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Abstract: This paper is to study finite horizon linear quadratic (LQ) non-zero sum Nash game for
discrete-time infinite Markov jump stochastic systems (IMJSSs). Based on the theory of stochastic
analysis, a countably infinite set of coupled generalized algebraic Riccati equations are solved and a
necessary and sufficient condition for the existence of Nash equilibrium points is obtained. From a
new perspective, the finite horizon mixed robust H2/H∞ control is investigated, and summarize the
relationship between Nash game and H2/H∞ control problem. Moreover, the feasibility and validity
of the proposed method has been proved by applying it to a numerical example.
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1. Introduction

Markov jump stochastic systems (MJSSs), as a typical class of stochastic hybrid dynam-
ical systems, are widely used in practical engineering control systems. At the same time, a
great deal of related research on the stability, ergodicity, robust control and filtering, and so
on [1–9] has been undertaken. However, for the Markov chain, when the state space takes
values in infinite countably sets, from the application point of view, it may be more exten-
sive. Consequently, plentiful theory literature and research achievements have emerged
for infinite Markov jump stochastic systems (IMJSSs). In recent years, various efforts have
been made to cope with IMJSSs in a wide variety of systems. To be specific, via the operator
spectrum method, exponential stabilities for discrete-time [10] and continuous-time [11]
IMJSSs have been investigated respectively. Aiming at the practical time-delay factors,
with the aid of Lyapunov stability theory, [12] discussed the stability analysis for IMJSSs
with time-delay; further, stabilities for uncertain discrete-time IMJSSs with time-delay have
been developed in [13], and on this basis, [14] addressed the finite horizon H2/H∞ control
problems. H2/H∞ fuzzy filtering has been solved for nonlinear IMJSSs by the T-S fuzzy
model approach in [15].

Dynamic game theory, which has come into wider use in many fields such as engi-
neering, economics, and management science, has attracted great attention, and a large
number of results have been obtained in the literature [16–21]. Furthermore, the Nash
game problem has been studied for MJSSs, and further, a unified treatment approach for
H2, H∞ and H2/H∞ control design problems was presented in [22]. In [23,24], the authors
revealed the relationship between the Nash equilibrium points and H2/H∞ control for
continuous-time MJSSs. While many theoretical results have been established to study
the stochastic system governed by a finite-state Markov chains, more research efforts are
required to discuss IMJSSs. However, the causal and anticausal Lyapunov operators of
IMJSSs are no more adjoint, which is the essential difference between finite and infinite
MJSSs [10,25]. In most practical applications, IMJSSs have broader application prospects
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than MJSSs with finite jumps. As a consequence, the related research about IMJSSs is of
critical importance. In the game field, [26] discussed an infinite horizon linear quadratic
(LQ) Nash game for continuous-time IMJSSs. Unfortunately, to the best of our knowledge,
there is almost no research about the Nash game problem for discrete-time IMJSSs.

In this article, we study a finite horizon LQ non-zero sum Nash game for discrete-
time IMJSSs, which considers a more general system. From a new perspective, the finite
horizon mixed H2/H∞ control is further investigated. On the one hand, this is an extension
of the previous study from MJSSs [22], to IMJSSs; on the other, it is a discrete-time case
of [26]. Concretely, the main work and contribution of this thesis is as follows. First, the
existence of Nash equilibrium points, which can be boiled down to the solvability of a
countably infinite set of coupled generalized algebraic Riccati equations, is shown. For
infinite Markov jump systems, the causal and anticausal Lyapunov operators are no more
adjoint, which leads to the inequivalence between stochastic stability, asymptotic mean
square stability, and exponential mean square stability. Further, this indicates the essential
difference between the finite and infinite Markov jump systems. To this end, we introduce
the infinite dimension Banach spaces, where the elements are countably infinite sequences
of linear and bounded operators. Thus, the source of the problem resides in the way to
solve this kind of equations, which are harder to solve than those in [22]. Second, the finite
horizon mixed H2/H∞ control is solved from the new view of a Nash game, and further,
the relationship between the Nash game and H2/H∞ control problem is summarized with
some remarks. Finally, the typical example cited in the paper demonstrates the validity of
the proposed method well.

The rest of this article is arranged as below. Some useful preliminary results are
introduced in Section 2. The existence of Nash equilibrium points is solved by a necessary
and sufficient condition in Section 3. In Section 4, some special cases with some remarks
are given. In Section 5, a numerical example is illustrated, and a summary is provided in
Section 6.

For convenience, the following notations are adopted. Rn: n-dimensional real Eu-
clidean space;Rm×n: the linear space of all m by n real matrices; ‖ · ‖ : the Euclidean norm
ofRn or the operator norm ofRm×n; In: the n× n identity matrix; N′: the transpose of a
matrix (or vector) N; N†: the pseudo-inverse of a matrix N; N > 0 (≥ 0): N is positive
(semi-positive) definite; NT := {0, 1, . . . , T}; D := {1, 2, . . .}.

2. Preliminaries

On a complete probability space (Ω,F ,P), we consider the following discrete-time IMJSS:

y(t + 1) = Q0(t, ξt)y(t) + R0(t, ξt)u(t) + U0(t, ξt)v(t)

+
r
∑

k=1
[Qk(t, ξt)y(t) + Rk(t, ξt)u(t) + Uk(t, ξt)v(t)]wk(t),

z(t) =
[

L(t, ξt)y(t)
M(t, ξt)u(t)

]
, M(t, ξt)′M(t, ξt) = Inu ,

y(0) = y0 ∈ Rn, ξ(0) = ξ0 ∈ D, t ∈ NT ,

(1)

where y(t) ∈ Rn represents the system state, and u(t) ∈ Rnu and v(t) ∈ Rnv are the control
processes of two different players, respectively. z(t) ∈ Rnz stands for the controlled output.
w(t) = {w(t)|w(t) = (w1(t), w2(t), · · · , wr(t))}, t ∈ NT = {0, 1, . . . , T} is a stan-
dard r-dimensional Brownian motion. {ξt}t∈NT denotes a infinite Markov jump process
taking values in D = {1, 2, . . .}, and the transition probability matrix is P = [p(ς, ι)]
with p(ς, ι) = P(ξt+1 = ι|ξt = ς). In this paper, we assume P is nondegenerate,
π0(ς) = P(ξ0 = ς) > 0 for all ς ∈ D, and the stochastic processes {wt}t∈NT and {ξt}t∈NT
are mutually independent. Let Ft = {ξk, ws|0 ≤ k ≤ t, 0 ≤ s ≤ t − 1}, F0 = σ(ξ0).
l2(NT ;Rm) := {x ∈ Rm|x is Ft-measurable, and (∑T

t=0 E‖x(t)‖2)
1
2 < ∞}.

Hm×n
∞ is defined as the Banach space of the set {H|H = (H(1), H(2), · · · ), H(ς) ∈

Rm×n} with the norm ‖H‖∞ = supς∈D ‖H(ς)‖ < ∞. In the sequel, we assume that all
coefficients of considered systems have a finite norm ‖ · ‖∞. We make use of the notation
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of Hn
∞ for m = n. Further, Hn+

∞ denotes the subspace of Hn
∞ formed by all H(ς) ∈ Sn and

H(ς) ≥ 0, ς ∈ D. For L, M ∈ Hn+
∞ , L ≤ M is equivalent to L(ς) ≤ M(ς), ς ∈ D,

which means ‖L‖∞ ≤ ‖M‖∞. We set Qk(t) = {Qk(t, ς)}ς∈D , 0 ≤ k ≤ r, Rk(t) =
{Rk(t, ς)}ς∈D , 0 ≤ k ≤ r, Uk(t) = {Uk(t, ς)}ς∈D , 0 ≤ k ≤ r, L(t) = {L(t, ς)}ς∈D , M(t) =
{M(t, ς)}ς∈D , and assume Qk(t) ∈ Hn

∞, Rk(t) ∈ Hn×nu
∞ , Uk(t) ∈ Hn×nv

∞ , L(t) ∈ Hnz×n
∞ ,

M(t) ∈ Hnz×nu
∞ for t ∈ NT .

The two cost functions for the Nash game problem are given by

J1(x0, ξ0, u∗(·), v(·)) =
T

∑
t=0

E[γ2‖v(t)‖2 − ‖z(t)‖2], (2)

J2(x0, ξ0, u(·), v∗(·)) =
T

∑
t=0

E[‖z(t)‖2], (3)

where γ > 0 is a given prescribed disturbance attenuation level. For simplicity, let the
Nash game problem for cost Functions (2) and (3) with Equation (1) by the Nash game
problem P. Hence, the Nash game problem P is addressed, which is to find admissible
control (u∗(·), v∗(·)) to minimize cost Functions (2) and (3) subject to Equation (1).

Next, we list some definitions and lemmas that are needed for the follow-up procedures.

Definition 1. A strategy pair (u∗(·), v∗(·)) ∈ l2(NT ;Rnu)× l2(NT ;Rnv) is a Nash equilibrium
point if

J1(x0, ξ0, u∗(·), v∗(·)) ≤ J1(x0, ξ0, u∗(·), v(·)), (4)

J2(x0, ξ0, u∗(·), v∗(·)) ≤ J2(x0, ξ0, u(·), v∗(·)) (5)

for all (u(·), v(·)) ∈ l2(NT ;Rnu)× l2(NT ;Rnv).

Lemma 1 ([27]). For a symmetric matrix S, we have

(i) S† = (S†)′;
(ii) SS† = S†S;
(iii) S ≥ 0 if and only if S† ≥ 0.

Lemma 2 ([27]). Let matrices F = F′, H, and G = G′ with appropriate dimensions consider the
following quadratic form:

q(y, u) = E[y′Fy + 2y′Hu + u′Gu],

where y and u are random variables defined on a probability space (Ω,F ,P). Then, the following
conditions are equivalent:

(i) inf
u

q(y, u) > −∞ for any random variable y.

(ii) There exists a symmetric matrix S = S′ such that inf
u

q(y, u) = E[y′Sy] for any random
variable y.

(iii) G ≥ 0 and H(I − GG†)= 0.
(iv) G ≥ 0 and Ker(G) ⊆ Ker(H).

(v) There exists a symmetric matrix T = T′ such that
[

F− T H
H′ G

]
≥ 0.

Moreover, if any of the above conditions hold, then (ii) is satisfied by S = F − HG† H′. In
addition, S ≥ T for any T satisfying (v). Finally, for any random variable y, the random variable
u∗ = −G† H′y is optimal and the optimal value is q(y, u∗) = E[y′(F− HG† H′)y].

The following LQ result for discrete-time IMJSSs can be directly yielded from
Theorem 3.1 [14], which is the continuous-time case.
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Lemma 3. For the following standard LQ optimal control problem with discrete-time IMJSSs,

min
u(·)∈l2(NT ;Rnu )

{J2(y0, ξ0, u(·)) =
T
∑

t=0
E[‖z(t)‖2]}, (6)

subject to
y(t + 1) = Q0(t, ξt)y(t) + R0(t, ξt)u(t) +

r
∑

k=1
[Qk(t, ξt)y(t) + Rk(t, ξt)u(t)]wk(t),

z(t) =
[

L(t, ξt)y(t)
M(t, ξt)u(t)

]
, M(t, ξt)′M(t, ξt) = Inu ,

y(0) = y0 ∈ Rn, ξ(0) = ξ0 ∈ D, t ∈ NT ,

(7)

then, we find that P(t, ς), (t, ς) ∈ NT × D solves the following coupled generalized algebraic
Riccati equations: 

P(t, ς) =
r
∑

k=0
Qk(t, ς)′ες(t, P)Qk(t, ς) + L(t, ς)′L(t, ς)

−[
r
∑

k=0
Qk(t, ς)′ες(t, P)Rk(t, ς)]′

·H(t, ς, P)−1[
r
∑

k=0
Qk(t, ς)′ες(t, P)Rk(t, ς)],

P(T + 1, ς) = 0, H(t, ς, P) > 0, (t, ς) ∈ NT ×D,

(8)

where

H(t, ς, P) = Inu +
r

∑
k=0

Rk(t, ς)′ες(t, P)Rk(t, ς),

ες(t, P) =
∞

∑
ι=1

p(ς, ι)P(t + 1, ι),

and

min
u(·)∈l2(NT ;Rnu )

J2(y0, ξ0, u(·)) = J2(y0, ξ0, u∗(·)) =
∞

∑
ς=1

π0(ς)y′0P(0, ς)y0,

u∗(t) = −H(t, ς, P)−1[
r

∑
k=0

Qk(t, ς)′ες(t, P)Rk(t, ς)]y(t).

3. Nash Equilibrium Points

This section focuses on solving the Nash gameproblem P, and we assume that the
linear, memoryless feedback strategy has the following form [28]:

u(t) = G2(t, ξt)y(t), v(t) = G1(t, ξt)y(t), (9)

under this assumption, we obtain the feedback Nash equilibrium points by a countably
infinite set of coupled generalized algebraic Riccati equations.

Theorem 1. The Nash game problem P has unique Nash equilibrium points

(u∗(t) = G2(t, ξt, X2)y(t), v∗(t) = G1(t, ξt, X1)y(t))
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iff the following coupled generalized algebraic Riccati equations,

Λ1(t, ς) =
r
∑

k=0
[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]

′ες(t, Λ1)

·[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]− L(t, ς)′L(t, ς)
−G2(t, ς, Λ2)

′G2(t, ς, Λ2)− G3(t, ς, Λ1)
′H1(t, ς, Λ1)

†G3(t, ς, Λ1),
(I − H1(t, ς, Λ1)H1(t, ς, Λ1)

†)G3(t, ς, Λ1) = 0,
Λ1(T + 1, ς) = 0, H1(t, ς, Λ1) ≥ 0, (t, ς) ∈ NT ×D,

(10)

G1(t, ς, Λ1) = −H1(t, ς, Λ1)
†G3(t, ς, Λ1), (11)

Λ2(t, ς) =
r
∑

k=0
[Qk(t, ς) + Uk(t, ς)G1(t, ς, Λ1)]

′ες(t, Λ2)

·[Qk(t, ς) + Uk(t, ς)G1(t, ς, Λ1)] + L(t, ς)′L(t, ς)
−G4(t, ς, Λ2)

′H2(t, ς, Λ2)
−1G4(t, ς, Λ2),

Λ2(T + 1, ς) = 0, H2(t, ς, Λ2) > 0, (t, ς) ∈ NT ×D,

(12)

G2(t, ς, Λ2) = −H2(t, ς, Λ2)
−1G4(t, ς, Λ2) (13)

admit a group of solutions (Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2)) with Λ1(t, ς) ≤ 0,
Λ2(t, ς) ≥ 0 for (t, ς) ∈ NT ×D, where

H1(t, ς, Λ1) = γ2 Inv +
r

∑
k=0

Uk(t, ς)′ες(t, Λ1)Uk(t, ς),

H2(t, ς, Λ2) = Inu +
r

∑
k=0

Rk(t, ς)′ες(t, Λ2)Rk(t, ς),

G3(t, ς, Λ1) =
r

∑
k=0

[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]
′ες(t, Λ1)Uk(t, ς),

G4(t, ς, Λ2) =
r

∑
k=0

[Qk(t, ς) + Uk(t, ς)G1(t, ς, Λ1)]
′ες(t, Λ2)Rk(t, ς).

Proof. Sufficiency: Since Equations (10)–(13) have a group of solutions

(Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2)),

by constructing u∗(t) = G2(t, ξt, Λ2)y(t), then, we substitute u∗(t) into Equation (1) to get
the equation as follows:

y(t + 1) = [Q0(t, ξt) + R0(t, ξt)G2(t, ξt, Λ2)]y(t) + U0(t, ξt)v(t)

+
r
∑

k=1
{[Qk(t, ξt) + Rk(t, ξt)G2(t, ξt, Λ2)]y(t) + Uk(t, ξt)v(t)}wk(t),

z(t) =
[

L(t, ξt)y(t)
M(t, ξt)G2(t, ξt, Λ2)y(t)

]
, M(t, ξt)′M(t, ξt) = Inu ,

y(0) = y0 ∈ Rn, ξ(0) = ξ0 ∈ D, t ∈ NT ,

(14)

using similar processing, Lemma 1 in [29] can be generalized to the infinite Markov jump
systems. In fact, via the assumption that {wt}t∈NT and {ξt}t∈NT are mutually independent,
and {wt}t∈NT is also irrelevant to v(t), we have

E[y(t + 1)′Λ1(t + 1, ξt+1)y(t + 1)− y(t)′Λ1(t, ξt)y(t)|Ft, ξt = ς]

=

[
y(t)
v(t)

]′[ C(t, ς, Λ1)−Λ1(t, ς) G3(t, ς, Λ1)
G3(t, ς, Λ1)

′ H1(t, ς, Λ1)− γ2 Inv

][
y(t)
v(t)

]
, (15)
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it follows from taking summation from 0 to T on both sides of (15) that

E[y′T+1Λ1(T + 1, ξT+1)yT+1 − y′0Λ1(0, ξ0)y0]

=
T

∑
t=0

E
[

y(t)
v(t)

]′[ C(t, ς, Λ1)−Λ1(t, ς) G3(t, ς, Λ1)
G3(t, ς, Λ1)

′ H1(t, ς, Λ1)− γ2 Inv

][
y(t)
v(t)

]
.

Further, we can obtain the following result:

J1(y0, ξ0, u∗(·), v(·)) =
T

∑
t=0

E[γ2‖v(t)‖2 − ‖z(t)‖2]

= E[y′0Λ1(0, ξ0)y0]− E[y′T+1Λ1(T + 1, ξT+1)yT+1]

+
T

∑
t=0

E
[

y(t)
v(t)

]′
D(t, ξt, Λ1)

[
y(t)
v(t)

]
, (16)

where

D(t, ξt, Λ1) = D(t, ς, Λ1) =

[
C(t, ς, Λ1)− L(t, ς)′L(t, ς)−Λ1(t, ς) G3(t, ς, Λ1)

G3(t, ς, Λ1)
′ H1(t, ς, Λ1)

]
,

C(t, ς, Λ1) =
r

∑
k=0

[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]
′ες(t, Λ1)

·[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)],

for ξt = ς. A combination of the method of completing square and (10) turns Equation (16)
into

J1(y0, ξ0, u∗(·), v(·)) = E[y′0Λ1(0, ξ0)y0]

+
T

∑
t=0

E

{
E

{[
y(t)
v(t)

]′
D(t, ξt, Λ1)

[
y(t)
v(t)

]∣∣∣∣∣Ft−1, ξt = ς

}}
= E[y′0Λ1(0, ξ0)y0]

+
T

∑
t=0

E
{

E
{
[v(t)− v∗(t)]′H1(t, ς, Λ1)[v(t)− v∗(t)]|Ft−1, ξt = ς

}}
, (17)

where v∗(t) = G1(t, ξt, Λ1)y(t); therefore, the Nash equilibrium inequality (4) occurs
naturally, that is to say

J1(y0, ξ0, u∗(·), v(·)) ≥ J1(Λ0, ξ0, u∗(·), v∗(·)) = E[y′0Λ1(0, ξ0)y0],

additionally, by plugging v∗(t) = G1(t, ξt, Λ1)y(t) into Equation (1), Equation (1) can be
converted into

y(t + 1) = [Q0(t, ξt) + U0(t, ξt)G1(t, ξt, Λ1)]y(t) + R0(t, ξt)u(t)

+
r
∑

k=1
{[Qk(t, ξt) + Uk(t, ξt)G1(t, ξt, Λ1)]y(t) + Rk(t, ξt)u(t)}wk(t),

z(t) =
[

L(t, ξt)y(t)
M(t, ξt)u(t)

]
, M(t, ξt)′M(t, ξt) = Inu ,

y(0) = y0 ∈ Rn, ξ(0) = ξ0 ∈ D, t ∈ NT ,

(18)

in the meantime, we also have

J2(y0, ξ0, u(·), v∗(·)) =
T

∑
t=0

E[y(t)′L(t, ξt)
′L(t, ξt)y(t) + u(t)′u(t)]. (19)
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Obviously, to illustrate that u∗(t) minimizes (3), we only need to prove a kind of LQ optimal
control problem of IMJSSs that causes (19) minimization under the condition of (18). Via
Lemma 3, we can easily prove the Nash equilibrium inequality (5).

Necessity: Assume that (u∗(t), v∗(t)) = (G2(t, ξt)y(t), G1(t, ξt)y(t)) is a linear feed-
back Nash equilibrium point for the Nash game (4) and (5). Putting u∗(t) into Equation (1),
we gain

y(t + 1) = [Q0(t, ξt) + R0(t, ξt)G2(t, ξt)]y(t) + U0(t, ξt)v(t)

+
r
∑

k=1
{[Qk(t, ξt) + Rk(t, ξt)G2(t, ξt)]y(t) + Uk(t, ξt)v(t)}wk(t),

z(t) =
[

L(t, ξt)y(t)
M(t, ξt)G2(t, ξt)y(t)

]
, M(t, ξt)′M(t, ξt) = Inu ,

y(0) = y0 ∈ Rn, ξ(0) = ξ0 ∈ D, t ∈ NT ,

(20)

now discover that the above problem is transformed into the following indefinite LQ
optimal control with optimal solution v∗(t) = K1(t, ξt)y(t): min

v(·)∈l2(NT ;Rnv )
{J1(y0, ξ0, u∗(·), v(·)) =

T
∑

t=0
E[γ2‖v(t)‖2 − ‖z(t)‖2]},

subject to (20),
(21)

it is obvious that the above indefinite LQ problem (21) is well-posed. Next, we prove
that the coupled generalized algebraic Riccati Equation (22) is solvable by mathematical
induction:

Λ̃1(t, ς) =
r
∑

k=0
[Qk(t, ς) + Rk(t, ς)G2(t, ς)]′ες(t, Λ̃1)[Qk(t, ς) + Rk(t, ς)G2(t, ς)]

−L(t, ς)′L(t, ς)− G2(t, ς)′G2(t, ς)

−G3(t, ς, Λ̃1)
′H1(t, ς, Λ̃1)

†G3(t, ς, Λ̃1),
(I − H1(t, ς, Λ̃1)H1(t, ς, Λ̃1)

†)G3(t, ς, Λ̃1) = 0,
Λ̃1(T + 1, ς) = 0, H1(t, ς, Λ̃1) ≥ 0, (t, ς) ∈ NT ×D,

(22)

to this end, the value function is introduced as follows:

V(τ, y(τ), ξτ) = inf
v(·)∈l2([τ,T];Rnv )

J1(y(τ), ξτ , u∗(·), v(·))

= inf
v(·)∈l2([τ,T];Rnv )

T

∑
t=τ

E{y(t)′[−L(t, ξt)
′L(t, ξt)− G2(t, ξt)

′G2(t, ξt)]y(t)

+γ2v(t)′v(t)}, (23)

for τ = T, we can obtain from Λ̃1(T + 1, i) = 0 that the existence of Λ̃1(T, i) motivates

V(T, y(T), ξT) = inf
v(T)

E{y(T)′[−L(T, ξT)
′L(T, ξT)− G2(T, ξT)

′G2(T, ξT)]y(T)

+γ2v(T)′v(T)}
= inf

v(T)
E[y(T)′Λ̃1(T, ς)y(T) + γ2v(T)′v(T)], (24)

it is noteworthy that Equation (22) is available for t = T with Λ̃1(T, ς), and the optimal
value function is

V(T, y(T), ξT) = E[y(T)′Λ̃1(T, ξT)y(T)], (25)

in the process,

v∗(T) = 0 = −H1(T, ξT , Λ̃1)
†G3(T, ξT , Λ̃1)y(T). (26)
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then, for t = τ, assume that the coupled generalized algebraic Riccati Equation (22) has a
solution Λ̃1(τ, ς), ς ∈ D. Meanwhile, the optimal value function is

V(τ, y(τ), ξτ) =
∞

∑
i=1

πτ(i)y(τ)′Λ̃1(τ, ξτ)y(τ),

and the optimal control is

v∗(τ) = −H1(τ, ξτ , Λ̃1)
†G3(τ, ξτ , Λ̃1)y(τ),

now, our goal is to illustrate that for t = τ − 1, the existence of solution Λ̃1(τ − 1, ς), ς ∈ D
to Equation (22). By the aid of (20), the dynamic programming optimality principle
applies to

V(τ − 1, y(τ − 1), ξτ−1) = inf
v(τ−1)

E{y(τ − 1)′[−L(τ − 1, ξτ−1)
′L(τ − 1, ξτ−1)

−G2(τ − 1, ξτ−1)
′G2(τ − 1, ξτ−1)]y(τ − 1)

+γ2v(τ − 1)′v(τ − 1) + V(τ, y(τ), ξτ)},
= inf

v(τ−1)
E[y(τ − 1)′Γ(τ − 1, ξτ−1, Λ̃1)y(τ − 1)

+2v(τ − 1)′G3(τ − 1, ξτ−1, Λ̃1)
′y(τ − 1)

+v(τ − 1)′H1(τ − 1, ξτ−1, Λ̃1)v(τ − 1)], (27)

where

Γ(τ − 1, ξτ−1, Λ̃1) =
r

∑
k=0

[Qk(τ − 1, ξτ−1) + Rk(τ − 1, ξτ−1)G2(τ − 1, ξτ−1)]
′

·εξτ−1(τ − 1, Λ̃1)[Qk(τ − 1, ξτ−1) + Rk(τ − 1, ξτ−1)G2(τ − 1, ξτ−1)]

−L(τ − 1, ξτ−1)
′L(τ − 1, ξτ−1)− G2(τ − 1, ξτ−1)

′G2(τ − 1, ξτ−1),

similar results to Lemma 2 apply to the infinite Markov jump case, it is demonstrated that
Λ̃1(τ − 1, ς), ς ∈ D satisfies the following equation:

Λ̃1(τ − 1, ς) = Γ(τ − 1, ς, Λ̃1)− G3(τ − 1, ς, Λ̃1)
′H1(τ − 1, ς, Λ̃1)

†G3(τ − 1, ς, Λ̃1),
(I − H1(τ − 1, ς, Λ̃1)H1(τ − 1, ς, Λ̃1)

†)G3(τ − 1, ς, Λ̃1) = 0,
Λ̃1(T + 1, ς) = 0, H1(τ − 1, ς, Λ̃1) ≥ 0, ς ∈ D,

(28)
the following conclusions can be handled in the same manner as (17), that is

V(τ − 1, y(τ − 1), ξτ−1) =
∞

∑
ς=1

πτ−1(i)y(τ − 1)′P(τ − 1, ς)y(τ − 1), (29)

and

v∗(τ − 1) = −H1(τ − 1, ξτ−1, Λ̃1)
†G3(τ − 1, ξτ−1, Λ̃1)y(τ − 1), (30)

up to the present, one can infer that there exists Λ̃1(t, ς), (t, ς) ∈ NT × D satisfying
Equation (22). Furthermore, an optimal solution of the indefinite LQ problem (21) is
v∗(t) = −H1(t, ξt, Λ̃1)

†G3(t, ξt, Λ̃1)y(t) with G1(t, ξt) = −H1(t, ξt, Λ̃1)
†G3(t, ξt, Λ̃1) =

G1(t, ξt, Λ̃1). Amalgamating the above results into Equation (22), it is stated that Λ̃1(t, ς) =



Axioms 2023, 12, 882 9 of 14

Λ1(t, ς), (t, ς) ∈ NT × D. It only remains to indicate Λ1(t, ς) ≤ 0, (t, ς) ∈ NT × D. In
practice,

J1(y0, ς, u∗(·), v∗(·)) =
∞

∑
ς=1

π0(ς)y′0Λ1(0, ς)y0 ≤ J1(y0, ξ0, u∗(·), 0) =
T

∑
t=0

E[−‖z(t)‖2]} ≤ 0,

in addition, if we plug v∗(t) = G1(t, ξt)y(t) into Equation (1), then (18) is gained. We can
deduce that (5) is a standard LQ control subject to (18). Using Lemma 3, Λ2(t, ς) ≥ 0, (t, ς) ∈
NT ×D can be easily accessible. Moreover, J2(y0, ς, u∗(·), v∗(·)) =

∞
∑

ς=1
π0(ς)y′0Λ2(0, ς)y0

with u∗(t) = G2(t, ξt)y(t) = G2(t, ξt, Λ2)y(t) = −H2(t, ξt, Λ2)
−1G4(t, ξt, Λ2)y(t). The

proof has been completed.

Remark 1. Note that Theorem 1 can be considered as an extension of [22] to infinite jumps and
multiplicative noise and a discrete-time version of [23].

Remark 2. If the infinite horizon cost function is concerned, it is much more challenging owing
to the requirement of stabilization limitation for the closed-loop system. As discussed in [26], the
infinite horizon LQ Nash game has been considered.

4. Application to Special Case

In the previous section, the Nash game problem for discrete-time IMJSSs is solved.
It should be noted that when γ takes different values or v(t) is regarded as exogenous
disturbance. As a special case, we discuss the finite horizon robust H2/H∞ control problem
from a new perspective and further explore the relationship between Nash equilibrium
points and finite horizon H2/H∞ control with some remarks.

4.1. Finite Horizon H2/H∞ Control

v(t) in system (1) is seen as one of the players in the Nash game problem; as a matter
of fact, it is more a case of considering v(t) as an exogenous disturbance in most control
systems. Let γ > 0 be a prescribed disturbance attenuation. In consequence, the original
Nash game problem is turned into finding a controller u∗(·) ∈ l2(NT ;Rnu) such that

(i) ‖LT‖ < γ for the closed system of Equation (1) with x0 = 0;
(ii) if v∗(·) exists, u∗(·) minimizes the output energy:

J2(y0, ξ0, u(·), v∗(·)) =
T

∑
t=0

E[‖z(t)‖2], (31)

where v∗(·) is the worst case disturbance and

v∗(·) = arg max
v

J1(y0, ξ0, u∗(·), v(·))

= arg max
v

T

∑
t=0

E[γ2‖v(t)‖2 − ‖z(t)‖2], (32)

in other words, the above problem is called the finite horizon H2/H∞ control problem. We
need to pay attention to the definition of perturbed operator ‖LT‖ given in [29,30].

As an applications of Nash game problem, it can be obtained from Theorem 1 that

‖LT‖ ≤ γ, (33)

and

J2(y0, ξ0, u∗(·), v∗(·)) ≤ J2(y0, ξ0, u(·), v∗(·)), (34)
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where u∗(t) and v∗(t) are defined in Theorem 1.

Remark 3. In accordance with the definition of H2/H∞ control problem, it is crucial to note that
‖LT‖ ≤ γ does not come down to ‖LT‖ < γ. If we can confirm that ‖LT‖ ≤ γ can be replaced by
‖LT‖ < γ, then the following result would be given naturally.

Theorem 2. For system (1), assume the following coupled generalized algebraic Riccati equations:
Λ1(t, ς) =

r
∑

k=0
[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]

′ες(t, Λ1)

·[Qk(t, ς) + Rk(t, ς)G2(t, ς, Λ2)]− L(t, ς)′L(t, ς)
−G2(t, ς, Λ2)

′G2(t, ς, Λ2)− G3(t, ς, Λ1)
′H1(t, ς, Λ1)

−1G3(t, ς, Λ1),
Λ1(T + 1, ς) = 0, H1(t, ς, Λ1) > 0, (t, ς) ∈ NT ×D,

(35)

G1(t, ς, Λ1) = −H1(t, ς, Λ1)
−1G3(t, ς, Λ1), (36)

Λ2(t, ς) =
r
∑

k=0
[Qk(t, ς) + Uk(t, ς)G1(t, ς, Λ1)]

′ες(t, Λ2)

·[Qk(t, ς) + Uk(t, ς)G1(t, ς, Λ1)] + L(t, ς)′L(t, ς)
−G4(t, ς, Λ2)

′H2(t, ς, Λ2)
−1G4(t, ς, Λ2),

Λ2(T + 1, ς) = 0, H2(t, ς, Λ2) > 0, (t, ς) ∈ NT ×D,

(37)

G2(t, ς, Λ2) = −H2(t, ς, Λ2)
−1G4(t, ς, Λ2) (38)

admit solutions (Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2)) with Λ1(t, ς) ≤ 0, Λ2(t, ς) ≥ 0
for (t, ς) ∈ NT × D, then the finite horizon H2/H∞ control optimal controller is u∗(t) =
G2(t, ς, Λ2)y(t), v∗(t) = G1(t, ς, Λ1)y(t). Conversely, if the finite horizon H2/H∞ control prob-
lem has the solution u∗(t) = G2(t, ς, Λ2)y(t), v∗(t) = G1(t, ς, Λ1)y(t), and H1(t, ς, Λ1) > 0,
then the coupled generalized algebraic Riccati Equations (35)–(38) admit a group of solutions
(Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2)) with Λ1(t, ς) ≤ 0, Λ2(t, ς) ≥ 0 for (t, ς) ∈
NT ×D.

Proof. Sufficiency: It is obvious from the sufficiency part in Theorem 1 that we need
only to explain ‖LT‖ < γ. In fact, in the light of the definition of perturbed operator
‖LT‖, when x0 = 0, note that the condition H1(t, ς, Λ1) > 0 of (35), Equation (17) means
J1(y0, ξ0, u∗(·), v(·)) = 0 iff v(t) = v∗(t) = G1(t, ς, Λ1)y(t). Putting v∗(t) into Equation
(14), the obtained closed-loop system with initial state y0 = 0 leads to the state response
y(t) ≡ 0, t ∈ NT . One step further, v(t) = v∗(t) = 0 naturally occurs. Then, the inescapable
conclusion is that J1(0, ξ0, u∗(·), v(·)) > 0 iff v(t) = v∗(t) 6= 0, which stands for ‖LT‖ < γ .

Necessity: Assume that the finite horizon H2/H∞ control problem has the solution
u∗(t) = G2(t, ς, Λ2)y(t), v∗(t) = G1(t, ς, Λ1)y(t), a combination of (31) and (32) causes
J1(y0, ξ0, u∗(·), v∗(·)) ≤ J1(y0, ξ0, u∗(·), v(·)), J2(y0, ξ0, u∗(·), v∗(·)) ≤ J2(y0, ξ0, u(·), v∗(·))
for all (u(·), v(·)) ∈ l2(NT ;Rnu)× l2(NT ;Rnv). By now, it can be deduced from the necessity
of Theorem 1 that Equations (10)–(13) have solutions. Keep in mind that H1(t, ς, Λ1) > 0, hence,
Equations (35)–(38) admit a group of solutions (Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2))
with Λ1(t, ς) ≤ 0, Λ2(t, ς) ≥ 0 for (t, ς) ∈ NT ×D. The proof has been completed .

Remark 4. Although the finite horizon H2/H∞ control problem has been solved in [30], we yield
a similar result from the new perspective of a Nash game.

Remark 5. By comparing Theorem 1 with Theorem 2, surely the existence of Nash equilibrium
points and the solvability of finite horizon H2/H∞ control are not equivalent for system (1), which
differs from the continuous-time case as described in [26]. The main cause of the inequivalence lies
in that the condition H1(t, ς, Λ1) > 0 of Equation (35) cannot meet the Nash equilibrium problem,
namely, ‖LT‖ < γ is not equivalent to ‖LT‖ ≤ γ.
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4.2. Some Remarks on Nash Equilibrium Points

As a point of fact, only when H1(t, ς, Λ1) > 0 is the equivalence between Nash
equilibrium points and finite horizon H2/H∞ control valid. Accordingly, the relationship
between the Nash game and H2/H∞ control problem can be discussed in the following
theorem.

Theorem 3. For system (1), under the condition of

H1(t, ς, Λ1) = γ2 Inv +
r

∑
k=0

Uk(t, ς)′ες(t, Λ1)Uk(t, ς) > 0,

the following statements are equivalent:

(i) There exists a linear memoryless Nash equilibrium points (u∗(·), v∗(·)) with (u∗(t) =
G2(t, ς, Λ2)y(t), v∗(t) = G1(t, ς, Λ1)y(t));

(ii) The finite horizon H2/H∞ control is solvable with u∗(t) = G2(t, ς, Λ2)y(t), v∗(t) =
G1(t, ς, Λ1)y(t);

(iii) The coupled generalized algebraic Riccati Equations (35)–(38) have a group of solutions
(Λ1(t, ς), G1(t, ς, Λ1); Λ2(t, ς), G2(t, ς, Λ2)) with Λ1(t, ς) ≤ 0, Λ2(t, ς) ≥ 0 for (t, ς) ∈
NT ×D.

Proof. Theorem 3 can be demonstrated through Theorem 1 and Theorem 2.

Remark 6. Keep in mind that when H1(t, ς, Λ1) > 0, H1(t, ς, Λ1)
† = H1(t, ς, Λ1)

−1, at this
point, Equations (10)–(13) are consistent with Equations (35)–(38). In other words, for system
(1), the existence of Nash equilibrium problem, the solvable of finite horizon H2/H∞ control
and the solvability of Equations (35)–(38) are equivalent. In addition, under the limitation of
H1(t, ς, Λ1) > 0, a unified treatment for H2, H∞ and H2/H∞ control can be investigated such
as [22].

5. Numerical Example

In this section, to solve the coupled generalized algebraic Riccati Equations (35)–(38),
we provide an iterative algorithm, which can be summarized as follows:

(i) When t = T, the terminal condition Λ1(T + 1, ς) = 0 and Λ2(T + 1, ς) = 0 can obtain
H1(T, ς, Λ1) and H2(T, ς, Λ2);

(ii) Working out (36) and (38), G1(T, ς, Λ1) and G2(T, ς, Λ2) can be computed;
(iii) To compute (35) and (37), it is found that Λ1(T, ς) ≤ 0 and Λ2(T, ς) ≥ 0;
(iv) Repeating the above procedures, for t = T − 1, T − 2, · · · , 0, we can compute that

Λ1(t, ς) ≤ 0, Λ2(t, ς) ≥ 0, G1(t, ς, Λ1) and G2(t, ς, Λ2).

Remark 7. It should be noted that for the coupled generalized algebraic Riccati Equations (35)–(38),
H1(t, ς, Λ1) > 0 and H2(t, ς, Λ2) > 0 are prerequisites for the effectiveness of the above iterative
algorithm. Similarly, we can easily derive the algorithm used to solve the coupled generalized
algebraic Riccati Equations (10)–(13).

Next, a numerical example will be presented to show the validity of the proposed
method.

Example 1. Consider a three-stage one-dimensional discrete-time IMJSS with coefficients in
Table 1.
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For {ξt}t∈NT , the element of P = [p(ς, ι)] is given by p(ς, ς) = 1
2 , p(ς, ς + 1) = 1

2 and

pςι = 0, ς ∈ D, ι ∈ D/{ς, ς + 1}. Set γ =
√

2
2 , the coupled generalized algebraic Riccati

Equations (10)–(13) are solved by the above iterative algorithm with

G1(0, ς, Λ1) = −
3(ς + 1)

3(ς + 1)2 − 4
, G2(0, ς, Λ2) = −0.53,

Λ1(0, ς) = −0.36− 3
6(ς + 1)2 − 8

− ς

ς + 1
≤ 0,

Λ2(0, ς) = 0.55 +
110− 33(ς + 1)2

27(ς + 1)4 − 72(ς + 1)2 + 48
+

ς

ς + 1
≥ 0.

Therefore, the Nash equilibrium points and optimal H2/H∞ controller of the considered system will
be obtained naturally.

Table 1. Coefficients of considered system.

Coefficients t = 0 t = 1 t = 2

Q0(t, ς) 1
2 1 1

3(ς+1)

Q1(t, ς) 1 1 1
ς+1

R0(t, ς) 1 − 1
ς+1

ς
ς+1

R1(t, ς) 1 1
ς+1

1
2(ς+1)2

U0(t, ς) − 1
ς+1 1 1

ς+1

U1(t, ς) 1
ς+1 1 1

L(t, ς)
√

ς
ς+1 1 1

M(t, ς) 1 1 1

6. Conclusions

This paper mainly explores a finite horizon LQ non-zero sum Nash game for discrete-
time IMJSSs, whose system is governed by a countable Markov chain. The Nash equilibrium
points for the considered system are solved by a countably infinite set of coupled general-
ized algebraic Riccati equations. Then, some special cases are given via a new perspective
of the Nash game, which is the finite horizon mixed H2/H∞ control with some remarks,
and we summarized the relationship between Nash game and H2/H∞ control problem.
The contents in this paper are an extension and improvement of the previous works [22,23]
in the MJSSs case. In fact, to solve the difficulties caused by the countable Markov chain, we
introduce the infinite dimension Banach spaces, where the elements are countably infinite
sequences of linear and bounded operators. Besides, to overcome the difficulty of solving
a countably infinite set of coupled generalized algebraic Riccati equations, we present
an iterative algorithm. In the future, the infinite horizon Nash game for IMJSSs can be
considered.
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