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Abstract: The Rayleigh–Stokes equation with a fractional derivative is widely used in many fields.
In this paper, we consider the inverse initial value problem of the Rayleigh–Stokes equation. Since
the problem is ill-posed, we adopt the Tikhonov regularization method to solve this problem. In
addition, this paper not only analyzes the ill-posedness of the problem but also gives the conditional
stability estimate. Finally, the convergence estimates are proved under two regularization parameter
selection rules.
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1. Introduction

Fractional derivatives and integrals provide a good tool to describe phenomena with
non-locality and memory characteristics. Fractional derivatives and fractional equations are
also widely used in many scientific fields such as engineering, physics, finance, and hydrol-
ogy [1–4]. So far, fractional integrals and derivatives have taken many forms, such as the
Riemann–Liouville, Grünwald–Letnikov, Riesz, Caputo, Hadamard, and Caputo–Fabrizio.
As a generalized form of integral calculus, fractional calculus has been paid more attention
to by scholars because it is more in line with the actual phenomenon and has unique ad-
vantages compared with integral calculus. Fractional differential equations have important
applications in the fields of fluid mechanics, economics, and control theory. Although
fractional differential equation can describe the actual phenomenon more accurately [2,5,6],
it is difficult to obtain the analytical solution of a fractional differential equation because
of the non-local property of the fractional derivative. Therefore, it is necessary to find an
effective numerical method to solve fractional differential equations.

In recent years, the Rayleigh–Stokes equation for a heated generalized second-grade
fluid has played an important role in describing the practical problems of non-Newtonian
fluid mechanics, which have attracted much attention from many researchers. Many
achievements have been made in the study of the direct problems of Rayleigh–Stokes
equation. In [7], Fourier coefficients transform and the fractional Laplace transform are
used to solve the exact solution of the Rayleigh–Stokes problem. In [8], the exact solution
of some oscillatory motions of the generalized Rayleigh–Stokes problem is discussed, and
the velocity field and corresponding analytical expressions of infinite plate oscillating flow
are given. The vibration caused by the oscillatory pressure gradient is determined by the
Fourier sine transform and the Laplace transform. In [9], the authors use the fractional
derivative method to solve the Rayleigh–Stokes problem on the boundary. In addition,
some scholars have used numerical methods to study the Rayleigh–Stokes problem. In [10],
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the authors used implicit and explicit difference numerical methods to obtain numerical so-
lutions of second-order generalized thermal fluid Rayleigh–Stokes problems with fractional
derivatives. In [11], an approximate numerical method is proposed for the Rayleigh–Stokes
problem of generalized second-order fluids in a bounded domain. In [12], the numerical
methods with fourth-order spatial accuracy for Rayleigh–Stokes’ first problem is studied.
In [13,14], the authors study the numerical solutions of Rayleigh–Stokes problems for
generalized second-order thermal fluids with fractional derivatives. The other numerical
methods for solving Rayleigh–Stokes problems can be seen in the cited works [15–17].

However, in practical problems, the parameters used in most model equations, such
as physical parameters, source terms, initial conditions, and boundary conditions are
unknown, and these unknown parameters need to be identified through measurement
data. Thus, it leads to the inverse problems of the Rayleigh–Stokes equation for second-
grade fluids. According to the current research status, the research on the inverse problem
of the Rayleigh–Stokes equation is still limited. In [18], an inverse problem to estimate
an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’
first problem is considered. In [19], the authors use the filter regularization method to
analyze the Rayleigh–Stokes inverse problem with Gaussian random noise. In [20], the
authors use the filter regularization method to identify the unknown source term of the
Rayleigh–Stokes problem with Gaussian random noise and prove the error estimation
between the regularized solution and the exact solution. But the regularization parameter
is an a priori choice rule, which depends on an unknown priori bound. In [21], the authors
provide the existence and regularity of the inverse problem for the nonlinear fractional
Rayleigh–Stokes equations. In [22,23], the authors give a Tikhonov regularization method
and filter regularization method to identify the source term for the Rayleigh–Stokes problem.
In [24], the authors use the trigonometric method in nonparametric regression associated
to regularize the instable solution of the initial inverse problem for the nonlinear fractional
Rayleigh–Stokes equation with random discrete data. In [25], the authors consider the
regularity of the solution for a final value problem for the Rayleigh–Stokes equation.

In the following, we consider the backward problem for the Rayleigh–Stokes equation
in a general bounded domain. Let T > 0 be a given positive number, and Ω be a bounded
domain in Rd. The mathematical problem is given by

∂tu(x, t)− (1 + γ∂α
t )∆u(x, t) = 0, (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, T) = g(x), x ∈ Ω,

(1)

where γ > 0 is a constant, u is the velocity distribution. ∂t = ∂/∂t, and ∂α
t is the Riemann–

Liouville fractional derivative of order α ∈ (0, 1) defined by [1]

∂α
t u(x, t) =

d
dt

∫ t

0
ω1−α(t − s)u(x, s)ds, ωα =

tα−1

Γ(α)
, 0 < α < 1. (2)

The backward problem is to find the initial data u(x, 0) = f (x) from the given measured
data at the final condition u(x, T) = g(x). In practice, the exact data g are approximated by
the noisy observation data gδ, which are assumed to satisfy

∥gδ − g∥ ≤ δ, (3)

where ∥ · ∥ denotes the L2(Ω)-norm, and the constant δ > 0 is a noise level.
In this paper, the Tikhonov regularization method is used to study the backward

problem of the Rayleigh–Stokes equation with a fractional derivative. This method has
dealt with a number of inverse problems, such as the backward problem [26,27] and
the inverse unknown source problem [28–30]. We prove the error estimate between the
regularized solution and the exact solution under a priori and a posteriori regularization
parameter selection rules. The posteriori regularization parameter selection rules only
depend on the measured data and do not depend on the priori bound of the exact solution.
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The structure of this paper is as follows. Section 2 introduces some preliminary results.
Section 3 gives the ill-posedness of problem (1) and the conditional stability of problem (1).
In Section 4, the Tikhonov regularization method is used to deal with the backward problem,
and the error estimates between the exact solution and the regularized solution are obtained
under a priori and a posteriori regularization parameter choice rules.

2. Preliminary Results

Throughout this article, we use the following definitions.

Definition 1. Let {λn, ϕn} be the Dirichlet eigenvalues and corresponding eigenvectors of the
Laplacian operator −∆ in Ω. The family of eigenvalues {λn}∞

n=1 satisfies 0 < λ1 ≤ λ2 ≤ · · · ≤
λn ≤ · · · , where λn → ∞ as n → ∞:{

∆ϕn(x) = −λnϕn(x), x ∈ Ω,
ϕn(x) = 0, x ∈ ∂Ω.

(4)

Definition 2. For k > 0, we define

Hk(Ω) :=
{

f ∈ L2(Ω)

∣∣∣∣ ∞

∑
n=1

λ2k
n |( f , ϕn)|2 < +∞

}
, (5)

equipped with the norm

∥ f ∥Hk(Ω) =

( ∞

∑
n=1

λ2k
n |( f , ϕn)|2

) 1
2

, k > 0. (6)

In the following, we present the solution of the direct problem of the Rayleigh–Stokes
equation 

∂tu(x, t)− (1 + γ∂α
t )∆u(x, t) = 0, (x, t) ∈ Ω × (0, T),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, 0) = f (x), x ∈ Ω.

(7)

Indeed, suppose that the direct problem (7) has a solution u(x, t) ∈ C([0, T]; L2(Ω)) ∩
C([0, T]; H2(Ω) ∩ H1

0(Ω)), and using the Equation (2.21) in [31], we obtain

u(x, t) =
∞

∑
n=1

fnun(t)ϕn(x). (8)

Here, fn = ( f (x), ϕn(x)) is the Fourier coefficient, and the function un(t) satisfies

un(t) =
∫ ∞

0
e−stBn(s)ds, (9)

where
Bn(s) =

γ

π

λnsα sin απ

(−s + λnγsα cos απ + λn)2 + (λnγsα sin απ)2 .

According to the condition u(x, T) = g(x), and using (9), we obtain

g(x) =
∞

∑
n=1

fnun(T)ϕn(x) := K f (x), (10)

or equivalently,
gn = fnun(T), (11)

where gn = (g(x), ϕn(x)) is the Fourier coefficient. Here, the linear operator K : L2(Ω) →
L2(Ω) is defined by

K f (x) =
∞

∑
n=1

[ ∫ ∞

0
e−sT Bn(s)ds

]
( f (x), ϕn(x))ϕn(x) =

∫
Ω

k(x, ω) f (ω)dω, (12)
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where

k(x, ω) =
∞

∑
n=1

[ ∫ ∞

0
e−sT Bn(s)ds

]
ϕn(x)ϕn(ω).

Then, we can obtain the solution of the backward problem (1) as follows

f (x) =
∞

∑
n=1

gn

un(T)
ϕn(x). (13)

3. Ill-Posedness and Conditional Stability Estimate

To analyze the ill-posedness and give the conditional stability estimate of the backward
problem, we need to provide the following lemmas.

Lemma 1 ([31]). The functions un(t), n = 1, 2, · · · have the following properties:

(a) un(0) = 1, 0 < un(t) ≤ 1, t ≥ 0;
(b) un(t) are completely monotone for t ≥ 0;
(c) |λnun(t)| ≤ c min{t−1, tα−1}, t > 0;
(d)

∫ T
0 |un(t)|dt < 1

λn
, T > 0,

where the constant c does not depend on n and t.

Lemma 2 ([19]). Let us assume that α ∈ (0, 1). The following estimate holds for all t ∈ [0, T]

un(t) ≥
C(γ, α, λ1)

λn
, (14)

where

C(γ, α, λ1) = γ sin απ
∫ +∞

0

e−sTsαds

γ2s2α + s2

λ2
1
+ 1

. (15)

Now, we will prove that the backward problem is ill-posed. By using the result in
Lemma 1, for t > 0, we have

1
un(T)

≥ λn

c min{T−1, Tα−1} . (16)

Hence, we know that 1
un(T)

is a completely monotonic increasing function with respect to

λn. Then, the small error in the high-frequency components for gδ(x) will be amplified by
the factor 1

un(T)
. So, the initial data u(x, 0) = f (x) from the given measured data gδ(x) are

ill-posed.
In the following, we introduce a conditional stability estimate of the backward problem

for the fractional Rayleigh–Stokes Equation (1).

Theorem 1. Let f ∈ Hk(Ω) be such that

∥ f ∥Hk(Ω) ≤ E, (17)

for some E > 0. Then, we have the following estimate

∥ f ∥L2(Ω) ≤ C1E
1

k+1 ∥g∥
k

k+1 , (18)

where C1 = C− k
k+1 (γ, α, λ1).

Proof. From Formula (13), and applying the Hölder inequality, we know
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∥ f ∥2
L2(Ω) =

∞

∑
n=1

∣∣∣∣ (g(x), ϕn(x))
un(T)

∣∣∣∣2
=

∞

∑
n=1

|(g(x), ϕn(x))|
2

k+1 |(g(x), ϕn(x))|
2k

k+1

|un(T)|2

≤
[ ∞

∑
n=1

|(g(x), ϕn(x))|2
|un(T)|2k+2

] 1
k+1

[ ∞

∑
n=1

|(g(x), ϕn(x))|2
] k

k+1

≤
[ ∞

∑
n=1

|( f (x), ϕn(x))|2
|un(T)|2k

] 1
k+1

∥g∥
2k

k+1
L2(Ω)

. (19)

By using Lemma 2, we obtain

∞

∑
n=1

|( f (x), ϕn(x))|2
|un(T)|2k ≤

∞

∑
n=1

λ2k
n |( f (x), ϕn(x))|2

C2k(γ, α, λ1)
=

∥ f ∥2
Hk(Ω)

C2k(γ, α, λ1)
. (20)

Combining Formulas (19) and (20), we obtain

∥ f ∥2
L2(Ω) ≤

∥ f ∥
2

k+1
Hk(Ω)

C
2k

k+1 (γ, α, λ1)
∥g∥

2k
k+1
L2(Ω)

.

Hence, we have
∥ f ∥L2(Ω) ≤ C1E

1
k+1 ∥g∥

k
k+1 ,

where C1 = C− k
k+1 (γ, α, λ1).

Remark 1. Essentially, Theorem 1 provides the following conditional stability estimate

∥ f1 − f2∥L2(Ω) ≤ C1∥ f1 − f2∥
1

k+1
Hk(Ω)

∥K f1 − K f2∥
k

k+1 .

4. Tikhonov Regularization Method and Convergence Estimates

In this section, we solve the backward problem (1) by using the Tikhonov regulariza-
tion method, which minimizes the function

∥K f − g∥2 + β2∥ f ∥2; (21)

here, β is a regularization parameter. By Theorem 2.12 in [32], we know that its minimizer
fβ(x) satisfies

K∗K fβ(x) + β2 fβ(x) = K∗g(x). (22)

Due to the singular value decomposition for a compact self-adjoint operator, we have

fβ(x) =
∞

∑
n=1

un(T)
β2 + u2

n(T)
(g, ϕn)ϕn. (23)

If the observed data gδ(x) are noise-contaminated, we have

f δ
β(x) =

∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ, ϕn)ϕn. (24)

4.1. A Priori Choice Rule

We first give two lemmas.

Lemma 3. Assume condition (3) holds, and we have the following estimate

∥ f δ
β(x)− fβ(x)∥ ≤ δ

2β
. (25)



Axioms 2024, 13, 30 6 of 12

Proof. According to the Formulas (3), (23), and (24), we have

∥ f δ
β(x)− fβ(x)∥2 =

∥∥∥∥ ∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ, ϕn)ϕn −

∞

∑
n=1

un(T)
β2 + u2

n(T)
(g, ϕn)ϕn

∥∥∥∥2

=

∥∥∥∥ ∞

∑
n=1

un(T)
β2 + u2

n(T)
(gδ − g, ϕn)ϕn

∥∥∥∥2

=
∞

∑
n=1

(
un(T)

β2 + u2
n(T)

)2

(gδ
n − gn)

2

≤ δ2(sup
n≥1

A(n))2, (26)

where,

A(n) =
|un(T)|

β2 + u2
n(T)

≤ 1
2β

.

Thus, we obtain

∥ f δ
β(x)− fβ(x)∥ ≤ δ

2β
. (27)

The proof of Lemma 3 is complete.

Lemma 4. Assume that the condition (17) holds; then, we have

∥ f (x)− fβ(x)∥ =

 βE λ1−k
1

2C(γ,α,λ1)
, 0 < k < 1,

βkE
√
( 1

2C(γ,α,λ1)
)2 + 1, k ≥ 1.

(28)

Proof. From Formulas (13) and (23), we know

∥ f (x)− fβ(x)∥2 =
∞

∑
n=1

(
1

un(T)
− un(T)

β2 + u2
n(T)

)2

g2
n

=
∞

∑
n=1

(
β2

(β2 + u2
n(T))un(T)

)2

g2
n

=
∞

∑
n=1

(
β2λk

nλ−k
n

(β2 + u2
n(T))un(T)

)2

g2
n

≤ (sup
n≥1

B(n))2
∞

∑
n=1

λ2k
n g2

n
u2

n(T)

= (sup
n≥1

B(n))2∥ f ∥2
Hk(Ω)

. (29)

Here,

B(n) =
β2λ−k

n
β2 + u2

n(T)
. (30)

Now, by using Lemma 2, we estimate B(n),

B(n) ≤ β2λ−k
n

2βun(T)
=

βλ−k
n

2un(T)
≤ βλ1−k

n
2C(γ, α, λ1)

. (31)

We divide this into the two following cases:
Case 1: If k ≥ 1, we know

λ1−k
n =

1
λk−1

n
≤ 1

λk−1
1

= λ1−k
1 . (32)

Combining (29), (31), and (32), we obtain
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∥ f (x)− fβ(x)∥ ≤
βλ1−k

1
2C(γ, α, λ1)

∥ f ∥Hk(Ω) ≤ βE
λ1−k

1
2C(γ, α, λ1)

. (33)

Case 2: If 0 < k < 1, we choose any η ∈ (0, 1) and rewrite N = A1 ∪A2, where

A1 = {n ∈ N, λ1−k
n ≤ β−η}, A2 = {n ∈ N, λ1−k

n > β−η}. (34)

From Formula (31), we have

∥ f (x)− fβ(x)∥2 ≤ sup
n∈A1

(
βλ1−k

n
2C(γ, α, λ1)

)2

∑
n∈A1

λ2k
n ( f (x), ϕn(x))2

+ sup
n∈A2

(
β2λ−k

n
β2 + u2

n(T)

)2

∑
n∈A2

λ2k
n ( f (x), ϕn(x))2

≤
(

1
2C(γ, α, λ1)

)2

β2−2η∥ f ∥2
Hk(Ω)

+ sup
n∈A2

λ−2k
n ∥ f ∥2

Hk(Ω)

≤
(

1
2C(γ, α, λ1)

)2

β2−2η∥ f ∥2
Hk(Ω)

+ β
2ηk
1−k ∥ f ∥2

Hk(Ω)
. (35)

Choosing η = 1 − k, and the Formula (17), we obtain

∥ f (x)− fβ(x)∥2 ≤
(

1
2C(γ, α, λ1)

)2

β2−2η∥ f ∥2
Hk(Ω)

+ β
2ηk
1−k ∥ f ∥2

Hk(Ω)

= β2kE2
((

1
2C(γ, α, λ1)

)2

+ 1
)

.

(36)

This means

∥ f (x)− fβ(x)∥ ≤ βkE

√(
1

2C(γ, α, λ1)

)2

+ 1. (37)

The proof of Lemma 4 is complete.

Theorem 2. Suppose that a priori condition (17) and the noise assumption (3) hold; then,
(1) If k ≥ 1, and we choose β = ( δ

E )
1
2 , we have the convergence estimate

∥ f δ
β(x)− f (x)∥ ≤ 1

2
δ

1
2 E

1
2

(
1 +

λ1−k
1

C(γ, α, λ1)

)
. (38)

(2) If 0 < k < 1, and we choose β = ( δ
E )

1
k+1 , we obtain the convergence estimate

∥ f δ
β(x)− f (x)∥ ≤ δ

k
k+1 E

1
k+1

(
1
2
+

√(
1

2C(γ, α, λ1)

)2

+ 1
)

. (39)

Proof. According to the triangle inequality and Lemmas 3 and 4, we know

∥ f δ
β(x)− f (x)∥ ≤ ∥ f δ

β(x)− fβ(x)∥+ ∥ fβ(x)− f (x)∥.

Hence, we can easily obtain the conclusion to Theorem 2.

4.2. A Posteriori Choice Rule

In this subsection, we derive the convergence estimate by using a posteriori regular-
ization choice rule (namely Morozov’s discrepancy principle).

According to Morozov’s discrepancy principle [32], we choose the regularization
parameter β as the solution of the following equation

∥K f δ
β(x)− gδ(x)∥ = τδ, (40)
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where τ > 1 is a constant.

Lemma 5. Set ρ(β) = ∥K f δ
β(x)− gδ(x)∥. Then, the following results hold

(a) ρ(β) is a continuous function;
(b) limβ→0 ρ(β) = 0;
(c) limβ→+∞ ρ(β) = ∥gδ(x)∥;
(d) ρ(β) is a strictly increasing function over (0,+∞).

Proof. The proof follows from the straightforward results using the expressions of

K f δ
β(x) =

∞

∑
n=1

u2
n(T)

β2 + u2
n(T)

(gδ(x), ϕn(x))ϕn(x), (41)

and

ρ(β) = ∥K f δ
β(x)− gδ(x)∥ =

( ∞

∑
n=1

(
β2

β2 + u2
n(T)

)2

(gδ(x), ϕn(x))2
) 1

2

. (42)

Remark 2. According to Lemma 5, we know there exists a unique solution for Equation (40) if
∥gδ∥ > τδ > 0.

Lemma 6. If β is the solution of Equation (40), we can obtain the following inequality

1
β
≤

{
( C2

τ−1 )
1

k+1 ( E
δ )

1
k+1 , 0 < k < 1,

( C3
τ−1 )

1
2 ( E

δ )
1
2 , k ≥ 1,

(43)

where C2 = 1
2 M(k + 1)

k+1
2 (1 − k)

1−k
2 C−k−1(γ, α, λ1) and C3 =

Mλ1−k
1

C2(γ,α,λ1)
are independent of s.

Proof. From Equation (40), we have

τδ =

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(gδ(x), ϕn(x))ϕn(x)
∥∥∥∥

≤
∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(gδ(x)− g(x), ϕn(x))ϕn(x)
∥∥∥∥

+

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), ϕn(x))ϕn(x)
∥∥∥∥

≤ δ +

∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), ϕn(x))ϕn(x)
∥∥∥∥. (44)

Then, we obtain

(τ − 1)δ ≤
∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), ϕn(x))ϕn(x)
∥∥∥∥. (45)
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Using the a priori bound condition of f (x), we obtain∥∥∥∥ ∞

∑
n=1

β2

β2 + u2
n(T)

(g(x), ϕn(x))ϕn(x)
∥∥∥∥

≤
∥∥∥∥ ∞

∑
n=1

β2un(T)λ−k
n

β2 + u2
n(T)

λk
n(g(x), ϕn(x))ϕn(x)

un(T)

∥∥∥∥
≤ sup

n≥1

β2un(T)λ−k
n

β2 + u2
n(T)

[ ∞

∑
n=1

λ2k
n g2

n(x)
u2

n(T)

] 1
2

= sup
n≥1

β2un(T)λ−k
n

β2 + u2
n(T)

∥ f ∥Hk(Ω), (46)

where

H(n) =
β2un(T)λ−k

n
β2 + u2

n(T)
. (47)

Due to Lemma 2 and Formula (16), we obtain

H(n) =
β2un(T)λ−k

n
β2 + u2

n(T)
≤

β2 c min{T−1,Tα−1}
λn

λ−k
n

β2 + (C(γ,α,λ1)
λn

)2
=

β2c min{T−1, Tα−1}λ1−k
n

β2λ2
n + C2(γ, α, λ1)

. (48)

Let s = λn, M = c min{T−1, Tα−1}; then, we set

G(s) =
β2Ms1−k

β2s2 + C2(γ, α, λ1)
. (49)

We divide this into the two following cases:
Case 1: If 0 < k < 1, then we have lims→0 G(s) = lims→∞ G(s) = 0; thus, we know

G(s) ≤ sup
s∈(0,+∞)

G(s) ≤ G(s0),

where s0 ∈ (0,+∞) such that G′(s0) = 0. It is easy to prove that s0 =
√

1−k
k+1

C(γ,α,λ1)
β > 0;

thus, we have

G(s) ≤ G(s0) =
1
2

M(k + 1)
k+1

2 (1 − k)
1−k

2 C−k−1(γ, α, λ1)βk+1 := C2βk+1. (50)

Case 2: If k ≥ 1, then we have

G(s) ≤ β2Ms1−k

C2(γ, α, λ1)
≤

β2Mλ1−k
1

C2(γ, α, λ1)
:= C3β2. (51)

Combining Formulas (45) and (50) with (51), we obtain

(τ − 1)δ ≤
{

C2βk+1E, 0 < k < 1,
C3β2E, k ≥ 1.

(52)

This yields
1
β
≤

{
( C2

τ−1 )
1

k+1 ( E
δ )

1
k+1 , 0 < k < 1,

( C3
τ−1 )

1
2 ( E

δ )
1
2 , k ≥ 1.

Thus, the proof of Lemma 6 is complete.

Theorem 3. Suppose a priori condition (17) and the noise assumption (3) hold, and we take the
solution of Equation (40) as the regularization parameter; then,

(1) If k ≥ 1, we obtain the following convergence estimate
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∥ f δ
β(x)− f (x)∥ ≤ C1(τ + 1)

k
k+1 δ

k
k+1 E

1
k+1 +

1
2

(
C3

τ − 1

) 1
2

δ
1
2 E

1
2 . (53)

(2) If 0 < k < 1, we obtain the following convergence estimate

∥ f δ
β(x)− f (x)∥ ≤

[
C1(τ + 1)

k
k+1 +

1
2

(
C2

τ − 1

) 1
k+1

]
δ

k
k+1 E

1
k+1 , (54)

where C1 = C− k
k+1 (γ, α, λ1), C2 = 1

2 M(k + 1)
k+1

2 (1 − k)
1−k

2 C−k−1(γ, α, λ1) and C3 =
Mλ1−k

1
C2(γ,α,λ1)

are independent of s.

Proof. Due to the triangle inequality, we have

∥ f δ
β(x)− f (x)∥ ≤ ∥ f δ

β(x)− fβ(x)∥+ ∥ fβ(x)− f (x)∥. (55)

Firstly, we give an estimate for the second term on the right side of Formula (55),

K fβ(x)− K f (x) =
∞

∑
n=1

−β2

β2 + u2
n(T)

(g(x), ϕn(x))ϕn(x)

=
∞

∑
n=1

−β2

β2 + u2
n(T)

(g(x)− gδ(x), ϕn(x))ϕn(x)

+
∞

∑
n=1

−β2

β2 + u2
n(T)

(gδ(x), ϕn(x))ϕn(x).

(56)

Combining Formulas (3) and (40), we obtain

∥K fβ(x)− K f (x)∥ ≤ δ + τδ = (τ + 1)δ. (57)

In addition, by applying a priori bound condition of f (x), we obtain

∥ fβ(x)− f (x)∥2
Hk(Ω)

=
∞

∑
n=1

(
β2

β2 + u2
n(T)

)2
λ2k

n |(g(x), ϕn(x))|2
u2

n(T)

≤
∞

∑
n=1

λ2k
n |(g(x), ϕn(x))|2

u2
n(T)

= ∥ f ∥2
Hk(Ω)

≤ E2.

(58)

By Theorem 1 and Formula (57), we have

∥ fβ(x)− f (x)∥ ≤ C1(τ + 1)
k

k+1 δ
k

k+1 E
1

k+1 . (59)

Now, we give an estimate for the first term on the right side of Formula (55); similar to
Formula (25), we have

∥ f δ
β(x)− fβ(x)∥ ≤ δ

2β
. (60)

Substituting Formula (43) into Formula (60), we obtain

∥ f δ
β(x)− fβ(x)∥ ≤

{
1
2 (

C2
τ−1 )

1
k+1 δ

k
k+1 E

1
k+1 , 0 < k < 1,

1
2 (

C3
τ−1 )

1
2 δ

1
2 E

1
2 , k ≥ 1.

(61)

Combining Formula (59) with Formula (61), we conclude

∥ f δ
β(x)− f (x)∥ ≤

{
[C1(τ + 1)

k
k+1 + 1

2 (
C2

τ−1 )
1

k+1 ]δ
k

k+1 E
1

k+1 , 0 < k < 1,

C1(τ + 1)
k

k+1 δ
k

k+1 E
1

k+1 + 1
2 (

C3
τ−1 )

1
2 δ

1
2 E

1
2 , k ≥ 1.

(62)

The proof of Theorem 3 is complete.
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5. Conclusions

This paper studies the inverse problem of the Rayleigh–Stokes equation and adopts
the Tikhonov regularization method to solve this inverse problem. Based on the conditional
stability results, the corresponding convergence estimates are obtained under a priori and a
posteriori regularization parameter choice rules, respectively. However, this paper provides
a theoretical proof. In future, the validity and stability of the proposed method will be
verified numerically. Moreover, we are currently considering the one parameter inversion
problem, and next we will consider multi-parameter inversion problems.
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