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Abstract: The Location-Routing Problem (LRP) becomes a more intricate subject when the limits of
capacities of vehicles and warehouses are considered, which is an NP-hard problem. Moreover, as
the number of vehicles increases, the solution to LRP is exacerbated because of the complexity of
transportation and the combination of routes. To solve the problem, this paper proposed a Discrete
Assembly Combination-Delivery (DACA) strategy based on, the Binary Equilibrium Optimizer
(BiEO) algorithm, in addition, this paper also proposes a mixed-integer linear programming model
for the problem of this paper. Our primary objective is to address both the route optimization problem
and the assembly group sum problem concurrently. Our BiEO algorithm was designed as discrete
in decision space to meet the requirements of the LRP represented by the DACA strategy catering
to the multi-vehicle LRP scenario. The efficacy of the BiEO algorithm with the DACA strategy is
demonstrated. through empirical analysis utilizing authentic data from Changchun City, China,
Remarkably, the experiments reveal that the BiEO algorithm outperforms conventional methods,
specifically GA, PSO, and DE algorithms, resulting in reduced costs. Notably, the results show the
DACA strategy enables the simultaneous optimization of the LRP and the vehicle routing problem
(VRP), ultimately leading to cost reduction. This innovative algorithm proficiently tackles both the
assembly group sum and route optimization problems intrinsic to multi-level LRP instances.

Keywords: location-routing optimization; equilibrium optimizer algorithm; decision space construction;
binary swarm intelligent optimization algorithm; mixed-integer linear programming

MSC: 68W50; 90C59

1. Introduction

It is crucial for a reasonable logistics system design to reduce the total cost of the supply
chain and improve supply efficiency. In order to achieve the above two objectives, it is
usually necessary to determine two levels of decision-making: the immediate determination
of facility location problems (FLP) and the vehicle routing problem (VRP) [1]. Historically,
researchers usually treated these as two types of decisions separately.

The FLP stands as a quintessential quandary within the realm of operations research.
This locational puzzle has an extensive array of applications spanning production, daily life,
and logistics such as establishments of factories, warehouses, first aid centers, and logistics
hubs. Hu et al. [2] employed a multi-objective mixed integer model in their investigation to
ascertain the optimal siting of hazardous goods recycling stations, accounting for traffic
constraints on urban roads. The efficacy of their approach was substantiated through
solving a real-world case study on hazardous material logistics in Shandong, China. In the
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work of Oksuz et al. [3], a two-stage stochastic model was harnessed to tackle the location
challenge posed by temporary medical centers. By factoring in patient types, requirements,
potential road and hospital damage, along with the distances between disaster areas
and hospitals, the model methodically sought optimal solutions for temporary hospital
placements. This model was then practically employed in selecting a suitable site for a
temporary hospital during an Istanbul disaster. Additionally, Karagöz et al. [4]. leveraged
the ARAS extended interval type-2 fuzzy model to resolve the location quandary for vehicle
recycling centers, juxtaposing it against the conventional interval type-2 fuzzy approach
to underscore the potency of the ARAS method. Nonetheless, in practical scenarios, a
challenge will emerge after the identification of suitable facility sites: the optimization of
vehicle routes to effectively serve customers within the designated coverage area. This
challenge aligns with long-term decision-making imperatives.

The second vital factor in a logistics system design is the VRP. According to refer-
ences [5–7], different VRPs have different mathematical models, and mixed integer linear
programming is often used to solve problems. According to the client’s ordering demand
with a certain capacity-limited set of vehicles, the appropriate travel routes from the lo-
gistics center to the clients are organized so that the vehicles pass through all the clients
in an orderly manner to reach a certain goal under the satisfaction of certain constraints
(e.g., demand, service time limitation, vehicle capacity limitation, mileage limitation, etc.).
Qin et al. [8] used the original heuristic algorithms based on reinforcement learning for the
vehicle path problem with a multi-vehicle fleet of different capacities and tested on a large
dataset, achieving an average GAP of 6.4% compared to the classical algorithms of PSO,
GA, and SA; Altabeeb et al. [9] proposed a cooperative hybrid firefly algorithm for solving
the vehicle routing problem with capacity constraints and tested it on 108 benchmark cases,
achieving an average GAP of 3.4% compared to HAHA and 4.9% compared to LNS-ACO.
Rabbouch et al. [10] solved the enriched vehicle routing problem with time window and
pause time constraints using an efficient implementation of a genetic algorithm, which was
able to complete the enriched vehicle path problem 1–17 min faster than the GA’s CPU
response time depending on the size of the algorithm.

The FLP and the VRP were usually addressed separately, although they are mutually
influenced and restrained. This disjointed approach would fail to achieve an overarching
optimal solution due to the lack of integration between these two critical aspects. The
significance of their integration was underscored by Maranzana et al. [11] and Webb
et al. [12], prompting a shift towards combining these problems. Consequently, the fusion
of FLP and VRP has gained prominence, leading to the emergence of the Location-Routing
Problem (LRP) propelled by advancements in optimization technology. LRP is an NP hard
problem [13]. In [14], Muñoz-Villamizar et al. designed an integer linear programming
model for urban logistics, which solved the problem of logistics center positioning and
distribution in cities and achieved a distance cost lower limit of 20.77%. In [15], Heidari
et al. proposed a mixed integer linear programming to solve the transportation problem of
hazardous materials. In a small case with 2 nodes and 3 retailers, the solution only took
0.19 s. In [16], Shaerpour et al. designed a multi-layer multi-objective mixed integer linear
programming model to solve the management and transportation of medical waste, and
demonstrated the effectiveness of the proposed model in a practical case in Tehran. This
confluence has ushered in a surge of research into LRP. Cao et al. [17] introduced a two-stage
mixed integer model for the procurement of farm crops and the ensuing two-stage LRP
involving processing facilities. Similarly, Biuki et al. [18] tackled the two-level LRP inherent
to perishable goods supply chains. Their hybrid heuristic algorithm, integrating genetic and
particle swarm optimization algorithms, outperformed traditional meta-heuristic methods
across a comprehensive benchmark assessment. The burgeoning interest in LRP is evident
in the work of Ferreira et al. [19], which highlights the increasing attention directed towards
this problem.

In practical applications, the LRP often focuses on the Capacitated Location-Routing
Problem (CLRP), which is tightly bound by stringent vehicle capacity constraints. Specif-
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ically, the determination of warehouse locations and vehicle routes exhibits a mutual
interdependence. The chosen warehouse locations exert a profound influence on subse-
quent vehicle route planning, while the resultant vehicle route plans inherently reflect
the efficacy of the warehouse location selection. A previous study [13] employed nested
methodologies for an iterative resolution of location and routing predicaments. This in-
volved the locator sequentially identifying sets of warehouses, followed by the routing
program’s endeavor to optimize routes based on the designated warehouses. However, the
above approach faces limitations in that vehicle paths corresponding to distinct warehouse
assemblies tend to operate independently, impeding the effective utilization of valuable
historical vehicle routing insights.

To seek better and more effective methods for the CLRP, meta-heuristic algorithms
were applied in recent years. This idea found practicality in the study by Ferreira et al. [19],
where a hybrid meta-heuristic algorithm was employed to resolve the CLRP, yielding
superior outcomes compared to conventional solutions. Furthermore, Akpunar et al. [20]
addressed the CLRP using a broad domain search algorithm, albeit without incorporating
combinatorial assembly optimization for multi-vehicle fleets at the VRP stage. It is found
that there are two key points to using meta-heuristic algorithms to solve CLRP. Firstly,
since the solution of CLRP is a combinatorial problem, finding an appropriate expression
of the solution in the decision space becomes the key to the problem. The second is that
since CLRP involves location selection and combinatorial path optimization, its solution
space has continuous and discrete characteristics, so selecting appropriate meta-heuristic
algorithms is also a key element.

To optimize the assembly combination of multi-vehicle during vehicle path optimiza-
tion by considering constraints of the CLRP, this paper proposed the BiEO algorithm with
a multi-vehicle decision set for the assembly combination of multi-vehicle routing. Table 1
shows the comparison of this paper’s problem and algorithm with other articles.

Table 1. Comparison of this paper’s problem and algorithm with other papers.

Papers Algorithm FLP VRP CLRP Combination

Karagöz et al. [4] ARAS ✓

Axioms 2024, 13, x FOR PEER REVIEW 3 of 21 
 

In practical applications, the LRP often focuses on the Capacitated Location-Routing 

Problem (CLRP), which is tightly bound by stringent vehicle capacity constraints. Specif-

ically, the determination of warehouse locations and vehicle routes exhibits a mutual in-

terdependence. The chosen warehouse locations exert a profound influence on subse-

quent vehicle route planning, while the resultant vehicle route plans inherently reflect the 

efficacy of the warehouse location selection. A previous study [13] employed nested meth-

odologies for an iterative resolution of location and routing predicaments. This involved 

the locator sequentially identifying sets of warehouses, followed by the routing program’s 

endeavor to optimize routes based on the designated warehouses. However, the above 

approach faces limitations in that vehicle paths corresponding to distinct warehouse as-

semblies tend to operate independently, impeding the effective utilization of valuable his-

torical vehicle routing insights. 

To seek better and more effective methods for the CLRP, meta-heuristic algorithms 

were applied in recent years. This idea found practicality in the study by Ferreira et al. 

[19], where a hybrid meta-heuristic algorithm was employed to resolve the CLRP, yield-

ing superior outcomes compared to conventional solutions. Furthermore, Akpunar et al. 

[20] addressed the CLRP using a broad domain search algorithm, albeit without incorpo-

rating combinatorial assembly optimization for multi-vehicle fleets at the VRP stage. It is 

found that there are two key points to using meta-heuristic algorithms to solve CLRP. 

Firstly, since the solution of CLRP is a combinatorial problem, finding an appropriate ex-

pression of the solution in the decision space becomes the key to the problem. The second 

is that since CLRP involves location selection and combinatorial path optimization, its 

solution space has continuous and discrete characteristics, so selecting appropriate meta-

heuristic algorithms is also a key element. 

To optimize the assembly combination of multi-vehicle during vehicle path optimi-

zation by considering constraints of the CLRP, this paper proposed the BiEO algorithm 

with a multi-vehicle decision set for the assembly combination of multi-vehicle routing. 

Table 1 shows the comparison of this paper’s problem and algorithm with other articles. 

Table 1. Comparison of this paper’s problem and algorithm with other papers. 

Papers Algorithm FLP VRP CLRP Combination 

Karagöz et al. [4]. ARAS         

Qin et al. [8]. RLHH         

Altabeeb et al. [9]. CVRP-CHFA         

Rabbouch et al. [10]. GA *         

Ting et al. [21]. MACO         

Vincent et al. [22] SA         

Zhang et al. [23]. HPSO         

Peng et al. [24] PSO         

Yu et al. [25] HGA         

This paper BiEO         

This paper needs to optimize the location of warehouses for material storage in resi-

dential areas with a population of about 300,000 (assuming a fixed daily material demand 

of 400 g per resident) and optimize the transportation routes for subsequent truck trans-

portation of materials. This is an LRP problem, and it is worth noting that in the transpor-

tation route optimization problem in this article since each distribution area uses four 

trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 

before planning the transportation route. The model and method proposed in this paper 

are used to solve the problem of simultaneously assembling and transporting routes on 

trucks. The final solution solved in this paper is the assembly plan and transportation 

route for each truck in each distribution area. 
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This paper needs to optimize the location of warehouses for material storage in resi-

dential areas with a population of about 300,000 (assuming a fixed daily material demand 

of 400 g per resident) and optimize the transportation routes for subsequent truck trans-

portation of materials. This is an LRP problem, and it is worth noting that in the transpor-

tation route optimization problem in this article since each distribution area uses four 

trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 

before planning the transportation route. The model and method proposed in this paper 

are used to solve the problem of simultaneously assembling and transporting routes on 

trucks. The final solution solved in this paper is the assembly plan and transportation 

route for each truck in each distribution area. 
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dential areas with a population of about 300,000 (assuming a fixed daily material demand 

of 400 g per resident) and optimize the transportation routes for subsequent truck trans-

portation of materials. This is an LRP problem, and it is worth noting that in the transpor-

tation route optimization problem in this article since each distribution area uses four 

trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 

before planning the transportation route. The model and method proposed in this paper 

are used to solve the problem of simultaneously assembling and transporting routes on 

trucks. The final solution solved in this paper is the assembly plan and transportation 

route for each truck in each distribution area. 
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Ting et al. [21] MACO ✓ ✓ ✓
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Zhang et al. [23]. HPSO         

Peng et al. [24] PSO         

Yu et al. [25] HGA         

This paper BiEO         

This paper needs to optimize the location of warehouses for material storage in resi-

dential areas with a population of about 300,000 (assuming a fixed daily material demand 

of 400 g per resident) and optimize the transportation routes for subsequent truck trans-

portation of materials. This is an LRP problem, and it is worth noting that in the transpor-

tation route optimization problem in this article since each distribution area uses four 

trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 

before planning the transportation route. The model and method proposed in this paper 

are used to solve the problem of simultaneously assembling and transporting routes on 

trucks. The final solution solved in this paper is the assembly plan and transportation 

route for each truck in each distribution area. 

Vincent et al. [22] SA ✓ ✓ ✓
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This paper needs to optimize the location of warehouses for material storage in resi-

dential areas with a population of about 300,000 (assuming a fixed daily material demand 

of 400 g per resident) and optimize the transportation routes for subsequent truck trans-

portation of materials. This is an LRP problem, and it is worth noting that in the transpor-

tation route optimization problem in this article since each distribution area uses four 

trucks to transport goods, it is necessary to optimize the assembly of goods on the trucks 

before planning the transportation route. The model and method proposed in this paper 

are used to solve the problem of simultaneously assembling and transporting routes on 

trucks. The final solution solved in this paper is the assembly plan and transportation 

route for each truck in each distribution area. 

Zhang et al. [23] HPSO ✓ ✓ ✓
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Peng et al. [24] PSO ✓ ✓ ✓
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Yu et al. [25] HGA ✓ ✓ ✓
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This paper needs to optimize the location of warehouses for material storage in
residential areas with a population of about 300,000 (assuming a fixed daily material
demand of 400 g per resident) and optimize the transportation routes for subsequent truck
transportation of materials. This is an LRP problem, and it is worth noting that in the
transportation route optimization problem in this article since each distribution area uses
four trucks to transport goods, it is necessary to optimize the assembly of goods on the
trucks before planning the transportation route. The model and method proposed in this
paper are used to solve the problem of simultaneously assembling and transporting routes
on trucks. The final solution solved in this paper is the assembly plan and transportation
route for each truck in each distribution area.

The contribution of this paper is that firstly, it proposes a BiEO algorithm that can
effectively solve the route optimization problem in this paper. Secondly, this paper proposes
a DACA strategy to solve the assembly combination and route optimization problems of
multiple vehicles in this paper. The two methods proposed in this paper have achieved
better results in solving real LRP compared to other algorithms in the experiment.
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The initial section provides an introduction to FLP, VRP, and LRP, especially CLRP.
The subsequent section delves into a comprehensive review of pertinent prior research,
in which emphasis was placed on introducing various variants of LRP, as well as precise
methods and heuristic and meta-heuristic methods for solving LRP. In the third section,
we designed the framework and formal problem statement of the Binary Equilibrium
Optimizer (BiEO). At the same time, the DACA strategy was proposed to solve multi-
vehicle routing problems. Moving on, the fourth section Introduced the LRP mathematical
model proposed in this paper to solve the case study. The fifth section offers an extensive
exposition of empirical findings derived from applying the proposed BiEO algorithm to
real-world scenarios. Lastly, the sixth section engages in a comprehensive discussion of the
results and implications of this study’s contributions.

2. Related Work
2.1. Variants of LRP

The multi-level LRP is an important variant of the LRP, which involves a distribution
system integrating warehouses, intermediate warehouses, and retailers. Investigating the
multi-level LRP holds the potential to significantly curtail distribution costs and enhance
turnover efficiency, thereby conferring substantial importance to its study. In 2012, Nguyen
et al. [26] addressed the two-level LRP employing the GRASP technique. This approach
encompassed intermediate warehouse localization, path optimization from warehouse to
intermediate warehouse, and further optimization from intermediate warehouse to retailer.
The incorporation of GRASP facilitated enhanced solutions through its iterative learning
process and path re-linking mechanism. Subsequently, Nguyen extended this work by
embracing a multi-starting approach, coupling the ILS + PR algorithm [27], enriched with
enhancements such as greedy random heuristics and diverse short-term tabu lists, culmi-
nating in improved outcomes. Nevertheless, it’s important to note that such enhancements
may incur elevated computational time.

Another variant of the LRP is characterized by randomness and fuzziness, denoting
the consideration of uncertainties and ambiguities in customer requirements during logis-
tics route planning. These uncertainties are often amenable to modeling through stochastic,
probabilistic, or fuzzy functions. Ghaffari-Nasab et al. [28] tackled a two-objective LRP
involving probabilistic travel times, offering both modeling and solution strategies. An
enhanced particle swarm optimization algorithm was presented to fulfill the random de-
mands in LRP scenarios [23]. Thereafter, Zarandi et al. [29] proposed an analog embedding
simulated annealing algorithm as a solution approach in the context of the multi-site CLRP
with fuzzy travel times.

The CLRP stands as a prevalent variation within the broader LRP framework, where
warehouse capacity, depot capacity, vehicle load, and other relevant factors are subject
to constraints [20]. Due to the complexity of combinatorial solutions and the diversity
of constraint conditions, traditional path optimization is difficult to achieve. Therefore,
researchers are attempting new ways to solve this problem. Yu et al. devised an innovative
Hybrid Genetic Algorithm (HGA) [25], adept at exploring between feasible and infeasible
solution domains, yielding commendable outcomes when applied to solving the CLRP in-
volving warehouse capacity limitations. Building upon this, Akpunar et al. [20] introduced
a hybrid meta-heuristic approach, fusing Adaptive Large Neighborhood Search (ALNS)
and Variable Neighborhood Search (VNS) algorithms. In this composite framework, the
VNS algorithm serves as an elite local search mechanism, thus amplifying the efficacy of the
ALNS algorithm. Consequently, the proposed hybrid meta-heuristic approach seamlessly
integrates diversification and intensification strategies through the distinctive merits of
the ALNS and VNS algorithms, respectively. The meta-heuristic approach provides a new
approach to solving CLPR problems, which requires finding appropriate meta-heuristic
algorithms and solution structures for the practical CLPR.
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2.2. CLRP Solution
2.2.1. Precise Solution

A precise solution for CLRP is to use mathematical methods to find the optimal so-
lution for CLRP. In 2011, Belenguer et al. [30] introduced a branch and cut methodology
for CLRP, employing a customized set of valid inequalities within a 0–1 linear model.
Their approach effectively ascertained optimal solutions, particularly suitable for instances
involving up to 40–50 customers and 5 potential warehouses. Shortly thereafter, Baldacci
et al. [31] proposed an alternate precise technique grounded in the set partitioning formula-
tion of CLRP, broadening its applicability to a wider spectrum of optimization scenarios.
Their strategy entails decomposing the challenge into a finite collection of Multi-Depot Ve-
hicle Routing Problems (MDVRP) through lower bounds established by diverse boundary
programs. Contardo et al. [32] expanded the scope by introducing meticulous methods
founded on cutting and column generation techniques. It’s important to acknowledge,
however, that the potency of precise methods tends to diminish as the complexity of the
problem escalates. This is evident in instances such as the 40-customer cases documented
in [33], where the resolution process can extend over several hours.

2.2.2. Heuristic and Meta-Heuristic Solution

Owing to the formidable computational intricacies and heightened complexity entailed
in addressing large-scale CLRP problems through precise methodologies, the research focus
has gravitated towards heuristics and meta-heuristics. Prins et al. [34] devised the Greedy
Stochastic Adaptive Search Program (GRASP), a dual-component approach encompass-
ing warehouse location acquisition and subsequent path refinement, effectively resolving
the CLRP challenge. Extending this work, Duhamel and Prins et al. [35] introduced
GRASP × ELS, an evolution of GRASP wherein evolutionary local search (ELS) super-
seded conventional local search. Ting et al. [21] proposed a Multi-Ant Colony Optimization
algorithm (MACO) that dissects CLRP into three distinct sub-problems—warehouse selec-
tion, customer allocation, and vehicle routing. The algorithm deployed three ant colony
iterations tailored to these sub-problems, consistently exhibiting superior or near-optimal
performance across benchmark instances. Vincent et al. [22] harnessed Simulated Annealing
Heuristics (SA) for CLRP, encoding solutions as lists and repositories as sub-lists. Em-
ploying pseudo-zeros, routes were iteratively combined, building upon an initial solution
generated through the greedy approach and subsequently refined via local search. A similar
SA encoding was presented by Jokar et al. [36], wherein the initial solution underwent
refinement through a dual-stage process involving greedy initialization and subsequent
local search. In another vein, a pragmatic and effective Hybrid Genetic Algorithm was
introduced by Lopes et al. [37], employing route representation and featuring specialized
route copy crossover and two mutation operators “add”, and “swap”. Moreover, distinct
local search routines were tailored for depot location and route enhancement.

On the basis of the implementation of the meta-initiation algorithm in the CLPR prob-
lem, researchers have further improved its solution accuracy. Quintero-Araujo et al. [38]
introduced a partial stochastic meta-heuristic algorithm to address CLRP, culminating in a
solution that demonstrated a 0.4% improvement over the classical BKSS reference solution.
In parallel, Peng et al. [24], leveraging the Particle Swarm Optimization algorithm (PSO),
achieved a 2.4% enhancement over the classical BKSS solution when dealing with a test
set involving 20 customers and 5 warehouses. Furthermore, Zhang et al. [23] crafted a
hybrid heuristic grounded in the PSO algorithm, tailored for CLRP scenarios with fuzzy
requirements. This approach yielded outcomes notable for their stability when compared
to CPLX-based solutions.

However, combinations arising from multi-vehicle transportation in the VRP phase
have not been considered in previous CLRP work.
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3. Location-Routing Optimization with Capacity Based on BiEO

The difficulties in solving the multi-vehicle distribution route combination scheme
with capacity constraints are: 1. The number of demand points that each group of vehicles
passes through is different due to the different transportation ranges of each distribution
point; 2. Since there are capacity constraints on the vehicles and they are transported in
multi-vehicle mode, there exists an optimization problem for the combination of assemblies
for each group of vehicles prior to transportation. Therefore, studying optimization algo-
rithms that are suitable for delivery needs and formulating decision plans for multi-vehicle
delivery is crucial.

To address the challenges inherent in the assembly combination optimization and
route optimization of multi-vehicle fleets within LRP, this paper proposed the Binary
Equilibrium Optimizer (BiEO) and binary combination list solution for multi-vehicles to
satisfy the multi-vehicle combination distribution problem with capacity constraints.

3.1. Equalization Optimizer

The Equilibrium Optimizer (EO) [39], introduced by Afshin Faramarzi et al. in 2019,
stands as an optimization algorithm, drawing inspiration from the hybrid dynamics of
mass balance physics with a robust control volume. At its core lies the mass balance
equation, capturing the intricate physical processes that govern mass entry, exit, and
generation within the defined volume. Notably, the EO effectively surmounts the challenge
of converging to local optima, achieved through its implementation of a candidate pool
mechanism and the multi-directional updating attributes. When juxtaposed against genetic
algorithms and particle swarm optimization algorithms, the Equilibrium Optimizer boasts
heightened optimization prowess and swifter convergence rates. The algorithmic workflow
of EO is depicted in Figure 1.
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Figure 1. EO algorithm.

The EO algorithm is different from other algorithms in that it has an equilibrium
pool mechanism that allows for better global and local development performance. The
equilibrium pool is generated according to Formulas (1)–(3).
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[→
Ceq1,

→
Ceq2,

→
Ceq3,

→
Ceq4

]
= sort

(
min

([
f it

(→
Ceq1

)
, f it

(→
Ceq2

)
, f it

(→
Ceq3

)
, f it

(→
Ceq4

)]))
(1)

→
Cave =

→
Ceq1 +

→
Ceq2 +

→
Ceq3 +

→
Ceq4

4
(2)

→
Ceq·pool =

{→
Ceq1,

→
Ceq2,

→
Ceq3,

→
Ceq4,

→
Cave

}
(3)

The update formula for the EO algorithm is Formula (4).

→
C =

→
Ceq +

(→
C −

→
Ceq

)→
F +

→
G
→
λV

(
1 −

→
F
)

(4)

where
→
F is the exponential term generated by Formula (5);

→
λ is assumed to be a random

vector in the interval of [0, 1].
→
G is the generation rate generated by Formula (7).

→
F = a1sign

(→
r − 0.5

)[
e−

→
λ t − 1

]
(5)

where is a1 constant value that controls exploration ability; r is a random vector between 0
and 1; t is defined as a function of iteration generated by Formula (6).

t =
(

1 − iter
Max_iter

)(a2
iter

Max_iter )

(6)

where iter and Max_iter present the current and the maximum number of iterations,
respectively, a2 is a constant value.

In reference [39], the available values for a1 and a2 are a1 = [1, 1.5, 2, 2.5, 3],
a2 = [0.1, 0.5, 1, 1.5, 2]. In the work of this paper, a1 and a2 have chosen a1 = 2 and
a2 = 1.

→
G =

→
G0

→
F (7)

where
→
G0 is the initial value generated by Formula (8).

→
G0 =

→
GCP

(→
Ceq −

→
λ
→
C
)

(8)

where
→

GCP generated by Formula (9).

→
GCP =

{
0.5r1 r2 ≥ GP
0 r2 < GP

(9)

where r1 and r2 are random numbers in [0, 1].
EO was applied to reference [40] to enhance the voltage profile in the distribution

system by reconfiguring the DG placement through an equalization optimizer algorithm
due to its superior accuracy of optimization search and convergence speed than algorithms
such as GA and PSO. However, the original EO algorithm’s decision space design proves
inadequate for accommodating constraints during the process of path optimization and
assembly problem-solving.
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3.2. Design and Implementation of BiEO
3.2.1. BiEO

This paper proposed the BiEO to meet the discrete solution of vehicle assembly com-
bination and delivery in the route optimization process, due to the current EO algorithm is
designed for continuous domains. BiEO can ensure that the binary population is not destroyed
during the update process. The pseudo-code of the BiEO is as follows in Algorithm 1.

Algorithm 1. BiEO

Input: Population size N; the maximum number of iterations Max_iter

Output: Best individual
→
C ; fitness of

→
C

1: Initialize the partice population
→
C

D

i , i = 1, . . . , N
2: Initializes the control parameters a1 = 2, a2 = 1, GP = 0.5
3: While iter < Max_iter
4: For i = 1 : N

5: calculate
→
C i fitness

6: End for
7: sort the particle population and find the first four particles by Formula (1)

8: calculate
→
C ave particles

9: construct the equilibrium pool by Formula (3)
10: calculate t
11: For i = 1 : N
12: Randomly choose one candidate from the equilibrium pool

13: generate randomly vector
→
λ

14: generate
→
F ,

→
GCP,

→
G0,

→
G

15: update particle population by Formula (4)
16: End(for)

17: X = abs (
→
C)

18: For i = 1 : N

19: For j = 1 : dimension o f
→
C(D)

20: M = max
(→

C
D

i

)
; m = min

(→
C

D

i

)
;

21: generate random number r = m + (M − m) ∗ rand

22: P
(

X j
i

)
=

X j
i

D
∑

k=1
Xk

i

23: If r < P
(

X j
i

)
24:

→
C

D

i =1
25: Else

26:
→
C

D

i =0
27: End if
28: End for
29: End for
30: iter = iter + 1
31: End while

3.2.2. The DACA Strategy for Multi-Vehicle Route Optimization

The DACA strategy for multi-vehicles was designed as shown in Figure 2. The
Schematic diagram of route coding for a certain distribution point is shown in Figure 2a.
In the figure, the depot represents distribution points, and the client represents demand
points. A solution for a certain vehicle covers 3 elements: start-depot, client encoding,
and end-depot. When the Start-depot is 1, it indicates that the vehicle is selected for
delivery; When the nth client is 1, it indicates that the vehicle delivers goods to the nth
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client. When the end-point is 1, it indicates that the distribution is a feasible sub-solution
under the condition of the limited capacity of this vehicle. As a whole feasible solution
to the combination multi-vehicles, all sub-solutions should be feasible. The initialization
of delivery for multi-vehicles in decision space is shown in Figure 2b. This approach
facilitates the concurrent optimization of both the distribution routes for the vehicles at the
distribution point and the corresponding vehicle capacities. The DACA strategy not only
addresses assembly combination optimization but also effectively abides by the constraints
imposed by vehicle capacities.
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of DACA strategy initialization.

4. Model of Logistics System for Multi-Vehicles Based on BiEO
4.1. The Model Design Based on BiEO

Our model serves to ascertain the optimal locations and quantities of distribution
points, while concurrently devising distribution route schedules between these distribution
points and each individual demand point. The overarching objective is to minimize the
overall cost while effectively fulfilling the material requisites of each specified demand
point. Below, we proceed to provide definitions and elucidations pertaining to the sets,
indices, parameters, and decision variables integral to our formulation.

minZ = ∑
i∈L

∑
j∈L

VijXW
ijVCVdij + ∑

i∈L
∑
j∈L

vijxw
ijvCvdij (10)

Formula (10) is the optimization objective function and Z is the minimum cost opti-
mization objective. The parameters are described in Tables 2–5.

Table 2. The solution set of the model.

Set Description

V Set of large vehicles (V = 1, 2, 3...Vn)
v Set of small vehicles (v = 1, 2, 3...vn)
S The number of distribution points (S = 1, 2, 3...Sn)
R Set of demand points (R = 1, 2, 3...Rn)
L Set of distribution points and demand points (L ∈ R ∪ S)
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Table 3. Variables of the objective function.

Parameter Definition

dij The distance from the demand point i to the demand point j, ∀i, j ∈ L
Vij The large vehicle from the demand point i to the demand point j, ∀i, j ∈ L
vij The small vehicle from the demand point i to the demand point j, ∀i, j ∈ L

Table 4. Parameters of the objective function.

Variables Description Values

CV Cost per mile for the small vehicle 100
Cv Cost per mile for the large vehicle 40

Table 5. Decision variables of the objective function.

Decision Variables Description Values

XW
ijV

large vehicle X with V Load limit loads W from the demand
point i to the demand point j directly 0 or 1

xw
ijv

small vehicle x with v Load limit loads w from the demand
point i to the demand point j directly 0 or 1

The additional assumptions are the following:

(1) The number and the capacity of distribution points are subject to defined limitations,
which remain inviolable.

(2) The transport vehicles adhere to capacity constraints, which are to be strictly ad-
hered to.

(3) Uniformity prevails in the transportation aspect: each distribution point caters to a
designated transport area, employing vehicles of the same capacity, type, and uniform
unit transport cost.

(4) Each demand point necessitates a single visit.
(5) The daily demand at each demand point remains constant. Meanwhile, we assume

that each person’s daily demand is fixed at 400 g.

The constraints are shown in the following Formulas (11)–(24).

(1) Each demand point can only have one distribution point responsible for delivery.

∑
j∈R

uij = 1 ∀ i ∈ S (11)

where uij indicates that distribution point i is responsible for the delivery of demand point j,
uij ∈ {0, 1}

(2) The total amount of transported materials is less than the inventory.

∑
i,j∈R

wV
ij XW

ijV + ∑
i,j∈R

wv
ijx

w
ijv − ∑

i,j∈L

∼
Eiuij = 0 (12)

where wV
ij is the total load w of large vehicles from demand point i to the demand point j,

∀i, j ∈ L; wv
ij is the total load w of small vehicles from demand point i to the demand point

j, ∀i, j ∈ L;
∼
Ei is the demand of the demand point i, ∀i ∈ R; XW

ijV is large vehicles load W
from demand point i to demand point j; xw

ijv is small vehicles load w from demand point i
to demand point j; wV

ij , wv
ij ≧ 0 ∀i, j ∈ L, ∀V ∈ V, ∀v ∈ v;XW

ijV , xw
ijv ∈ {0, 1}∀i, j ∈ L.

(3) There is only one kind of vehicles on the transport route to a certain demand point:

∑
i,j∈L

XW
ijV − ∑

i,j∈L
XW

jiV = 0 (13)
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∑
i,j∈L

xw
ijv − ∑

i,j∈L
xw

jiv = 0 (14)

where w represents the current load of the small vehicle departing immediately; W repre-
sents the current load of the large vehicle departing immediately.

(4) Transport routes can exist in both large vehicles and small vehicles:

∑
i,j∈L

XW
ijV − ∑

i,j∈L
xw

ijv ≤ 1 (15)

Formula (15) indicates that on the same transportation route, it can pass through both
large vehicles and small vehicles.

(5) Return when the vehicle is not enough to meet the demand of the next demand point:

∑
I,j∈R

wV
ij XW

ijV −
∼
Ei ≥ 0 (16)

∑
i,j∈R

wv
ijx

w
ijv −

∼
Ei ≥ 0 (17)

where
∼
Ei is the demand for demand point i, Formulas (16) and (17) represent the return to

the warehouse when the transportation vehicle load does not meet the demand for the next
demand point.

(6) The constraint of the transport starting point and vehicle capacity constraints:

∑
i∈S

∑
j∈R

wv
ijx

w
ijv ≤ Wv (18)

∑
i∈S

∑
j∈R

wV
ij XW

ijV ≤ WV (19)

where WV is the maximum load of large vehicles, which is set to 10 in this paper; Wv is the
maximum load of small vehicles, which is set to 4 in this paper; Meanwhile, Formulas (18)
and (19) indicates that the transportation load of large vehicles and small vehicles cannot
exceed their respective load limits.

(7) Constraints of the transportation terminal:

∑
i∈R

∑
j∈S

VijXW
ijV = 1 (20)

∑
i∈R

∑
j∈S

vijxw
ijv = 1 (21)

(8) Decision variable constraints:

XW
ijV , xw

ijv ∈ {0, 1}∀i, j ∈ L (22)

uij ∈ {0, 1}∀i ∈ S, ∀j ∈ R (23)

wV
ij , wv

ij ≧ 0 ∀i, j ∈ L, ∀V ∈ V, ∀v ∈ v (24)

The Formula (24) indicates that the load of large vehicles and small vehicles cannot
be empty.

4.2. The Implement of the Multi-Vehicle Route Optimization

The implement scheme, shown in Figure 3, includes (1) the strategic determination
and optimization of distribution point locations, and (2) the formulation of optimal routes
originating from each distribution point, directing towards the associated demand point.
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5. Experiments
5.1. Data

The data set is sourced from the population distribution in the high-tech zone of
Changchun, China. Specifically, the algorithm and model are utilized to establish distribu-
tion points within the high-tech zones for material transportation during the COVID-19
lockdown.

The high-tech zone comprises 90 distinct demand points with an approximate popula-
tion of 300,000 individuals. To achieve the efficient distribution of household supplies to
these communities, it is necessary to optimize the location of the distribution points and
the driving route from the distribution point to the community. Firstly, due to the varying
density of geographical distribution in residential areas and the varying population of each
community, it is necessary to establish temporary material distribution points based on
the above information. Secondly, within each distribution point, a fleet of four vehicles is
available, comprising both large vehicles (with a 10-ton capacity) and small vehicles (with
a 4-ton capacity), deployable in diverse combinations as necessitated.

5.2. Algorithm Settings

In this paper, the problem of location and route optimization is simultaneously consid-
ered, which means the route optimization problem involves the assembly and combination
of four vehicles. Therefore, the simultaneous solution described in this paper focuses on
utilizing the DACA strategy proposed in this paper to simultaneously solve the problem of
combining vehicle assembly combination and vehicle route optimization.

5.2.1. The Optimization of the Location of Distribution Points by EO

The optimization objective function of the location of distribution points is to minimize
the distance from the warehouse to the distribution points as shown in Formula (25). The
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location of distribution points in this paper is continuous with no pre-elected location of
distribution points.

minD = ∑
j∈S

∑
i∈R

pij (25)

where pij is the distance from the distribution point i to the demand point j.
Another location selection scheme is designed based on the regional population

density. Demand points with high population density have bigger weights, which means
distribution points’ locations will approach the areas with higher probability. On the
contrary, Demand points with low population density will have smaller weights, and
distribution points’ location will stay away from areas with high probability. The objective
function is shown in the Formula (26).

minD = ∑
j∈S

∑
i∈R

wi pij (26)

where wi is the weight of demand points i. wi is generated according to Formula (18).

wi =
ki
N

, ∀i ∈ R (27)

where N is the total population within the distribution area. ki is population of demand
point i.

5.2.2. The Route Optimization of the Multi-Vehicle by BiEO

The optimization objective function is the lowest distribution cost as shown in For-
mula (10). In multi-vehicle combination transportation, there are three important con-
straints: 1. All demand points have to be distributed, Formula (11); 2. The total load of all
transportation vehicles must not exceed the demand point’s demand, Formula (12); and
3. The starting and ending points of all transportation vehicles must be distribution points,
Formulas (18)–(21). The DACA strategy and BiEO proposed in this paper are utilized in
route optimization under multi-vehicle combinations.

The original EO’s population update has the potential to inadvertently breach the con-
straint that each demand point must be traversed by a single vehicle only once. Figure 4a,b
provide an illustrative instance of such an update. In the figure, the depot represents
distribution points, and the client represents demand points. In Figure 4a, the two matri-
ces depict the chosen individuals prior to the update, whereas the matrices in Figure 4b
portray the outcomes following the population update. Notably, the results displayed in
Figure 4b conspicuously violate the stipulated constraint of singular point passage (evident
through the emergence of multi-values within the same column), subsequently forsaking
their binary-coded 0 s and 1 s representation. Consequently, this renders the accurate
evaluation of the fitness function impracticable during subsequent assessments. To address
this predicament, enhancements are introduced to the equilibrium optimizer to ensure that
the result updates adhere to the prescribed constraint conditions.

5.3. Results
5.3.1. The Optimization Distribution Points by EO

Figure 5 shows the location results of distribution points based on (25) and (26). The
red star in Figure 5 represents the optimized distribution point location. The capacity of
each distribution point is the same, with a total capacity of approximately 135 tons for
the five distribution points. Each color distribution point is responsible for delivering
demand points that match its color. The optimal distribution points are shown in Figure 5a,
all demand points are distributed based on the 5 optimal distribution points. Distinct
colors signify different zones. To align with the distribution points ‘s capacity and the
community population’s requisites within its purview, the area is partitioned into five
transportation zones, each characterized by a varying number of demand points responsible
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for distribution from the distribution points. Specifically, there are 15, 29, 12, 18, and 16
demand points in the five regions, totaling 90 demand points. Therefore, the DACA strategy
dimension of each region is not the same.
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Figure 5. The location of distribution points.

As shown in Figure 5b, the location results of distribution points with weights are
different from those without weights. Meanwhile, in subsequent experiments, it was
shown that weighted distribution point location selection can lower the cost of subsequent
route optimization.
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5.3.2. Results of Route Optimization of Multi-Vehicle

This paper proposed a comparative experimental analysis between the binary variants
of GA, DE, PSO, and the proposed BiEO using identical datasets. All four algorithms adopt
the population initialization strategy from this study, with a fixed population size of 50 and
1000 iterations. To ensure fairness, a total of 21 independent experiments were executed. In
addition, the time complexity of the combined solution of the BiEO algorithm proposed
in this article is O(Maxiter ∗ (Nlog N + N ∗ D)), where Maxiter is maximum number of
iterations, N is population size, D is dimensions of solutions generated by DACA strategy.

The experiments are implemented using MATLAB R2021a in a computer with a
processor AMD RyzenTM 9 5950Xcpu@3.40GHz.

Additionally, this paper extends the comparison by subjecting the four algorithms to
the same mathematical model and decision space. Notably, BiEO consistently outperforms
the other three algorithms in terms of results. In this paper, two distribution point loca-
tion schemes are designed. Therefore, multi-vehicle distribution was performed for both
scenarios. The cost results of distribution are shown in Table 6. The results show that the
distribution cost is lower for distribution points with weights. The fitness of distribution
areas is delineated in columns 1–5 of Table 6, with the sixth column denoting the total
fitness. The 7th column represents the mean fitness of the five regions. where lower fitness
values indicate better performance.

Table 6. Comparison of fitness between weighted and unweighted location routes for delivery.

Location Scheme
Zone

1 2 3 4 5 ∑5
i=1 Zonei

∑5
i=1 Zonei

5

BiEO
Location without weight 4647.633 5874.019 3925.837 3867.961 5433.671 23,749.123 4749.824

Location with weight 4605.419 5935.074 3800.736 3741.302 4851.630 22,934.163 4586.832

GA(Bi)
Location without weight 5977.681 8051.848 4147.091 5415.425 6974.927 30,566.975 6113.394

Location with weight 6020.909 8211.209 4168.806 5426.242 6544.810 30,371.979 6074.395

PSO(Bi)
Location without weight 4789.469 6202.087 4219.922 4174.245 5574.124 24,959.848 4991.969

Location with weight 4683.817 6070.669 4002.426 4093.164 4889.617 23,739.695 4747.939

DE
Location without weight 5270.477 7056.845 4274.494 4733.520 6124.971 27,460.309 5492.061

Location with weight 5231.550 7164.501 4034.021 4774.386 5742.543 26,947.003 5389.4

In this paper, we used a simulated annealing algorithm (SA) and the proposed DACA
strategy to estimate the cost upper bound of the route optimization stage problem, as
shown in Table 7 for two different upper bound estimates: weighted and unweighted
location selection schemes.

Table 7. Upper bound estimates: weighted and unweighted location selection schemes.

Location Scheme
Zone

1 2 3 4 5 ∑5
i=1 Zonei

Location without weight 9655.254 11,322.992 6781.191 8382.823 10,310.815 46,453.078
Location with weight 9318.230 11,575.753 6457.178 7759.367 9923.8369 45,034.367

This paper uses upper bound estimation to calculate the Gap ( upper bound−Costobtained
upper bound ×

100%) between the propose BiEO algorithm and other algorithms under two location
selection schemes. Therefore, a larger Gap indicates better performance. As shown in
Table 8, the BiEO algorithm proposed in this paper can achieve a higher Gap compared to
other comparative algorithms.
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Table 8. Comparison between the proposed BiEO’s Gap and other algorithms.

Location Scheme
Algorithm

Zone
1 2 3 4 5 ∑5

i=1 Zonei

Location without weight

BiEO 51.86% 48.12% 42.10% 53.85% 47.30% 48.87%
GA(Bi) 38.08% 28.88% 38.84% 35.39% 32.35% 34.19%
PSO(Bi) 50.39% 45.22% 37.77% 50.20% 45.93% 46.26%

DE 45.41% 37.67% 36.96% 43.53% 40.59% 40.88%

Location with weight

BiEO 50.57% 48.72% 41.13% 51.78% 51.11% 49.07%
GA(Bi) 35.38% 29.06% 35.43% 30.06% 34.04% 32.55%
PSO(Bi) 49.73% 47.55% 38.01% 47.24% 50.72% 47.28%

DE 43.85% 38.10% 37.52% 38.46% 42.13% 40.16%

Figure 6 shows the best solution for vehicle assembly combination and it’s the delivery
route. Figure 6a shows the best solution of the No. 3 distribution point, where 1 in the
first and last columns indicates that the distribution point is the starting and ending points
of the vehicle, and 1 in the middle of the first and last columns indicates passing through
the demand point; 0 indicates not passing through the demand point. Figure 6b shows
corresponding vehicle routes in Figure 6a.
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Furthermore, the problem addressed in this paper incorporates a VRP component
employing four vehicles for transportation. Consequently, the VRP stage encompasses
both the combinatorial and route optimization issues. To substantiate the efficacy of the
DACA strategy, a control experiment is conducted, addressing the combination and route
optimization problems independently. During the experiment, the transport vehicle’s
capacity is adjusted to four vehicles of equal capacity. The experiment is conducted under
varying capacities of 8, 9, and 10 to assess the effectiveness of the DACA strategy.
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Table 9 presents a fitness comparison between the DACA strategy and the combination
VRP approach. In this context, fitness denotes the transportation cost, thus a lower value
indicates better fitness. the results show that fitness with the DACA strategy is better
than fitness with the combination-VRP approach, which affirms the effectiveness of the
DACA strategy.

Table 9. Fitness comparison between the DACA strategy and combination-VRP mode.

Transportation Cost

Zone
1 2 3 4 5 ∑5

i=1 Zonei

8
DACA strategy 5511.236 6560.593 5066.791 4970.062 7190.940 29,299.625

combination-VRP 5295.788 7161.854 4741.342 5208.163 7088.083 29,495.231

9
DACA strategy 4277.268 5921.454 4209.298 3923.458 5579.974 23,911.454

combination-VRP 4468.354 6314.061 4136.726 4097.424 5376.989 24,393.556

10
DACA strategy 4085.538 4881.320 3586.526 3699.209 5343.112 21,595.707

combination-VRP 4127.397 5168.431 3711.924 4092.440 5154.732 22,254.927

6. Discussion and Future Work

The BiEO algorithm proposed in this article has achieved good performance in solving
real-world problems compared to other algorithms. In addition, this article also proposes
the DACA strategy as a solution for vehicle assembly combination optimization and route
optimization, and the results show that the performance of the DACA strategy is superior
to the optimization scheme that separates combination assembly and path optimization.

In addition, the experimental results indicate that the weighted distribution point
location scheme designed in this paper can lower the cost of subsequent distribution links.
Meanwhile, in order to verify that the proposed DACA strategy can solve the combinatorial
VRP problem in this paper, corresponding experiments were designed for verification. The
results indicate that the DACA strategy proposed in this article can achieve lower costs
than the strategy with VRP optimization splitting in combination optimization.

Future research avenues may explore the following directions: While this paper has
made strides in optimizing LRP using real datasets, the distinctiveness of distribution
points from conventional FLP necessitates a planar coordinate search instead of relying
on predefined distribution points. This divergence hampers its seamless integration with
subsequent VRPs. Thus, future investigations could focus on devising innovative solutions
to enhance the synergy between these two facets of the problem.

7. Conclusions

This paper proposed the BiEO algorithm, comprising two main components: (1) ad-
dressing the placement of distribution points location problem, Meanwhile, this article
has designed two options for the location selection of distribution points, and (2) solving
the VRP with capacity constraints for each distribution area, utilizing the DACA strategy
in this study. A comparative analysis was conducted against combination-VRP experi-
ments, revealing that the BiEO algorithm yielded superior outcomes within this problem
framework compared to GA, DE, and PSO algorithms. Furthermore, the proposed DACA
strategy effectively tackled both combinatorial problems and VRP simultaneously.

However, this paper also has some limitations. Firstly, in the optimization model of
this article, we assume that each person’s daily material demand is fixed (weighing 400 g
per person), which cannot truly reflect each person’s daily material demand. In the future,
we may consider defining each person’s daily demand in the form of fuzzy numbers. In
addition, due to the use of the DACA strategy in the solution, it is necessary to maintain
consistency between the dimensions and the number of demand points in the distribution
area during the solving process. Therefore, in this problem, when the transportation vehicle
load cannot reach the next demand point in the distribution area, it will return and cannot
transport to the demand points in other areas that meet the demand, which may lead to
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an overall increase in the cost of the problem. In future research, we may consider that
transportation vehicles can deliver to demand points outside of this distribution area.
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