 0.33
-- -- -- -- -- -- --
16 88.33 95.77 4.23 80,114.034 1.31 0.34
17 87.59 96.44 3.55 79,223.43 1.11 0.29
-- -- -- -- -- -- --
19 86.13 97.36 2.64 77,997.14 0.67 0.27
-- -- -- -- -- -- --
22 83.94 98.17 1.83 76,925.08 0.39 0.16
-- -- -- -- -- -- --
27 80.29 99.01 0.99 75,819.27 0.26 0.12
-- -- -- -- -- -- --

137 0 100 0 74,500.37 0.0007 0.0098

Table 7. Results of interest from FCM when solving Urban.

Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 99 -- -- 26,283.06 -- 0.56
-- -- -- -- -- -- --
17 83 90.69 9.32 7637.21 5.51 0.97
18 82 91.49 8.51 7473.50 2.14 0.54
-- -- -- -- -- -- --
20 80 92.16 7.84 7335.26 0.66 0.23
-- -- -- -- -- -- --
22 78 93.01 6.99 7161.84 1.57 0.33
-- -- -- -- -- -- --
24 76 94.32 5.68 6891.88 1.33 0.28
-- -- -- -- -- -- --
26 74 95.50 4.49 6648.03 2.01 0.42
-- -- -- -- -- -- --
28 72 96.30 3.69 6483.56 1.1688 0.39
-- -- -- -- -- -- --
31 69 97.27 2.72 6284.52 1.0735 0.29
-- -- -- -- -- -- --
43 67 98.04 1.96 6127.57 0.15 0.32
-- -- -- -- -- -- --
73 27 99.26 0.73 5876.32 1.04 0.32
-- -- -- -- -- -- --

100 0 100 0 5724.92 0.0001 0.0087

4.4. Experiment Analysis

In this section, we analyze two types of threshold values. The first is the optimal
threshold that is obtained by applying the Pareto principle. Tables 8–10 present the results
obtained by solving five times the Abalone, Wine, and Urban datasets, respectively. Column
one indicates the execution number, column two indicates the iteration number, column
three shows the percentage of the total number of iterations that would be reduced if the
algorithm stops in the current iteration, column four presents the cumulative value of the
reduction percentages of the objective function up to this iteration, column five shows
the percentage of quality decrease of the objective function in case the algorithm stops
in this iteration, column six presents the value of the objective function calculated in the
iteration, column seven shows the value of the proposed convergence indicator for the
iteration, and column eight presents the value of the traditional convergence indicator of
FCM. The second type of threshold is the one whose values generate a solution quality of

Axioms 2024, 13, 35 12 of 16

99%. Tables 11–13 show the results from solving s times the Abalone, Wine, and Urban
datasets, respectively.

Table 8. Optimal threshold values from Abalone.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 11 93.03 96.18 3.82 5.70 4.46 0.73
2 14 95.21 96.92 3.08 5.56 2.71 0.44
3 15 95.57 96.52 3.48 5.61 2.03 0.48
4 14 95.64 97.04 2.96 5.52 2.33 0.67
5 16 95.69 96.98 3.02 5.54 1.90 0.62

Average 5.58 2.68 0.58

Table 9. Optimal threshold values from Wine.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 14 89.79 94.02 5.98 82,439.54 1.77 0.33
2 13 89.17 92.75 7.25 84,076.47 2.33 0.38
3 10 87.35 88.94 11.06 89,294.37 2.57 0.43
4 10 86.31 89.22 10.78 88,774.58 2.73 0.44
5 13 88.89 93.31 6.69 83,474.63 2.04 0.35

Average 85,611.91 2.28 0.38

Table 10. Optimal threshold values from Urban.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 17 83.00 90.69 9.31 7637.21 5.51 0.97
2 15 83.15 88.81 11.19 8518.01 8.66 0.77
3 14 77.05 84.30 15.70 9100.69 10.29 0.79
4 15 77.28 87.70 12.30 8421.65 8.40 0.81
5 16 80.25 90.79 9.21 7598.11 6.30 0.51

Average 8255.13 7.83 0.77

Table 11. Threshold values from Abalone for a quality of 99%.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 17 89.25 99.06 0.94 5.04 0.82 0.15
2 29 90.07 99.01 0.99 5.07 0.15 0.06
3 52 84.62 99.01 0.99 5.06 0.13 0.08
4 31 90.35 99.01 0.99 5.06 0.16 0.11
5 51 86.29 99.02 0.98 5.06 0.14 0.09

Average 5.05 0.28 0.09

Axioms 2024, 13, 35 13 of 16

Table 12. Threshold values from Wine for a quality of 99%.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 27 80.29 99.01 0.99 75,819.27 0.25 0.12
2 29 75.84 99.01 0.99 75,739.98 0.21 0.12
3 24 69.63 99.04 0.96 75,860.19 0.44 0.16
4 26 64.39 99.03 0.97 75,734.01 0.34 0.13
5 25 78.64 99.01 0.99 75,903.72 0.26 0.12

Average 75,811.43 0.30 0.13

Table 13. Threshold values from Urban for a quality of 99%.

Execution Iteration % Reduction
Iterations Ct % Reduction

Quality Jm ∆newJm ∆U

1 73 27.00 99.26 0.74 5876.32 1.04 0.32
2 63 29.22 99.04 0.96 6472.90 0.14 0.24
3 39 36.07 99.12 0.88 6079.84 0.48 0.52
4 51 22.73 99.13 0.87 6094.44 0.60 0.33
5 50 38.28 99.01 0.99 5906.22 0.23 0.09

Average 6085.94 0.49 0.30

As can be observed in Tables 8 and 9, ∆newJm has similar average values. The average
for dataset Abalone is 2.68 and for dataset Wine is 2.28. However, this value is very different
for Urban, which has an average of 7.83.

The values of ∆newJm are a good indicator for stopping the algorithm because its
behavior with the Pareto principle shows that it is convenient to stop the algorithm in the
first iterations. This reduces the computational effort, and additionally, it obtains a good
result for the objective function. In the best case, a quality decrease of 2.96% was obtained,
and in the worst case, the quality reduction was 15.70%. Furthermore, a decrease of up
to 95.69% of the iterations was observed in the best case and a reduction of 77.05% in the
worst case.

Column seven of Tables 11–13 shows the threshold values that deliver more than 99%
of the solution quality. Notice that the largest reduction in the number of iterations was
90.35% in the fourth execution for Abalone, and the smallest decease was 22.73% in the
fourth execution for Urban.

5. Conclusions

In this article, the problem addressed is how to increase the efficiency of the FCM
algorithm by modifying the convergence phase. The novel contributions of the proposed
approach is described in the following three paragraphs.

The first is a new convergence indicator based on the values of the objective function
in two consecutive iterations. It is known that, since the pioneering works on FCM, a
convergence indicator has been used that is based on differences of the membership matrix
in two consecutive iterations. We carried out numerous correlation calculations between
the values of both indicators, and the correlation turned out to be very high in every case;
therefore, it is possible to substitute the original indicator with the one we propose without
affecting the algorithm behavior. Obviously, the threshold values of our indicator are
different, though equivalent to those of the original indicator. In this way, we suggest using
a threshold of 0.90 to obtain an approximate value of 98% of the solution quality and a
94.18% reduction in iterations, or a threshold of 0.15 for an approximate value of 99% of
the solution quality and a 90.07% decrease in iterations. Though it is possible to use any of
the two indicators (new or traditional) in FCM, our proposal has two advantages. The first
one is that it relates the value of the indicator to the values of the objective function, thus

Axioms 2024, 13, 35 14 of 16

intuitively allowing for performing adjustments of the threshold values. The second one is
that, because the indicator is expressed as a percentage of change, it is independent of the
value scale that the objective function may have during the executions of the algorithm.

The second is an innovative method to select stop threshold values that allows relating
the solution quality to the computational effort. Virtually since the origin of the Fuzzy
C-Means algorithm, 0.00001 and 0.01 were proposed as threshold values; however, no
quantitative arguments were presented on the efficiency of the algorithm with these values.
For understanding the behavior of the FCM algorithm, three datasets were solved using a
threshold of 0.01. In general, we found that the algorithm has inefficient behavior in more
than half of the iterations: for reducing the value of the objective function, each time it
needs a larger number of iterations. Thus, for example, in some executions of the algorithm,
it achieved 96.92% of the solution quality in iteration 14, 99% of the quality in iteration 29,
and 100% of the quality in iteration 292. In this example, if the algorithm would have been
stopped in iteration 29, the quality would have been reduced by 1%; however, the iterations
would have been reduced by 90.07%. As an aspect of the analysis of the experimental
results, it was observed that, generally, the value 0.01 is over-dimensioned and negatively
affects the algorithm efficiency. In this sense, we propose new general-purpose threshold
values. We suggest using a threshold value of 0.22 if a value of approximately 98% of
the solution quality and an approximately 94.18% reduction in iterations are wanted, or a
threshold value of 0.06 if a quality of 99% and a 90.07% decrease in iterations are needed.

Another contribution worth mentioning is the method for obtaining the threshold
values based on the Pareto principle. This approach quantitatively allows for relating the
computational effort to the solution quality in such a way that their optimal relation can
be obtained.

To continue the line of research of this article, the authors consider the use of variants
of the weighted Euclidean distance for different values of parameter weights as a direction
for future research.

Finally, we consider that our proposal contributes to the convergence phase of FCM
and has no conflict with improvements in its other phases, which allows its integration in
other variants of the algorithm.

Author Contributions: Conceptualization, J.P.-O., C.F.M.-C. and S.S.R.-A.; methodology, J.P.-O.,
N.N.A.-O. and C.F.M.-C.; software, C.F.M.-C. and S.S.R.-A.; validation, J.P.-O., C.F.M.-C., S.S.R.-A.,
N.N.A.-O. and J.M.R.-L.; formal analysis, J.P.-O., J.M.R.-L. and R.P.-R.; investigation, J.P.-O.,
C.F.M.-C. and S.S.R.-A.; resources, S.S.R.-A., N.N.A.-O., J.M.R.-L. and J.F.-S.; data curation,
S.S.R.-A., N.N.A.-O., R.P.-R. and C.F.M.-C.; writing—original draft preparation, J.P.-O., C.F.M.-C.
and S.S.R.-A.; writing—review and editing, J.P.-O., C.F.M.-C., S.S.R.-A., N.N.A.-O., J.F.-S. and
R.P.-R.; visualization, C.F.M.-C.; supervision, J.P.-O.; project administration, J.P.-O.; funding
acquisition, J.P.-O., J.F.-S. and J.M.R.-L. All authors have read and agreed to the published version
of the manuscript.

Funding: The student Carlos Fernando Moreno Calderón acknowledges the scholarship (grantee
No. 1000864) given to him by the Consejo Nacional de Humanidades, Ciencia y Tecnología, Mexico.

Data Availability Statement: The real datasets used were obtained from the UCI machine learning
repository at https://archive.ics.uci.edu/ml/index.php (accessed on 22 October 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ajin, V.W.; Kumar, L.D. Big Data and Clustering Algorithms. In Proceedings of the 2016 International Conference on Research

Advances in Integrated Navigation Systems (RAINS), Bangalore, India, 6–7 May 2016.
2. Giordani, P.; Ferraro, M.B.; Martella, F. Big data and clustering. In An Introduction to Clustering with R; Springer: Singapore, 2020;

pp. 111–121.
3. Nayak, J.; Naik, B.; Behera, H.S. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In Proceedings

of the Computational Intelligence in Data Mining, New Delhi, India, 20–21 December 2014.
4. Shukla, A.K.; Muhuri, P.K. Big-data clustering with interval type-2 fuzzy uncertainty modeling in gene expression datasets. Eng.

Appl. Artif. Intell. 2019, 77, 268–282. [CrossRef]

https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1016/j.engappai.2018.09.002

Axioms 2024, 13, 35 15 of 16

5. Pérez, J.; Roblero, S.S.; Almanza, N.N.; Solís, J.F.; Zavala, C.; Hernández, Y.; Landero, V. Hybrid Fuzzy C-Means clustering
algorithm oriented to big data realms. Axioms 2022, 11, 377. [CrossRef]

6. Pérez, J.; Rey, C.D.; Roblero, S.S.; Almanza, N.N.; Zavala, C.; García, S.; Landero, V. POFCM: A parallel fuzzy clustering algorithm
for large datasets. Mathematics 2023, 11, 1920. [CrossRef]

7. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng.
Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

8. Miyamoto, S.; Ichihashi, H.; Honda, K. Algorithms for Fuzzy Clustering Methods in C-Means Clustering with Applications; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 229.

9. Atiyah, I.; Mohammadpour, A.; Taheri, S. KC-Means: A fast fuzzy clustering. Hindawi Adv. Fuzzy Syst. 2018, 2018, 34861.
[CrossRef]

10. Bezdek, J.C. Elementary Cluster Analysis: Four Basic Methods That (Usually) Work; River Publishers: Gistrup, Denmark, 2022.
11. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965.
12. Bezdek, J.C. Fuzzy Mathematics in Pattern Classification. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1973.
13. Bezdek, J.C.; Ehrlich, R.; Full, W.E. FCM: The Fuzzy C-Means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
14. Ghosh, S.; Kumar, S. Comparative analysis of K-Means and Fuzzy C-Means algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4,

35–39. [CrossRef]
15. Ruspini, E.H. A new approach to clustering. Inf. Control 1969, 15, 22–32. [CrossRef]
16. Ruspini, E.H. Numerical methods for fuzzy clustering. Inf. Sci. 1970, 2, 319–350. [CrossRef]
17. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973, 3,

32–57. [CrossRef]
18. Bezdek, J.C. Numerical taxonomy with fuzzy sets. J. Math. Biol. 1974, 1, 57–71. [CrossRef]
19. Bezdek, J.C. Cluster validity with fuzzy sets. J. Cybern. 1974, 3, 58–73. [CrossRef]
20. Bezdek, J.C.; Dunn, J. Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions.

IEEE Trans. Comput. 1975, 24, 835–838. [CrossRef]
21. Bezdek, J.C. Feature Selection for Binary Data: Medical Diagnosis with Fuzzy Sets. In Proceedings of the AFIPS ‘76: National

Computer Conference and Exposition, New York, NY, USA, 7–10 June 1976.
22. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981.
23. Cannon, R.L.; Dave, J.V.; Bezdek, J.C. Efficient implementation of the Fuzzy C-Means clustering algorithms. IEEE Trans. Pattern

Anal. Mach. Intell. 1986, PAMI-8, 248–255. [CrossRef] [PubMed]
24. Song, X.; Shi, M.; Wu, J.; Sun, W. A new Fuzzy C-Means clustering-based time series segmentation approach and its application

on tunnel boring machine analysis. Mech. Syst. Signal Process. 2019, 133, 106279. [CrossRef]
25. Ramze, M.; Lelieveldt, B.P.F.; Reiber, J.H.C. A new cluster validity index for the Fuzzy C-Mean. Pattern Recognit. Lett. 1998, 19,

237–246. [CrossRef]
26. Shirkhorshidi, A.S.; Aghabozorgi, S.; Wah, T.Y.; Herawan, T. Big Data Clustering: A Review. In Proceedings of the Computational

Science and Its Applications—ICCSA 2014, Guimaráes, Portugal, 30 June–3 July 2014.
27. Singh, C.; Bala, A. A transform-based fast Fuzzy C-Means approach for high brain MRI segmentation accuracy. Appl. Soft Comput.

2019, 76, 156–173. [CrossRef]
28. Pal, N.R.; Bezdek, J.C. On cluster validity for the Fuzzy C-Means model. IEEE Trans. Fuzzy Syst. 1995, 3, 370–379. [CrossRef]
29. Stetco, A.; Zeng, X.J.; Keane, J. Fuzzy C-Means++: Fuzzy C-Means with effective seeding initialization. Expert Syst. Appl. 2015, 42,

7541–7548. [CrossRef]
30. Hashemzadeh, M.; Golzari Oskouei, A.; Farajzadeh, N. New Fuzzy C-Means clustering method based on feature-weight and

cluster-weight learning. Appl. Soft Comput. 2019, 78, 324–345. [CrossRef]
31. Xing, H.-J.; Hu, B.-G. An adaptive Fuzzy C-Means clustering-based mixtures of experts model for unlabeled data classification.

Neurocomputing 2008, 71, 1008–1021. [CrossRef]
32. Gamino, F.; Hernández, I.V.; Rosales, A.J.; Gallegos, F.J.; Mújica, D.; Ramos, E.; Carvajal, B.E.; Kinani, J.M.V. Block-matching

Fuzzy C-Means clustering algorithm for segmentation of color images degraded with Gaussian noise. Eng. Appl. Artif. Intell.
2018, 73, 31–49. [CrossRef]

33. Cebeci, Z.; Yıldız, F. Comparison of K-Means and Fuzzy C-Means algorithms on different cluster structures. J. Agricultural Inform.
2015, 6, 13–23. [CrossRef]

34. Kaur, P. Intuitionistic fuzzy sets based credibilistic Fuzzy C-Means clustering for medical image segmentation. Inter. J. Infor.
Technol. 2017, 9, 345–351. [CrossRef]

35. Tilson, L.V.; Excell, P.S.; Green, R.J. A Generalisation of the Fuzzy C-Means Clustering Algorithm. In Proceedings of the
International Geoscience and Remote Sensing Symposium, Remote Sensing: Moving Toward the 21st Century, Edinburgh, UK,
12–16 September 1988.

36. Wang, X.; Wang, Y.; Wang, L. Improving Fuzzy C-Means clustering based on feature-weight learning. Pattern Recognit. Lett. 2004,
25, 1123–1132. [CrossRef]

https://doi.org/10.3390/axioms11080377
https://doi.org/10.3390/math11081920
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1155/2018/2634861
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.14569/IJACSA.2013.040406
https://doi.org/10.1016/S0019-9958(69)90591-9
https://doi.org/10.1016/S0020-0255(70)80056-1
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1007/BF02339490
https://doi.org/10.1080/01969727308546047
https://doi.org/10.1109/T-C.1975.224317
https://doi.org/10.1109/TPAMI.1986.4767778
https://www.ncbi.nlm.nih.gov/pubmed/21869343
https://doi.org/10.1016/j.ymssp.2019.106279
https://doi.org/10.1016/S0167-8655(97)00168-2
https://doi.org/10.1016/j.asoc.2018.12.005
https://doi.org/10.1109/91.413225
https://doi.org/10.1016/j.eswa.2015.05.014
https://doi.org/10.1016/j.asoc.2019.02.038
https://doi.org/10.1016/j.neucom.2007.02.010
https://doi.org/10.1016/j.engappai.2018.04.026
https://doi.org/10.17700/jai.2015.6.3.196
https://doi.org/10.1007/s41870-017-0039-2
https://doi.org/10.1016/j.patrec.2004.03.008

Axioms 2024, 13, 35 16 of 16

37. Xue, Z.A.; Cen, F.; Wei, L.P. A Weighting Fuzzy Clustering Algorithm Based on Euclidean Distance. In Proceedings of the 2008
Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 18–20 October 2008.

38. Wan, R.; Yan, X.; Su, X. A Weighted Fuzzy Clustering Algorithm for Data Stream. In Proceedings of the 2008 ISECS International
Colloquium on Computing, Communication, Control, and Management, Guangzhou, China, 3–4 August 2008.

39. Pimentel, B.A.; de Souza, R.M.C.R. Multivariate Fuzzy C-Means algorithms with weighting. Neurocomputing 2016, 174, 946–965.
[CrossRef]

40. Du, X. A robust and high-dimensional clustering algorithm based on feature weight and entropy. Entropy 2023, 25, 510. [CrossRef]
[PubMed]

41. UCI Machine Learning Repository, University of California. Available online: https://archive.ics.uci.edu/ml/index.php
(accessed on 22 October 2023).

42. Mukhtaruddin, R.; Rahman, H.A.; Hassan, M.Y.; Jamian, J.J. Optimal hybrid renewable energy design in autonomous system
using Iterative-Pareto-Fuzzy technique. Elect. Power Energy Syst. 2015, 64, 242–249. [CrossRef]

43. Zhang, R.; Golovin, D. Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization. In Proceedings
of the ICML’20: 37th International Conference on Machine Learning, Virtual, 13 July 2020.

44. Liu, X.; Tong, X.; Liu, Q. Profiling Pareto Front with Multi-Objective Stein Variational Gradient Descent. In Proceedings of the
35th Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021.

45. Kalimuthu, M.; Hayat, A.A.; Pathmakumar, T.; Rajesh Elara, M.; Wood, K.L. A deep reinforcement learning approach to optimal
morphologies generation in reconfigurable tiling robots. Mathematics 2023, 11, 3893. [CrossRef]

46. Pérez, J.; Almanza, N.N.; Romero, D. Balancing effort and benefit of K-Means clustering algorithms in big data realms. PLoS ONE
2018, 13, e0201874. [CrossRef]

47. Bejarano, L.A.; Espitia, H.E.; Montenegro, C.E. Clustering analysis for the Pareto optimal front in multi-objective optimization.
Computation 2022, 10, 37. [CrossRef]

48. Vimala, S.V.; Vivekanandan, K. A Kullback–Leibler divergence-based Fuzzy C-Means clustering for enhancing the potential of an
movie recommendation system. SN Appl. Sci. 2019, 1, 698. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2015.10.011
https://doi.org/10.3390/e25030510
https://www.ncbi.nlm.nih.gov/pubmed/36981399
https://archive.ics.uci.edu/ml/index.php
https://doi.org/10.1016/j.ijepes.2014.07.030
https://doi.org/10.3390/math11183893
https://doi.org/10.1371/journal.pone.0201874
https://doi.org/10.3390/computation10030037
https://doi.org/10.1007/s42452-019-0708-9

	Introduction
	Related Work
	Convergence
	Improvements of the FCM Algorithm That Modify the Objective Function

	Proposal
	Proposal for a New Convergence Indicator
	Method to Determine Threshold Values

	Results
	Experimental Environment
	Description of the Datasets
	Test Cases
	Description of Experiment I
	Description of Experiment II
	Description of Experiment III

	Experiment Analysis

	Conclusions
	References

