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Abstract: INAR models have the great advantage of being able to capture the conditional distribution
of a count time series based on their past observations, thus allowing it to be tailored to meet
the unique characteristics of count data. This paper reviews the two-parameter Poisson extended
exponential (PEE) distribution and its corresponding INAR(1) process. Then the INAR of order p
(INAR(p)) model that incorporates PEE innovations is proposed, its statistical properties are presented,
and its parameters are estimated using conditional least squares and conditional maximum likelihood
estimation methods. Two practical data sets are analyzed and compared with competing INAR
models in an effort to gauge the performance of the proposed model. It is found that the proposed
model performs better than the competitors.
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1. Introduction

Exploring discrete data has become a specialized area in time series analysis, with ap-
plications in several industries, including banking, epidemiology, and telecommunications.
Integer-valued autoregressive models of order p (INAR(p)) have become effective tools for
tackling the complexities of count data. With the help of these models, which reveal the
underlying dynamics and temporal connections in discrete time series, phenomena that are
measured in discrete units can be understood more precisely.

Count data differ from conventional continuous data in the sense that they have par-
ticular difficulties and traits, such as non-negativity and discrete outcomes. Conventional
continuous models often struggle to capture the complexities inherent in count-based time
series. However, INAR(p) models offer an innovative solution tailored to the distinct prop-
erties of count data. The core strength of an INAR(p) model lies in its capacity to capture
the conditional distribution of the current count variable, based on its past p observations.
This autoregressive framework forms the foundation of the model, allowing it to account
for temporal dependencies and seasonality effects commonly found in count time series.
As a result, INAR(p) models facilitate accurate forecasting and a deeper comprehension of
patterns in discrete data.
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In actuality, the INAR(p) model is a development of the INAR(1) model proposed
by [1,2]. The initial approach was based on the binomial thinning and Poisson innova-
tions. Considering the fact that count time series are generally overdispersed, the Poisson
distribution can no longer be applied to INAR(1). Researchers have proposed various
distributions of innovation and thinning operations to overcome this issue. In this context,
several researchers have contributed to the study of various models for discrete-valued
processes with different modifications. For instance, ref. [3] developed a family of models
using Poisson marginal distributions. Subsequently, ref. [4] delved into investigating a
novel stationary INAR(1) process with geometric marginal distributions. This was achieved
through a negative binomial thinning operator, and they obtained several properties of
the process. Ref. [5] introduced another stationary INAR(1) process. In a different work,
ref. [6] considered the compound Poisson INAR(1) model, which deals with time series of
overdispersed counts. Additionally, ref. [7] investigated first-order non-negative integer-
valued autoregressive processes, incorporating power series innovations. Furthermore,
ref. [8] constructed an INAR(1) model using Poisson–Lindley distributed innovations.
References [9–13], among others, also substantiate this claim.

The studies of [14,15] extended the work of [2] using INAR models with p depen-
dence. Meanwhile, ref. [15] proposed an alternative to the more general INAR(p) process
introduced by [14]. According to [15], an INAR(p) process has the same autocorrelation
structure as an AR(p), whereas according to [14], it has the same autocorrelation structure
as an ARMA(p, p − 1) process. Most authors follow the set-up described by [15]. Refer-
ences [16,17] also contributed to the class of INAR(p) models. Later, ref. [18] introduced an
INAR(p) process with a signed generalized power series thinning operator.

Although the INAR(p) model is flexible in dealing with higher-order autoregressive
processes, it does not incorporate periodicity, which is a common time series characteristic
in a wide range of applications, including air quality and health. Periodically correlated
stochastic processes are described in [19] with periodically varying mean, variance and
covariance. The flexibility of the seasonal and/or periodic INAR models are studied
by [20–23], among others.

The Poisson extended exponential (PEE) distribution and its related INAR(1) model
are discussed in length in [24], and the current study extends that discussion to the INAR(p)
model. On the basis of the weekly number of syphilis cases in the United States during
2007–2010, ref. [24] showed that the INAR(1) with PEE innovations performed better than
the other competitive INAR(1) models. These findings suggest the need to look at the PEE
in other important settings, such as INAR(p) model, and to compare it with other popular
INAR(p) models, demonstrating its superiority.

Firstly, in Section 2, we review the PEE distribution and associated INAR(1) model,
and then an INAR(p) model based on the PEE distribution is presented, which is named
the PEE-INAR(p) model, in Section 3. Section 4 discusses conditional least squares (CLS)
estimation, as well as conditional maximum likelihood (CML) estimation. Section 5 pro-
vides a simulation study. Section 6 examines how the proposed model works on practical
data sets to illustrate its effectiveness. A conclusion is provided in Section 7.

2. The INAR(1) Process with the PEE Innovations

According to [24], a comprehensive definition of the PEE distribution can be found in
their paper. Compounding the Poisson and extended exponential (EE) distributions results
in the PEE distribution.The probability density function of EE distribution is given by

f (x) =
η2(1 + γx)e−ηx

η + γ
, x > 0, η > 0, γ ≥ 0.

The stochastic structure of a random variable X with a PEE distribution is as follows:
If the random variable X follows the PEE distribution, which holds the following stochastic
representation, X|λ ∼ P(λ) and λ|η, γ ∼ EE(η, γ), where λ > 0, η > 0 and γ ≥ 0, then the
unconditional probability mass function (pmf) of X has the following form:
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P(x; η, γ) =
η2(1 + η + γ + γx)
(η + γ)(η + 1)x+2 , x = 0, 1, 2, 3, .... (1)

It is important to note that when γ = 1, (1) is reduced to the discrete Poisson–Lindley
distribution (see, ref. [8]). Some of the important properties of the PEE distribution are
listed below. The probability generating function for a random variable X with the PEE
distribution is provided by

G(s; η, γ) =
η2(1 − s + η + γ)

(η + γ)(1 + η − s)2 , (2)

for |s| < η + 1. The mean and variance are given by

E(X) =
η + 2γ

η(η + γ)

and

V(X) =
η3 + η2 + 4ηγ + 3η2γ + 2γ2 + 2ηγ2

η2(η + γ)2 ,

respectively. The dispersion index (DI) of the PEE distribution is given by

DI =
V(X)

E(X)

= 1 +
η2 + 4ηγ + 2γ2

η(η + γ)(η + 2γ)
.

In the PEE distribution, DI is always greater than one, demonstrating an overdispersion
feature, as η > 0, γ ≥ 0. PEE distribution is effective as an innovation distribution in
INAR(1) process based on binomial thinning, resulting in the PEE-INAR(1) model, ref. [24].

The PEE-INAR(1) Model

The PEE-INAR(1) process is given by

Xt = α ◦ Xt−1 + ϵt, t ∈ Z, (3)

where 0 < α < 1 and the innovation process is denoted by {ϵt}t∈Z, which are independent
and identically distributed (iid) integer-valued random variables having mean E(ϵt) = µϵ

and variance V(ϵt) = σ2
ϵ . The binomial thinning operator is denoted by the symbol ◦ and

is defined as

α ◦ Xt−1 :=
Xt−1

∑
j=1

Uj, (4)

where
{

Uj
}

j≥1 is the sequence of Bernoulli random variables called counting series with
probability

α = Pr(Uj = 1) = 1 − Pr(Uj = 0).

It is important to note that in (4), these sequences
{

Uj
}

j≥1 are independent of each
other and of {ϵt}. For the PEE-INAR(1) process, the one step transition probability is
given by



Axioms 2024, 13, 32 4 of 16

Pr(Xt = xt|Xt−1 = xt−1) = P(α ◦ Xt−1 + ϵt = xt|Xt−1 = xt−1)

=
min(xt ,xt−1)

∑
i=0

P(α ◦ Xt−1 = i|Xt−1 = xt−1)Pr(ϵt = xt − i)

=
min(xt ,xt−1)

∑
i=0

(
xt−1

i

)
αi(1 − α)xt−1−i η2(1 + η + γ + γ(xt − i))

(η + γ)(η + 1)(xt−i)+2
,

where 0 < α < 1. Ref. [25] provides the mean, variance and DI of {Xt}t∈Z by using the
mean, variance and DI of the innovation distribution. For the PEE-INAR(1) process, they are

E(Xt) =
η + 2γ

η(η + γ)(1 − α)
,

Var(Xt) =
η2(η + ηα + 1) + 2γ2(η + ηα + 1) + ηγ(3η(α + 1) + 4)

η2(1 − α2)(η + γ)2

and

DI(Xt) =

(
1 +

1
(η + γ)(α + 1)

− 1
(η + 2γ)(α + 1)

+
1

η(α + 1)

)
.

According to [25,26], the conditional expectation, conditional variance, covariance and
correlation of the PEE-INAR(1) process are given by

E(Xt|Xt−1) = αXt−1 +
η + 2γ

η(η + γ)
,

Var(Xt|Xt−1) = α(1 − α)Xt−1 +
η3 + η2 + 4ηγ + 3η2γ + 2γ2 + 2ηγ2

η2(η + γ)2 ,

Cov(Xt+h, Xt) = αhVar(Xt)

and
Cor(Xt, Xt−h) = αh.

3. The INAR(p) Model with PEE Innovations

The INAR(1) process in (3) can be extended to the general INAR(p) process to yield

Xt = α1 ◦ Xt−1 + .... + αp ◦ Xt−p + ϵt, p = 1, 2, 3, ..., t ≥ p. (5)

where ϵt ∼ PEE(η, γ), 0 < αm < 1, m = 1, 2, ..., p. Like (3),
{

Uj,m
}

is made up of inde-
pendently distributed Bernoulli random variables with the value αm. Additionally, ϵt is
supposed to be independent of {Xs}s<t at every time. According to [15], if ∑

p
m=1 αm < 1,

then a unique stationary and ergodic solution exists for {Xt}. Also, under stationarity,
Cov(Xt, Xt+h) = ϕh,t = ϕh.

From [27], for the PEE-INAR(p) process, the p-step transition probabilities are given by

P
(
Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−p = xt−p

)
=

min(xt ,xt−1)

∑
i1=0

(
xt−1

i1

)
αi1

1 (1 − α1)
xt−1−i1 ×

min(xt−i1,xt−2)

∑
i2=0

(
xt−2

i2

)
αi2

2 (1 − α2)
xt−2−i2

×... ×
min(xt−(i1+...+ip−1),xt−p)

∑
ip=0

(
xt−2

ip

)
α

ip
p (1 − αp)

xt−p−ip P(ϵt = xt − (i1 + ... + ip)).

By substituting P(ϵt = xt − (i1 + ... + ip)), we get
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P
(
Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−p = xt−p

)
=

min(xt ,xt−1)

∑
i1=0

(
xt−1

i1

)
αi1

1 (1 − α1)
xt−1−i1 ×

min(xt−i1,xt−2)

∑
i2=0

(
xt−2

i2

)
αi2

2 (1 − α2)
xt−2−i2 (6)

×... ×
min(xt−(i1+...+ip−1),xt−p)

∑
ip=0

(
xt−2

ip

)
α

ip
p (1 − αp)

xt−p−ip
η2(1 + η + γ + γ(xt − (i1 + ... + ip)))

(η + γ)(η + 1)(xt−(i1+...+ip))+2
.

From [15,25,27,28], we get the mean and variance of the {Xt}t∈Z, respectively, as

E(Xt) =
µϵ(

1 − ∑
p
m=1 αm

) =
η + 2γ

η(η + γ)
(
1 − ∑

p
m=1 αm

) , (7)

Var(Xt) =
∑

p
m=1 αm(1 − αm)E(Xt) + 2 ∑

p
m=1 ∑

p−1
m=m′ αmαm′ ϕm′−m + σ2

ϵ(
1 − ∑

p
m=1 α2

m
) , (8)

where Cov(Xt−m, Xt−m′) = ϕm′−m, for lag |m − m′|. Also,

Cov(Xt, Xt+h) =
p

∑
m=1

αmϕh−m. (9)

The conditional moments are given by

E
(
Xt|Xt−1, Xt−2, ..., Xt−p

)
=

p

∑
m=1

αmXt−m + µϵ (10)

and

Var
(
Xt|Xt−1, Xt−2, ..., Xt−p

)
=

p

∑
m=1

αm(1 − αm)Xt−m + σ2
ϵ . (11)

A sample path of the model, for instance, is the simulated paths of the PEE-INAR(2)
process given in Figure 1. The simulated sample is considered for n = 400 with different
parameter values. These plots show the stationary and ergodic behavior of the time
series data.

0.0

2.5

5.0

7.5

10.0

12.5

0 100 200 300 400
time

P
E

E
−

IN
A

R
(2

)

(a) α1 = 0.5, α2 = 0.3, η = 1.6, γ = 0.7

Figure 1. Cont.
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(b) α1 = 0.4, α2 = 0.2, η = 1.2, γ = 0.9

Figure 1. The simulated paths of the PEE-INAR(2) process.

4. Estimation

Two different methods of parameter estimation are used here to obtain the unknown
parameters of the model.

4.1. Conditional Maximum Likelihood

Let θ = (α1, α2, ...., αp, η, γ)T , then the conditional likelihood function is

L(θ) =
T

∏
t=p+1

Pr
(
Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−p = xt−p

)
.

The log-conditional likelihood function is given by

l(θ) = log L(θ) =
T

∑
t=p+1

log Pr
(
Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−p = xt−p

)
, (12)

where Pr
(
Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ..., Xt−p = xt−p

)
is given by (6). The CML

estimators θ̂ is obtained by maximizing (12).

4.2. Conditional Least Squares

The function below is minimized to obtain the CLS estimators of the parameters of
PEE-INAR(p) process:

S(θ) =
T

∑
t=p+1

(
Xt −

p

∑
m=1

αmXt−m − µϵ

)2

.

A simulation study is used to test the performance of CML and CLS estimators in the
next section.
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5. Simulation Study

Simulation studies were conducted to evaluate the performance of CML and CLS
estimates based on finite samples. We consider five different sample sizes (i.e., 50, 100, 200,
300, 400) with 1000 replications. Tables 1 and 2 present the simulation results. Based on this
simulation, we can see that the bias and MSE decrease with increasing sample size when
using the PEE-INAR(2) model as a higher order of the PEE-INAR(p) model. The parameter
combinations are (α1 = 0.5, α2 = 0.3, η = 1.6, γ = 0.7) and (α1 = 0.4, α2 = 0.2, η = 1.2, γ = 0.9).
Even though their behaviors are similar, the CML often offers less bias and MSE than the
CLS, noting that the least bias for negative values is the one with a value close to 0. We
have included a condensed version of the underlying R code in Appendix A.

Table 1. PEE-INAR(2) Simulation Results.

α1 = 0.5, α2 = 0.3, η = 1.6, γ = 0.7

Parameter n
CML CLS

Bias MSE Bias MSE

α1

50 –0.00472 0.01616 –0.05084 0.02531

100 –0.00314 0.00689 –0.02297 0.01125

200 –0.00184 0.00355 –0.01150 0.00573

300 –0.00125 0.00226 –0.00937 0.00369

400 –0.00010 0.00181 –0.00432 0.00280

α2

50 –0.01962 0.01838 –0.05369 0.02129

100 –0.01627 0.00868 –0.03749 0.01076

200 –0.00625 0.00416 –0.01619 0.00571

300 –0.00504 0.00268 –0.01262 0.00362

400 –0.00438 0.00208 –0.01032 0.00287

η

50 –0.09165 0.35569 –0.20154 0.37458

100 –0.08853 0.18334 –0.14256 0.28982

200 –0.07156 0.10112 –0.13650 0.14152

300 –0.06249 0.08055 –0.11754 0.10136

400 –0.02908 0.06195 –0.06508 0.09931

γ

50 0.19165 0.15335 –0.19854 0.16169

100 0.15675 0.11126 –0.16944 0.15609

200 0.07935 0.05058 –0.16451 0.15126

300 0.06627 0.05003 –0.13749 0.14404

400 0.05120 0.03762 –0.08557 0.11326
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Table 2. PEE-INAR(2) Simulation Results.

α1 = 0.4, α2 = 0.2, η = 1.2, γ = 0.9

Parameter n
CML CLS

Bias MSE Bias MSE

α1

50 0.00543 0.01301 –0.04288 0.02287

100 0.00470 0.00724 –0.01902 0.01254

200 0.00072 0.00322 –0.01243 0.00567

300 0.00234 0.00229 –0.00677 0.00410

400 0.00113 0.00165 –0.00652 0.00286

α2

50 –0.01558 0.01382 –0.04464 0.01667

100 –0.00969 0.00820 –0.02861 0.01087

200 –0.00204 0.00374 –0.01393 0.00536

300 –0.00337 0.00251 –0.01279 0.00364

400 –0.00143 0.00189 –0.00873 0.00265

η

50 –0.04760 0.11652 –0.08939 0.11574

100 –0.02667 0.06381 –0.08442 0.06985

200 –0.00988 0.03173 –0.07852 0.04698

300 –0.00879 0.01873 –0.07821 0.04034

400 –0.00591 0.01515 –0.02922 0.03297

γ

50 –0.24843 0.25267 0.27138 0.37775

100 –0.23901 0.24417 0.25147 0.30304

200 –0.23631 0.24380 0.24401 0.25091

300 –0.23352 0.22876 0.24300 0.23349

400 –0.19476 0.22753 0.23390 0.23187

6. Empirical Study

The considered data sets are fitted to INAR(1) and INAR(2) models under different
distributed innovations and the model parameters are estimated by the CML method. The
following are the competitive models taken for comparison:
(i) INAR model based on the discrete Teissier innovations (DT-INAR), see [29].
(ii) INAR model based on the binomial-discrete Poisson Lindley innovations (BDPL-INAR),
see [30].
(iii) INAR model based on the three parameter discrete-Lindley innovations (DLi3-INAR),
see [31].

The log-likelihood function, or log L, is calculated for each model, along with Akaike
information criterion (AIC) and Bayesian information criterion (BIC) values, which are
given as

AIC = −2 log L + 2r

and
BIC = −2 log L + r log n,

where r is the number of parameters. The following is the considered practical data with
its analysis.
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6.1. COVID-19 Data

Our discussion in this section focuses on the application of the proposed model. A
total of 91 observations were gathered about the daily death cases in Switzerland from 1
June 2021 to 30 August 2021. It is taken from the website https://covid19.who.int/data
(accessed on 14 September 2023). Accordingly, the mean, variance, and DI are 1.8462, 3.9094
and 2.1175, respectively, which reflects the overdispersion of the data. Figure 2 presents the
time series plot of the COVID-19 data. Figure 3 illustrates autocorrelation function (ACF),
partial autocorrelation function (PACF) and histogram plots. From the ACF and PACF, it
is evident that second-order autoregressive models are the more desirable ones. Table 3
presents the data analysis results, which imply that PEE-INAR(2) has the maximum log
L and minimum AIC and BIC. Based on the results, the PEE-INAR(2) process provides a
better fit than the other competing models.

Table 3. Fitting results of the COVID-19 data.

Model Parameter Estimate Std Error log L AIC BIC

PEE-INAR(2)

α1 0.34330 0.08397

–143.33799 294.67599 304.71942
α2 0.29190 0.09068

η 1.38030 1.42716

γ 0.00010 1.39072

PEE-INAR(1)

α 0.45897 1.05246

–149.01889 304.03779 311.57037η 1.08045 1.50832

γ 0.11301 0.06388

DT-INAR(2)

α1 0.35590 0.06094

–162.03214 330.06429 337.59686α2 0.27323 0.06300

λ 0.48354 0.02498

DT-INAR(1)
α 0.40357 0.01799

–181.43955 366.87910 371.90082
λ 0.59686 0.05366

BDPL-INAR(2)

α1 0.34433 0.08350

–143.51806 295.03612 305.07956
α2 0.28807 0.09016

λ 0.99990 1.91169

β 0.48685 1.08893

BDPL-INAR(1)

α 0.45899 117.11367

–149.01889 304.03779 311.57037λ 9.53718 116.77791

β 8.82505 0.06388

DLi3-INAR(2)

α1 0.34330 0.08397

–143.33799 296.67599 309.23028

α2 0.29190 0.09068

λ 6.70660 5.31318

β 0.42013 0.25201

θ 0.00010 3.91858

DLi3-INAR(1)

α 0.45926 59.2776

–149.02031 308.04062 320.59491
λ 0.6639 3.2197

β 0.0352 0.2434

θ 0.4805 0.0638

https://covid19.who.int/data


Axioms 2024, 13, 32 10 of 16

0

2

4

6

8

0 25 50 75
index

nu
m

be
r

Figure 2. The time series plot of the COVID-19 data.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
lag

A
C

F

−0.2

0.0

0.2

0.4

0.6

0 5 10 15 20
lag

PA
C

F

Figure 3. Cont.



Axioms 2024, 13, 32 11 of 16

0

10

20

21 3 642 6222 33220 1 4330 1 20 1110 20 200 1000000 1110 1000 10 10 200 111 53100 1110000 1 22 321 32 3 41 4 733 6 84 74 85
No. of cases

F
re

qu
en

cy

Figure 3. The ACF, PACF, and histogram plots of the COVID-19 data.

6.2. Gold Particles Data

The second set of data includes 380 observations, which is taken from [25]. The count
values were measured over time in a fixed volume element of a colloidal solution, where
the particles move in Brownian motion. In this case, the mean, variance, and DI are,
respectively, 1.5605, 1.6242, and 1.0409, which indicates that the data is overdispersed. The
time series plot of the gold particles data is illustrated in Figure 4. Figure 5 illustrates
the ACF, PACF, and histogram plots. It is evident from the ACF and PACF plots that
second-order models are preferred. Data analysis results can be found in Table 4, which
indicate that the PEE-INAR(2) possesses the maximum log L and minimum AIC and BIC.
It appears that the PEE-INAR(2) process provides a better fit than the competing models.
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Figure 4. The time series plot of the gold particles data.
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Table 4. Fitting results of the gold particles data.

Model Parameter Estimate Std Error log L AIC BIC

PEE-INAR(2)

α1 0.49188 0.04530

–522.31596 1052.63192 1068.39260
α2 0.20424 0.05276

η 4.21543 0.58439

γ 9.9990 4.63723

PEE-INAR(1)

α 0.57037 0.27852

–534.38144 1074.76288 1086.58339η 2.64733 7.87235

γ 9.99000 0.03105

DT-INAR(2)

α1 0.34821 0.04483

–535.07328 1076.14657 1087.96708α2 0.17003 0.04221

λ 0.46375 0.01549

DT-INAR(1)
α 0.41251 0.01157

–550.51787 1105.03574 1112.91608
λ 0.51266 0.03352

BDPL-INAR(2)

α1 0.48773 0.04601

–522.46265 1052.92530 1068.68599
α2 0.21088 0.05324

λ 0.06186 0.06766

β 0.01499 0.01673

BDPL-INAR(1)

α 0.56887 0.03965

–533.39932 1072.79864 1084.61915λ 0.04884 0.01399

β 0.01694 0.03114

DLi3-INAR(2)

α1 0.49812 0.04445

–524.88199 1059.76397 1079.46483

α2 0.22716 0.05073

λ 3.87526 2.34043

β 0.29820 0.04151

θ 0.23710 12.46557

DLi3-INAR(1)

α 0.54084 3.69433

–530.72820 1071.45641 1091.15726
λ 0.00856 719.40720

β 1.66825 0.02747

θ 0.19226 0.03634



Axioms 2024, 13, 32 13 of 16

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
lag

A
C

F

−0.2

0.0

0.2

0.4

0.6

0 5 10 15 20
lag

PA
C

F

0

50

100

0 2 444 533210 21 22 3210 10 22111 2 3311 211 210 221 210 11100 1 210 1 22 322 3 4211 21 2110 2110 111100 31 3211111111100000000 21 2221 200 1 211 21100 211100000000 111100 111111 2110 1 2000 11100 111111111 221 22111 2210 10000 2100 1 21 210 110 1 221 300 32 322 42 31 210 2 322 31 3 4 542 3222111 32 332 444332 30 20 21 2 3 5 65 75 6421 310 2 42 31 31 2 320 111 32 53321 32 41 4 542 432 430 10 2 32 43 4200 2 31 2 32210 100 2220 20 310 3222 320 100000000 1110 10 11100 21 21 2 3211 2 33332 321 221 21
No. of cases

F
re

qu
en

cy

Figure 5. The ACF, PACF, and histogram plots of the gold particles data.

7. Conclusions

The non-negative nature of count data as well as its discrete outcomes make it a
unique type of data with specific challenges. It is often difficult for conventional continuous
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models to capture the complexities of count-based time series. Its core strength lies in its
ability to capture the conditional distribution of the current count variable based on its
past p observations, which makes INAR(p) models ideal for handling count data that have
unique properties. This paper reviews the PEE distribution and INAR(1) process and then
proposes the PEE-INAR(p) model. Parameter estimation is based on the CML and CLS
methods and various properties of the model are analyzed. Based on the empirical results,
it was found that the PEE-INAR(2) model had a better performance in all aspects than
all other models compared. In general, the improvement in model fit is attributed to the
order of the INAR model or size of the model’s past values (plus the innovation) that it
analyzes. In addition, some of the improvement is due to the recommended distribution
of innovation, namely the PEE distribution. In summary, the model’s best performance is
owing to the data that was chosen using the previously mentioned factors. If the associated
bivariate INAR(p) process were built based on the bivariate PEE innovations, the research
may take a different direction. It is necessary to modify and study the work substantially
in the future, so we will entrust it to future research.
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Appendix A

R-code for the generation of random numbers from PEE-INAR(2) process

ppois=function(x,lambda,theta){
f=1-(((lambda+1)^(-(x+2))*(lambda+lambda^2+theta+(x+2)*lambda*theta)

)
/(lambda+theta))
return(f)

}
ppois(2,0.5,1)
rpois <- function(n, L,T)
{

U <- runif(n)
X <- rep(0,n)
# loop through each uniform
for(i in 1:n)
{

# first check if you are in the first interval
if(U[i] < ppois(0,L,T))
{

X[i] <- 0
} else
{

# while loop to determine which subinterval,I, you
are in
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# terminated when B = TRUE
B = FALSE
I = 0
while(B == FALSE)
{

# the interval to check
int <- c( ppois(I, L,T), ppois(I+1,L,T) )
# see if the uniform is in that interval
if( (U[i] > int[1]) & (U[i] < int[2]) )
{

# if so, quit the while loop and store
the value

X[i] <- I+1
B = TRUE

} else
{

# If not, continue the while loop and
increase I by 1

I=I+1
}

}
}

}
return(X)

}
rpois(50, 1.5, 1.2)
r.inarp.sim <- function(n, order.max, alpha,lambda,theta){

x <- rep(NA, times = n)

error <- rpois(n, lambda, theta)
for (i in 1:order.max) {

x[i] <- error[i]
}
for (t in (order.max + 1):n) {

x[t] <- 0
for (j in 1:order.max) {

x[t] <- x[t] + rbinom(1, x[t - j], alpha[j])
}
x[t] <- x[t] + error[t]

}
return(x)

}
r.inarp.sim(n = 100, order.max = 2, alpha = c(0.1,0.4),lambda = 2,theta

=0.5)
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