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Abstract: This paper investigates the problem of interval estimation for cyber–physical systems
with unknown disturbance. In order to realize the interval estimation of cyber–physical systems,
two technical methods are adopted. The first one requires the observer dynamic error system to be
non-negative, and the second one relaxes this limitation by coordinate transformation. The sufficient
conditions are established using both Lyapunov stability and positive system theory. Furthermore,
according to the Schur complement, the linear matrix inequality is solved to determine the observer
gains. Finally, the effectiveness and feasibility of the designed interval observer are verified by one
numerical simulation.
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1. Introduction

In the last two decades, there has been a great deal of research in observer design.
These results lay a good foundation for the further study of the interval observer (IO), so the
research of the IO has received extensive attention in recent years. Ref. [1] first introduced
the concept of the IO, and the basic frame of the IO was given. Because there are always
unknown but bounded perturbations and uncertainties in real systems, Refs. [2,3] studied
two different classes of uncertain biological systems and designed the corresponding IO for
each of them. The precondition for the IO to be effective is that the upper and lower error
systems are both positive and uniformly bounded. In order to relax this condition, Ref. [4]
first applied the coordinate transformation method to the interval estimation for time-
varying systems and then [5] introduced this method for time-invariant systems. Under
these methods, the design of the IO got more freedom. Since then, some researchers studied
the IO design problem for nonlinear uncertain switched systems [6], singular systems [7]
and impulse systems [8]. Ref. [9] provided an interval estimation method for discrete-time
systems with uncertain inputs. Ref. [10] proposed IOs for nonlinear discrete-time systems.
Ref. [11] designed a distributed interval observer for multiple Euler–Lagrange systems. In
addition, there were other reports on interval observers, such as [12–14] and so on.

A cyber–physical system (CPS) is a typical complex system in an intelligent system. It
closely integrates computing elements and physical processes to realize real-time interaction
and control [15]. Among them, the main research hotspots of CPSs are state security
estimation and state reconstruction under network attacks. In response to the issue of
sparse sensor attacks in CPSs, Ref. [16] built a Luenberger switching observer for state
estimation. Ref. [17] constructed a new observer to reduce the influence of unknown inputs
by means of the gain method. Ref. [18] proposed an elastic attack detection estimator to
complete security estimation and attack detection under both false data injection attacks
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and interference attacks. Ref. [19], based on the time differential equation and uncertainty
hybrid time automaton, extended the CPS system model and established the uncertain CPS
extended model. Ref. [20] provided an algorithm for building indeterminate finite-state
sensors for CPSs, thus restoring the original state under attack. At present, there are few
studies on the security estimation of CPSs with nonlinear term and disturbance. And the
IO is an effective tool to study the state estimation method for uncertain systems with
bounded disturbance. Therefore, applying the IO to such a CPS can effectively address the
issue of security estimation.

Based on the above discussion, the problem of IO design for a CPS is investigated in
this paper. We mainly use the monotone system method to formulate the framework of the
IO; in addition, we employ the coordinate transformation method to address the situation
where the error system is not cooperative. This paper is structured as follows: In Section 2,
the relevant basic theory and CPS model framework are given. Section 3 gives the design
method of the IO for the CPS. In Section 4, we conduct a simulation using MATLAB to
illustrate the effectiveness of IO design. Section 5 is the summary of the article.

Notaion: For a matrix x = [xij] ∈ Rm×n, x ≥ 0 means xij ≥ 0 for all i = 1, · · · , m
and j = 1, · · · , n . In the case of a matrix M ∈ Rm×n, M+ and M− are defined as M+ =
max{M, 0},M− = max{−M, 0} and M+ = M− +M. Moreover, the matrix N ∈ Rn×n is
positive (negative) definite and can be expressed as N > 0(< 0).

2. Preliminaries

In this paper, a class of CPS models with disturbance is considered as follows:{
xk+1 = Axk + Buk + Φ(xk) + Dϖk,

yk = Cxk + Eϵk,
(1)

where xk ∈ Rnx and yk ∈ Rny are the state and output, and uk ∈ Rnu denotes the control
input. ϖk ∈ Rnϖ and ϵk ∈ Rnϵ are the unknown process noise and measurement error, and
Φ(xk) ∈ Rnx is a nonlinear function. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rnx×nϖ

and E ∈ Rny×nϵ are given constant matrices.

Assumption 1. The disturbance and measurement error in system (1) are bounded, i.e.,

ϖ−
k ≤ ϖk ≤ ϖ+

k , ϵ−k ≤ ϵk ≤ ϵ+k , (2)

where ϖ−
k , ϖ+

k , ϵ−k and ϵ+k are constant vectors.

Assumption 2. For a function Φ : Rn ×Rn → Rn, there exists a Lipschitz constant α if for any
(x, ya), (x, yb) of its domain Ω there exists α, such that the following holds:

∥ Φ(x, ya)− Φ(x, yb) ∥≤ α ∥ ya − yb ∥ . (3)

Then, Φ(x, y) satisfies the Lipschitz continuity condition.

Lemma 1 ([21]). If the Lipschitz function Φ(x) is globally differentiable, then it can be decomposed
into the difference of two globally differentiable Lipschitz functions ϕ1(x) and ϕ2(x), and they are
two increasing functions with respect to x, such that:

Φ(x) = ϕ1(x)− ϕ2(x). (4)

Lemma 2 ([21]). For any global Lipschitz function Φ(x), there is a global differentiable Lipschitz
function Φ̄(xi, xj) such that

Φ̄(x, x) = Φ(x),

∂Φ̄
∂xi

≥ 0 and
∂Φ̄
∂xj

≤ 0.
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From Lemmas 1 and 2, we have upper and lower bound information for the nonlinear
Lipschitz function Φ(x, x):

Φ̄(x−, x+) ≤ Φ(x, x) ≤ Φ̄(x+, x−). (5)

Lemma 3 ([21]). For the global Lipschitz function Φ(x) and the associate function Φ̄(x) defined

in Lemma 2, the variable x satisfies the bounded condition: x− ≤ x ≤ x+. If
∂Φ̄
∂x

is bounded, then

there are matrices ψj(j = 1, 2, 3, 4) such that{
Φ̄(x+, x−)− Φ(x, x) ≤ ψ1e+ + ψ2e−,

Φ̄(x−, x+)− Φ(x, x) ≤ ψ3e+ + ψ4e−,
(6)

where ψ1, ψ2, ψ3 and ψ4 are known matrices.

Lemma 4 ([22]). There exists a vector g such that g− ≤ g ≤ g+, for any matrix N ∈ Rn×n,
and then:

N+g− − N−g+ ≤ Ng ≤ N+g+ − N−g−. (7)

Lemma 5 ([23]). The following systems{
xk+1 = Axk + Φ(xk),

x0 ≥ 0,

where A ∈ Rn×n is a non-negative matrix, and the nonlinear function Φ(xk) ≥ 0 . Then, for all
k ≥ 0, we have xk ≥ 0 .

Lemma 6 ([24]). Given a positive constant α and two arbitrary matrices T, N ∈ Rn×n, the matrix
P ≥ 0 and the following inequality holds:

TT N + NTT ≤ 1
α

TT PT + αNT P−1N. (8)

Definition 1. If there exist positive constants r and b, for the following error system

ek+1 = f (ek, uk, k),

with initial conditions ||e0|| ≤ r, and for all k ≥ 0, we have ||ek|| ≤ b, and then the error system is
called uniformly ultimately bounded (UUB).

3. Main Results
3.1. Design of the IO

Based on Section 2, we design the following IO for system (1):{
x+k+1 = Ax+k + Buk + Φ̄(x+k , x−k ) + ξ+ + LC(xk − x+k ) + L+k+,

x−k+1 = Ax−k + Buk + Φ̄(x−k , x+k ) + ξ− + LC(xk − x−k ) + L+k−,
(9)

where x+k and x−k are the estimated upper and lower bounds of the state xk. ξ+ = D+ϖ+ −
D−ϖ−, ξ− = D+ϖ−− D−ϖ+, k+ = Eϵ− (E+ϵ−− E−ϵ+) and k− = Eϵ− (E+ϵ+− E−ϵ−).
The specific calculation steps of gain L will be given in the sequel.

Theorem 1. Suppose that A − LC is non-negative, and the initial condition of xk satisfies
x−0 ≤ x0 ≤ x+0 , then it holds that

x−k ≤ xk ≤ x+k . (10)



Axioms 2024, 13, 18 4 of 13

Proof. Denote that e+x = x+k − xk and e−x = xk − x−k , and then one obtains the error system:{
e+k+1 =(A − LC)e+k + Φ̄(x+k , x−k )− Φ(xk) + e+ϖ + e+ϵ ,

e−k+1 =(A − LC)e−k + Φ(xk)− Φ̄(x−k , x+k ) + e−ϖ + e−ϵ ,
(11)

where e+ϖ = ξ+ − Dϖ, e−ϖ = Dϖ − ξ−, e+ϵ = L+k+ and e−ϵ = −L+k−. In view of Lemma 4,
then e+ϖ ≥ 0, e−ϖ ≥ 0,e+ϵ ≥ 0 and e−ϵ ≥ 0. Also, according to Lemma 5, we can conclude that

x−k ≤ xk ≤ x+k , k ≥ 0.

Continuing Theorem 1, it is assumed that A − LC is non-negative. Denote δk =[
e+k

T e−k
T
]T

, and according to (11), the error system has the following form:

δk+1 =Hδk +℧+ ϖ + ϵ, (12)

where
H = Ã − L̃C̃, Ã = diag{A, A},

L̃ = diag{L, L}, C̃ = diag{C, C},

℧ =

[
Φ̄(x+k , x−k )− Φ(xk)
Φ(xk)− Φ̄(x−k , x+k )

]
,

ϖ =

[
e+ϖ
e−ϖ

]
and ϵ =

[
e+ϵ
e−ϵ

]
.

Theorem 2. Given a set of constants σi > 0(i = 1, 2, . . . , 6) and λ satisfy 0 ≤ θ ≤ 1. Suppose
that both Assumptions 1 and 2 hold. If there exists P > 0 such that (θ − 1)P

√
Ξ1HT √

Ξ2ψT

∗ −P−1 0
∗ ∗ −P−1

 < 0, (13)

where
Ξ1 = 1 + σ1 + σ2 + σ3, Ξ2 = 1 +

1
σ1

+ σ4 + σ5

and

ψ =

[
ψ1 ψ2
ψ3 ψ4

]
.

Then, system (9) is UUB, i.e., the error system is eventually bounded upper and lower.

Proof. Choosing the Lyapunov function Vk = δT
k Pδk, then we derive from Vk+1 that

Vk+1 =[Hδk +℧+ ϖ + ϵ]T P[Hδk +℧+ ϖ + ϵ]

=(Hδk)
T PHδk + (Hδk)

T P℧+ (Hδk)
T Pϖ + (Hδk)

T Pϵ

+ (℧)T PHδ + (ϖ)T PHδ + (ϵ)T PHδ + (℧)T Pϖ

+ (ϖ)T P℧+ (℧)T Pϵ + (ϵ)T P℧+ (ϖ)T Pϵ + (ϵ)T Pϖ

+ (℧)T P℧+ (ϖ)T Pϖ + (ϵ)T Pϵ.

(14)

Define that
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M1(k) = (Hδk)
T P℧, M2(k) = (Hδk)

T Pϖ,

M3(k) = (Hδk)
T Pϵ, M4(k) = (℧)T Pϖ,

M5(k) = (℧)T Pϵ, M6(k) = (ϖ)T Pϵ.

(15)

It is derived from Lemma 6 that

M1(k) + MT
1 (k) ≤ σ1(Gδk)

T PHδk +
1
σ1

(℧)T P℧,

M2(k) + MT
2 (k) ≤ σ2(Hδk)

T PHδk +
1
σ2

(ϖ)T Pϖ,

M3(k) + MT
3 (k) ≤ σ3(Hδk)

T PHδk +
1
σ3

(ϵ)T Pϵ,

M4(k) + MT
4 (k) ≤ σ4(℧̌)T P℧̌+

1
σ4

(ϖ)T Pϖ,

M5(k) + MT
5 (k) ≤ σ5(℧)T P℧+

1
σ5

(ϵ)T Pϵ,

M6(k) + MT
6 (k) ≤ σ6(ϖ)T Pϖ +

1
σ6

(ϵ)T Pϵ.

(16)

Thus,
∆Vk =Vk+1 − Vk

≤(1 + σ1 + σ2 + σ3)(Hδk)
T PHδk

+ (1 +
1
σ1

+ σ4 + σ5)(℧)T P℧+ (1 +
1
σ2

+
1
σ4

+ σ6)(ϖ)T Pϖ

+ (1 +
1
σ3

+
1
σ5

+
1
σ6

)(ϵ)T Pϵ − δT
k Pδk.

(17)

From Lemma 3, we can deduce that

℧T P℧ ≤ δT
k ψT Pψδk. (18)

Substituting (18) into (17), then

∆Vk ≤δT
k [(1 + σ1 + σ2 + σ3)HT PH + (1 +

1
σ1

+ σ4 + σ5)ψ
T Pψ − P]δk

+ (1 +
1
σ2

+
1
σ4

+ σ6)(ϖ)T Pϖ + (1 +
1
σ3

+
1
σ5

+
1
σ6

)(ϵ)T Pϵ.
(19)

Define that

∆(k) = (1 +
1
σ2

+
1
σ4

+ σ6)(ϖ)T Pϖ + (1 +
1
σ3

+
1
σ5

+
1
σ6

)(ϵ)T Pϵ. (20)

Therefore, we can obtain

∆Vk ≤ δT
k [(1 + σ1 + σ2 + σ3)HT PH + (1 +

1
σ1

+ σ4 + σ5)ψ
T Pψ − P]δk + ∆(k)

= δT
k (−λP)δk + ∆(k)

= −λδT
k Pδk + ∆(k),

(21)

then
Vk+1 − Vk ≤ −λVk + ∆(k). (22)

According to Assumption 1, letting ∆ ≥ ∆(k), by iteration, one can obtain
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Vk ≤(1 − λ)Vk−1 + ∆

≤(1 − λ)k−1V0 +
n

∑
i=1

(1 − λ)i−1∆,
(23)

where λ satisfies 0 ≤ λ ≤ 1, and according to Definition 1, then system (9) is UUB, and
system (9) is the interval observer of system (1).

3.2. IO Design by Coordinates Transformation Method

Under the condition that A − LC is not non-negative, to facilitate the design of the IO,
we can adopt the method of coordinate transformation. Let zk = Mxk, where M ∈ Rn×n is
invertible, and system (1) can be equivalent to:{

zk+1 = Azk + Buk + MΦ̄(M−1zk) + Dϖk,

y = Czk + Eϵk,
(24)

where A = MAM−1, B = MB, C = CM−1, D = MD and E = E, and the transformation
M is chosen such that M(A − LC)M−1 satisfies the non-negative.

Remark 1. The transformation matrix M can be constructed according to the Sylvester equation,
and based on the transformation of the Schur form, so as to obtain T through the inverse substitution.
The specific selection process can be referred to in [5].

To facilitate the estimation of the bounds for Φ̄(x) by denoting that{
φ(z+k , z−k ) = Φ̄(M+

a z+k − M−
a z−k , M+

a z−k − M−
a z+k ),

φ(z−k , z+k ) = Φ̄(M+
a z−k − M−

a z+k , M+
a z+k − M−

a z−k ),
(25)

where z+k and z−k are defined as the upper and lower bound estimates of the designed IO
for zk, and Ma = M−1.

According to Lemma 4, the nonlinear function Φ̄(x) can satisfy the following inequality

M+φ(z−k , z+k )− M−φ(z+k , z−k ) ≤ MΦ̄(M−1zk) ≤ M+φ(z+k , z−k )− M−φ(z−k , z+k )

and define that

Φ̄z(z−k , z+k ) = M+φ(z−k , z+k )− M−φ(z+k , z−k )

Φ̄z(z+k , z−k ) = M+φ(z+k , z−k )− M−φ(z−k , z+k ).

An IO based on the coordinate transformation of system (12) is given as:{
z+k+1 =Az+k + Buk + Φ̄z(z+k , z−k ) + π+ + LC(zk − z+k ) + L+h+,

z−k+1 =Az−k + Buk + Φ̄z(z−k , z+k ) + π− + LC(zk − z−k ) + L+h−,
(26)

where {
π+ =D+

ϖ+ − D−
ϖ−,

π− =D+
ϖ− − D−

ϖ+,
(27)

and {
h+ =Eϵ − (E+

ϵ− − E−
ϵ+),

h− =Eϵ − (E+
ϵ+ − E−

ϵ−).
(28)

Remark 2. Because the transformation matrix T is invertible and xk is known to satisfy the initial
condition (30), and x0 satisfies x−0 ≤ x0 ≤ x+0 , we have
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z−0 ≤ z0 ≤ z+0 , (29)

where {
z+0 = M+x−0 − M−x+0 ,

z−0 = M+x+0 − M−x−0 .
(30)

Remark 3. The observed values of the system after coordinate transformation meet the requirements
of the original system: {

x+k = M+z+k − M−z+k ,

x−k = M+z−k − M−z+k .
(31)

The specific proof process can be referred to in [4].

Theorem 3. If A − LC is not non-negative, we can find a matrix M such that A − LC in error
system (33) is non-negative, and the initial condition of xk satisfies x−0 ≤ x0 ≤ x+0 , and then it
holds that

z−k ≤ zk ≤ z+k . (32)

Define that ê+k = z+k − zk and ê−k = zk − z−k . Therefore, the error system can be derived
as: {

ê+k+1 =(A − LC)ê+k + Φ̄z(z+k , z−k )− MΦ̄(M−1zk) + e+ϖ + e+ϵ ,

ê−k+1 =(A − LC)ê−k + Φ̄z(z+k , z−k )− MΦ̄(M−1zk) + e−ϖ + e−ϵ ,
(33)

where e+
ϖ
= π+ − Dϖ, e−

ϖ
= Dϖ − π−, e+ϵ = L+h+ and e−ϵ = −L+h−.

In view of Lemma 4, then e+
ϖ
≥ 0, e−

ϖ
≥ 0,e+ϵ ≥ 0 and e−ϵ ≥ 0. The initial condition

of xk satisfies x−0 ≤ x0 ≤ x+0 , and according to Remark 2, we can obtain that the initial
condition of zk satisfies z−0 ≤ z0 ≤ z+0 . Finally, according to Lemma 5, we can conclude that

z−k ≤ zk ≤ z+k , k ≥ 0.

The proof of Theorem 3 has finished.
Theorem 3 only provides the IO frame for system (1). In order to make the error

system UUB, i.e., system (26) becomes an IO of system (24), the sufficient conditions and
specific proof are given below.

Denote ζk =
[
ê+T

k ê−T
k

]T
according to (33), and the error system has the follow-

ing form:
ζk+1 =Hζk + ℧̌+ ϖ̌ + ϵ̌, (34)

where
H = Ã − L̃C̃, Ã = diag{A, A},

L̃ = diag{L, L}, C̃ = diag{C, C},

℧̌ =

[
Φ̄z(z+k , z−k )− MΦ̄(M−1zk)
MΦ̄(M−1zk)− Φ̄z(z−k , z+k )

]
,

ϖ̌ =

[
D+

ϖ+ − D−
ϖ− − Dϖ

Dϖ − D+
ϖ− + D−

ϖ+

]
and ϵ̌ =

[
L+(E+

ϵ+ − E−
ϵ−)− L+Eϵ

L+Eϵ − L+(E+
ϵ− − E−

ϵ+)

]
.

Theorem 4. Given a set of constants γi > 0 (i = 1, 2, . . . , 6) and λ satisfy 0 ≤ λ ≤ 1. Suppose
that both Assumptions 1 and 2 hold. If there exists P > 0 such that (λ − 1)P

√
Σ1HT √

Σ2ψT

∗ −P−1 0
∗ ∗ −P−1

 < 0, (35)
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where
Σ1 = 1 + γ1 + γ2 + γ3, Σ2 = 1 +

1
γ1

+ γ4 + γ5

and

ψ =

[
ψ1 ψ2
ψ3 ψ4

]
.

Then, system (26) is UUB, i.e., the error system is eventually upper and lower bounded.

Proof. Choosing the Lyapunov function Vk = ζT
k Pζk, then we derive from Vk+1 that

Vk+1 =[Hζk + ℧̌+ ϖ̌ + ϵ̌]T P[Hζk + ℧̌+ ϖ̌ + ϵ̌]

=(Hζk)
T PHζk + (Hζk)

T P℧̌+ (Hζk)
T Pϖ̌ + (Hζk)

T Pϵ̌

+ (℧̌)T PHζ + (ϖ̌)T PHζ + (ϵ̌)T PHζ + (℧̌)T Pϖ̌

+ (ϖ̌)T P℧̌+ (℧̌)T Pϵ̌ + (ϵ̌)T P℧̌+ (ϖ̌)T Pϵ̌ + (ϵ̌)T Pϖ̌

+ (℧̌)T P℧̌+ (ϖ̌)T Pϖ̌ + (ϵ̌)T Pϵ̌.

(36)

Define that
M1(k) = (Hζk)

T P℧̌, M2(k) = (Hζk)
T Pϖ̌,

M3(k) = (Hζk)
T Pϵ̌, M4(k) = (℧̌)T Pϖ̌,

M5(k) = (℧̌)T Pϵ̌, M6(k) = (ϖ̌)T Pϵ̌.

(37)

It is derived from Lemma 6 that

M1(k) + MT
1 (k) ≤ γ1(Gζk)

T PHζk +
1

γ1
(℧̌)T P℧̌,

M2(k) + MT
2 (k) ≤ γ2(Hζk)

T PHζk +
1

γ2
(ϖ̌)T Pϖ̌,

M3(k) + MT
3 (k) ≤ γ3(Hζk)

T PHζk +
1

γ3
(ϵ̌)T Pϵ̌,

M4(k) + MT
4 (k) ≤ γ4(℧̌)T P℧̌+

1
γ4

(ϖ̌)T Pϖ̌,

M5(k) + MT
5 (k) ≤ γ5(℧̌)T P℧̌+

1
γ5

(ϵ̌)T Pϵ̌,

M6(k) + MT
6 (k) ≤ γ6(ϖ̌)T Pϖ̌ +

1
γ6

(ϵ̌)T Pϵ̌.

(38)

Thus,
∆Vk =Vk+1 − Vk

≤(1 + γ1 + γ2 + γ3)(Hζk)
T PHζk

+ (1 +
1

γ1
+ γ4 + γ5)(℧̌)T P℧̌+ (1 +

1
γ2

+
1

γ4
+ γ6)(ϖ̌)T Pϖ̌

+ (1 +
1

γ3
+

1
γ5

+
1

γ6
)(ϵ̌)T Pϵ̌ − ζT

k Pζk.

(39)

From Lemma 3, we can deduce that

℧̌T P℧̌ ≤ ζT
k ψT Pψζk. (40)

Substituting (40) into (39), then

∆Vk ≤ζT
k [(1 + γ1 + γ2 + γ3)HT PH + (1 +

1
γ1

+ γ4 + γ5)ψ
T Pψ − P]ζk

+ (1 +
1

γ2
+

1
γ4

+ γ6)(ϖ̌)T Pϖ̌ + (1 +
1

γ3
+

1
γ5

+
1

γ6
)(ϵ̌)T Pϵ̌.

(41)
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Define that

∆(k) = (1 +
1

γ2
+

1
γ4

+ γ6)(ϖ̌)T Pϖ̌ + (1 +
1

γ3
+

1
γ5

+
1

γ6
)(ϵ̌)T Pϵ̌. (42)

Therefore, we can obtain

∆Vk ≤ ζT
k [(1 + γ1 + γ2 + γ3)HT PH + (1 +

1
γ1

+ γ4 + γ5)ψ
T Pψ − P]ζk + ∆(k)

= ζT
k (−λP)ζk + ∆(k)

= −λVk + ∆(k),

(43)

Letting the eigenvalues of P be α1, α2, . . . , αn. α = {α1, α2, . . . , αn}max, then

∆(k) ≤(1 +
1

γ2
+

1
γ4

+ γ6)(ϖ̌)T(αI)ϖ̌ + (1 +
1

γ3
+

1
γ5

+
1

γ6
)(ϵ̌)T(αI)ϵ̌

≤α∆1∥ϖ̌∥+ α∆1∥ϵ̌∥.
(44)

where
∆1 = (1 +

1
γ2

+
1

γ4
+ γ6),

∆2 = (1 +
1

γ3
+

1
γ5

+
1

γ6
),

according to Assumption 1. We know that ϖ̌ and ϵ̌ are bounded; then, let ∆ = α∆1∥ϖ̌∥+
α∆1∥ϵ̌∥ and plug it into inequality (44).

Vk ≤(1 − λ)Vk−1 + ∆

≤(1 − λ)k−1V0 +
k

∑
i=1

(1 − λ)i−1∆,
(45)

If here λ satisfies 0 ≤ λ ≤ 1, then

lim
k→∞

Vk = lim
k→∞

[(1 − λ)k−1V0 +
k

∑
i=1

(1 − λ)i−1∆]

= lim
k→∞

k

∑
i=1

(1 − λ)i−1∆

= lim
k→∞

1 − (1 − λ)n

1 − λ
∆

=
∆

1 − λ
.

(46)

then
lim
k→∞

Vk = lim
k→∞

ζT
k Pζk

≤ lim
k→∞

αζT
k ζk

≤ lim
k→∞

α(ê+2
k + ê−2

k )

≤ ∆
1 − λ

,

(47)

so
lim
k→∞

(ê+2
k + ê−2

k ) ≤ ∆
α(1 − λ)

. (48)
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According to Definition 1, then system (26) is UUB. Moreover, both the upper and
lower errors eventually obtained by the error system are bounded, which completes the
proof of Theorem 4.

Remark 4. The designed IO can be successfully applied to the CPS without attacks, and the bounds
of the system states can be reconstructed. Even if there exist attacks in the CPS, the accurate bounds
of the system states can still be estimated for the purpose of the security problem.

4. Simulation

In order to verify the effectiveness of the IO design method, this section gives a specific
numerical simulation of the CPS. We consider the unmanned ground vehicle system [25],
whose dynamic equation can be written as:

ẋ(t) =
[

0 1
0 − µ

m

]
x(t) +

[
0
1
m

]
u(t), (49)

where x(t) =
[

s(t)
υ(t)

]
is the state of the car, s is the position of the car and υ is the speed of the

car. µ and m represent the average friction coefficient and mass of the car, respectively. In
the experiment, we choose µ = 0.8 and m = 1. At the same time, we consider the existence
of certain nonlinear terms in the system, as well as the process noise and measurement
errors. The parametric matrix of system (49) after discretization is:

A =

[
1 0.096
0 0.923

]
, B =

[
0.005
0.096

]
,

C =
[
1 0

]
, D =

[
1 0
0 1

]
, E =

[
1
]
.

In addition, the disturbance ϖk and measurement error ϵk parameters of the system are
chosen as:

ϖk =

[
0.05 + 0.05sin(k)
0.05 − 0.05cos(k)

]
, ϵk =

[
0.05sin(k)

]
.

Meanwhile, the nonlinear function Φ(x1, x2) is expressed as:

Φ(x1, x2) =
[

0.05sinx1
0.05cosx2

]
.

The coordinate transformation matrix M and the constants γi, λ are selected

M =

[
1 −1
1 −2

]
,

γi = i(i = 1, 2, 3 . . . 6), λ = 0.9,

and then P and ψ can be obtained as:

P =


156.23 0 0 0

0 156.23 0 0
0 0 156.23 0
0 0 0 156.23

, ψ =


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

,

thus, L can be obtained by Theorem 3

L =

[
0.5038
−0.0500

]
.
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We used the Simulink Toolbox in Matlab to complete the simulation. Figures 1 and 2
show the state and observation trajectories of the system, whose upper and lower bounds
of the IO strictly satisfy x− ≤ x ≤ x+. Figures 3 and 4 illustrate the bounded convergence
of the error system, which shows that the error system eventually converges to a bounded
value greater than zero. Consequently, it can be inferred that the designed IO can strictly
recover the bounds of the original system state. Therefore, we conclude that the designed
IO is effective and feasible.

Figure 1. The states x1 (position s(t)) of the original system and their interval estimates.

Figure 2. The states x2 (speed υ(t)) of the original system and their interval estimates.

Figure 3. Error in interval estimation of x1.
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Figure 4. Error in interval estimation of x2.

5. Conclusions

This paper presents an IO framework for a class of CPSs with disturbance. According
to the state parameters of the original system, the frame of the IO was established based
on the positive system theory. For the case that A − LC does not satisfy the non-negative
property, the method of coordinate transformation was used to make A − LC non-negative,
and the sufficient conditions for the system gain L to be satisfied were also derived. At
the end, one example is simulated to verify the validity of the proposed method. Future
attempts are verified by introducing interval estimation into the CPS with cyber attacks.
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