
Citation: Langer, J.C.; Singer, D.A.

Orthogonal Families of Bicircular

Quartics, Quadratic Differentials, and

Edwards Normal Form. Axioms 2023,

12, 870. https://doi.org/10.3390/

axioms12090870

Academic Editor: Juan De Dios Pérez

Received: 13 August 2023

Revised: 4 September 2023

Accepted: 6 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Orthogonal Families of Bicircular Quartics, Quadratic
Differentials, and Edwards Normal Form
Joel C. Langer *,† and David A. Singer †

Department of Mathematics, Applied Math and Statistics, Case Western Reserve University,
Cleveland, OH 44106-7058, USA; david.singer@case.edu
* Correspondence: joel.langer@case.edu
† These authors contributed equally to this work.

Abstract: Orthogonal families of bicircular quartics are naturally viewed as pairs of singular folia-
tions of Ĉ by vertical and horizontal trajectories of a non-vanishing quadratic differential. Yet the
identification of these trajectories with real quartics in CP2 is subtle. Here, we give an efficient,
geometric argument in the course of updating the classical theory of confocal families in the modern
language of quadratic differentials and the Edwards normal form for elliptic curves. In particular, we
define a parameterized Edwards transformation, providing explicit birational equivalence between each
curve in a confocal family and a fixed curve in normal form.
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1. Introduction

The geometric representation of elliptic functions by algebraic plane curves was an
important theme in nineteenth century mathematics. Out of a number of threads woven into
this theme, we consider two types of elliptic curve parameterization, whose relationship to
each other is not obvious. We spell out the connection between the two using quadratic
differentials, the birational equivalence of curves, and certain bicircular quartics viewed as
a generalization of the Edwards normal form.

For the elementary sine function x = sin t, the two types of parameterization are
almost equally well known:

(A) Since x = sin t satisfies the ODE ( dx
dt )

2 = g(x) = 1− x2, the functions x and y = x′

together parameterize the circle y2 = g(x).
(B) The complex function z = sin(s + it) parameterizes ellipses s 7→ sin(s + it0) and

hyperbolas t 7→ sin(s0 + it) in C ' R2 with common foci at the critical values of sine—i.e.,
the zeros of g(z), z = ±1.

The most obvious difference between A and B is this: while A parameterizes a single
curve, B parameterizes curve families. In fact, the ellipses and hyperbolas in B evidently
form an orthogonal system. That they are also confocal is part of what deserves further
geometric explanation, though it is often presented as a computational fact: one applies
trig identities to x + iy = sin(s + it) to eliminate the parameter s or t and obtain quadric
curves f (x, y) = 0, from which the foci (x, y) = (±1, 0) may be read.

Turning to elliptic functions, the story of A is by far the more famous nowadays:
“Replace g(x) = 1− x2 in the above ODE by a cubic or quartic g(x) with distinct roots, use
x and y = x′ to parameterize the elliptic curve y2 = g(x), . . . ”. Such an idea (if not yet the
modern notion of elliptic curve) would have been implicit in early work on the theory of
elliptic functions, but according to Stillwell [1], the idea was first explicitly discussed by
Clebsch in 1864 [2].
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The corresponding curve parameterizations B appear in the 1860 paper of F. H.
Siebeck [3]: “On a family of curves of the fourth degree which are related to elliptic
functions”. Here, among other things, Siebeck demonstrates that the Jacobi elliptic sine
and cosine functions sn z = sn(z, k) and cn z = cn(z, k) map horizontal and vertical lines
to confocal orthogonal systems of quartic plane curves with four (real) foci at the critical
values of the elliptic function. Siebeck’s eye-catching discovery is illustrated in Figure 1,
which is reproduced from his paper.

Figure 1. Figure from Siebeck’s 1860 paper [3]: three types of confocal families of bicircular quartics.

Siebeck himself began with the analogy to Euclidean conics, yet he was unaware that
his bicircular quartics actually represented non-Euclidean conics: In fact, all three graphics in
Figure 1 may be viewed as confocal families of hyperbolic conics [4]. Although spherical
conics had already been considered by Chasles (and subsequently Darboux), and there
was also a more comprehensive treatment of non-Euclidean conics by 1882 [5], it might
have been challenging even then to make a fully satisfactory connection to Siebeck’s work.
(Further comments and historical references are included in Appendix D, where we also
briefly summarize the contents of [3], which is in German.)

A large part of the issue here is that there are several different natural contexts within
which all such Euclidean and non-Euclidean conics may be viewed. The notion of focus itself
takes on various—not always equivalent—meanings, depending on the setting. For this
reason, we devote two sections to the topic. In Section 2, we have the audacity to give a
new definition of focus; it suits the present purposes at least. In Appendix C, we provide
the historical context and broader justification.

Yet there is no escaping the fact that the relationship A↔ B itself calls for descriptions
of relevant objects in two settings at once. We first consider bicircular quartics as real curves
in the complex projective plane CP2—which is the setting of B (that of A being essentially
the Riemann sphere Ĉ ' CP1, where the ODE lives). The classical theory of bicircular
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quartics is a rich subject, and we require several sections (including appendices) to provide
sufficient details (Sections 3 and 4, Appendices A, B and E).

This is the case even though Section 3 essentially short-circuits much of the theory;
namely, a three-dimensional real projective space of bicircular quartics P3 ⊂ P8 suffices to
represent all bicircular quartics, up to inversive equivalence (as explained in Appendix E).
Within P3, we eventually find all the relevant orthogonal families, including the three types
in Figure 1 (as well as the Euclidean ellipses/hyperbolas—so Siebeck’s analogy is really
more than that).

A simple scaling puts any elliptic curve in P3 in standard position—which fixes the set
of four mirrors of inversion symmetry which any such curve is known to possess. (This
is not Siebeck’s normalization, which is imposed by the Jacobi elliptic functions, but is
essentially the generalized Edwards normal form of Section 6.)

Standard position (SP) sets up the section on quadratic differentials Section 5, where
we begin to establish the bridge A ↔ B. Each elliptic curve k in SP determines a focal
quadratic differential Q{k}, defined on Ĉ, with poles at its foci. Meanwhile, the clinant
quadratic differential Qk is defined on k as an elliptic curve. Despite being defined on
different Riemann surfaces, Qk and Q{k} are found to “agree” (along the real locus of k),
by virtue of a key identity (Lemma 1). Now the point is that all curves in a given confocal
family have the same focal quadratic differential Q{k}, which effectively “glues together”
all the Qk’s. But in Ĉ, the orthogonal family is simply the pair of foliations defined by the
horizontal and vertical trajectories of Q{k}.

Our use of Qk may not be essential here, but it has a certain geometric appeal. In effect,
we are introducing yet a third classical curve parameterization into the mix (see Remark 1):
(C) Arc length parameterization. Namely, Qk = dx2 + dy2 may be described as (an analytic
continuation of) the usual arc length element along kR, and among its trajectories is the
arc-length parameterization of kR itself. Qk is intimately related to our subject, already
because it has singularities corresponding to the foci of k.

Remark 1. Among the geometric representations of elliptic functions, C played perhaps the most
central role historically [1]. It was the lemniscate integral that led Euler and Gauss to key insights
about elliptic integrals and functions, and Abel to his subdivisibility result for the lemniscate, analo-
gous to Gauss’s result for the circle. The latter results involve ruler and compass constructibility and
Fermat primes; some modern analogues involve origami constructibility and Pierpont primes [6–10].
In particular, the Kiepert trefoil admits such a result [11], and the related fact that this exceptional
sextic curve has unit speed parameterization by Dixon elliptic functions [12] is explained in [13]
using the clinant quadratic differential Qk.

We note that arc length parameterization is almost never defined by elliptic (or ele-
mentary) functions—precisely because the analytic continuation of the arc length parame-
terization of kR develops branch points at singularities of Qk [13,14]. A rare exception is
provided by the circle (where C happens to coincide with A in the case of sin t). Another
is the Bernoulli lemniscate, which may be parameterized by unit speed via the lemniscate
elliptic sine function, sl t = sn(t, i).

The Bernoulli lemniscate leads into the subject of Sections 6 and 7. Each confo-
cal family in Figure 1 contains a Cassini oval—the lemniscate being the Cassinian in
the bottom (trinodal) family. Quartics in the Edwards normal form may be interpreted
as Cassinians (simply by replacing the affine coordinates x, y in the form by isotropic
coordinates u = x + iy, v = x− iy). The confocal families may be regarded as variations from
Cassinian core curves (Section 7).

Such a variation is what provides the generalized Edwards normal form, where a key
element of the Edwards theory carries over by means of a simple generalization (using again
Lemma 1). Namely, where Edwards uses a birational transformation E to relate any ENF
quartic to z2 = (a2 − x2)(1− a2x2), a parameterized version of the same transformation,
Ep,q, relates all bicircular quartics in a given confocal family to (a minor modification of)
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the same special quartic. But the latter equation essentially stands in for the confocal
quadratic differential Q{k}, so Ep,q provides an explicit algebraic integrability result for the
ODE defining trajectories of Q{k}.

Further, although it is unsurprising that a confocal family is made up of equivalent
elliptic curves—and there are several ways of seeing this—it follows from Ep,q that any two
curves in the family are related by a rather simple birational transformation. After observa-
tions based on this fact, the discussion wraps up with a summary of the global geometric
picture: P3 is stratified via a discriminant ∆k, whose highest dimensional strata are foliated
by confocal families; roughly speaking, the foci fix the family, while the movable pair of
singular foci provide the variation through equivalent elliptic curves. To conclude with
a metaphor, if P3 is a little galaxy, and foci are slowly drifting stars, the singular foci are
asteroids in hyperbolic orbit.

2. Foci of Real Algebraic Plane Curves

If f (x, y) = ∑ cµνxµyν is a polynomial with cµν ∈ R, then f determines a real algebraic
plane curve as the set of solutions to f (x, y) = 0 in R2 or C2. This may be extended to complex
projective space CP2 as the set of solutions to F(x, y, z) = 0, where F(x, y, z) = zd f ( x

z , y
z )

is a homogeneous polynomial. Given a homogeneous real polynomial F(x, y, z), we can
of course recover f (x, y) = F(x, y, 1). Letting f̄ (x, y) = f (x̄, ȳ) = ∑ cµνxµyν denote the
complex conjugation of coefficients, we have f̄ = f as the reality condition for the curve.

We will also make use of isotropic coordinates u = x + iy, v = x− iy, w = z. In these
coordinates, the curve is defined by the polynomial K(u, v, w) := F( u+v

2 , u−v
2i , w), or

k(u, v) = K(u, v, 1). In these coordinates, reality is given by the condition k(u, v) = k̄(v, u).
In what follows, F and f will be used for real curves in ordinary (rectangular) coordi-

nates (x, y, z), and k and K for real curves in isotropic coordinates (u, v, w).
The circular points I = (1 : i : 0) and J = (1 : −i : 0) in CP2 are the ideal points

which belong to all circles (x− x0z)2 + (y− y0z)2 = R2z2. A line ax + by + cz = 0 in CP2

is isotropic if it contains exactly one of the two points I or J. An isotropic tangent line is a line
through I or J tangent to the curve F.

Poncelet was the first to interpret foci of a conic as points of intersection of isotropic
tangent lines [15,16]; Plücker used the same idea to define (real and complex) foci for curves
of a higher degree [17]. Subsequently, classical texts considered infinite foci [18] and singular
foci [19] but generally distinguished the latter from ordinary foci.

Coolidge simply excludes infinite and singular foci by definition [20]: “Definition.
A point of intersection of tangents to a curve from the two circular points at infinity, the points of
contact being both finite, is called a ‘focus’ of the curve”. He adds that it “would not be wise”
to include singular foci, which fail to behave like ordinary foci under inversion (e.g., circle
centers do not invert to circle centers).

But a singular focus may be double, triple, etc.; of these, only the double singular foci
ought to be excluded. For instance, within confocal families of bicircular quartics sharing
four foci, one finds Cassinians—which have two ordinary, and two triple (singular) foci.
This only makes sense when the latter two points count as foci.

As just described, the needed definition might appear to be rather ad hoc—but it is not.
In fact, we adopt an entirely different definition of the (real) foci of a curve, thus resolving
all ambiguities in the classical notion (see Appendix C).

We use the fact that a C-irreducible curve f (x, y) = 0 may be regarded as a compact
Riemann surface K = K f —extending the analytic submanifold structure on the regular
set freg ⊂ C2 by the addition of finitely many points. (This amounts to the resolution
of singularities [21–23]; but for all curves arising here, elementary versions of the result
suffice [24].)

Isotropic coordinates define isotropic projections πI , πJ : C2 → C by πI(u, v) = u and
πJ(u, v) = v. These restrict to analytic functions on freg, and extend meromorphically to
πI , πJ : K → Ĉ = CP1. In particular, we consider π = πI as a branched covering of
Riemann surfaces. A ramification point P ∈ K is a point of higher multiplicity; a branch
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point u0 = π(P) ∈ Ĉ is the image of such a point (usage as in [24]). In other words,
|π−1(u0)| < deg(π), where |π−1(u0)| is the number of distinct points in the inverse image
and deg(π) = maxu|π−1(u)| is the degree of the mapping π : K → Ĉ.

Definition 1. A focus u0 ∈ Ĉ of a C-irreducible real curve f is a branch point of extended isotropic
projection π : K → Ĉ. If f is reducible, its focal set is the union foc( f ) = ∪jfoc( f j).

In particular, the natural place for real foci will not be the real plane, but Ĉ; all the
more so for foci as poles of quadratic differentials (Section 5). In the meantime, this section
presents some preliminaries, including a formula for the number of foci. The focal set itself
is considered in Section 3.

Because I, J are swapped by the real symmetry of CP2, (x : y : z) ↔ (x̄ : ȳ : z̄), it will
suffice to discuss mostly I. An isotropic line L through I has the equation x + iy = u0z
for some u0 ∈ C; using standard identifications C ' R2 ' {(x : y : 1) : x, y ∈ R} ⊂ CP2,
the complex number u0 = x0 + iy0 is understood to represent the point (x0 : y0 : 1) where
L meets the real plane. (For heuristic purposes, we sometimes regard the ideal line I J : z = 0
as isotropic, but it does not represent a point in the real plane RP2.)

In homogeneous isotropic coordinates u = x + iy, v = x− iy, w = z on CP2, the line
L has the equation u = u0w, but we will mostly use the non-homogeneous equation u = u0
for the affine line L \ {I}. Isotropic projection π = πI (“from I onto the real plane”) sends
each point of L \ {I} to u0.

The Riemann–Hurwitz formula for a branched covering π : K → L of compact
Riemann surfaces of genus g(K) and g(L) is

g(K) = 1 + deg(π)(g(L)− 1) +
1
2 ∑ bP(π).

Here, bP(π) := (multP(π)− 1) denotes the branching number of π at P [24] (so bP(π) = 0
for all but finitely many points, bP(π) = 1 for simple ramification points, etc.).

The total branching number of π is denoted B(π) := ∑ bP(π). In the case of a mero-
morphic function, π : K → Ĉ, solving for B in the Riemann–Hurwitz formula with
g(L) = g(Ĉ) = 0 gives B(π) = 2(deg(π) + g(K)− 1).

Returning to algebraic curves, Definition 1 identifies the foci of 0 = f (x, y) = k(u, v)
with branch points of π : K → Ĉ—projection from the circular point I. Then B(π) is the
number of foci (counted with multiplicity), which the above formula may therefore be used
to determine.

For this purpose, we consider the multiplicity m = µI(K) of I with respect to the
corresponding projective curve K, e.g., K is circular when m ≥ 1 and bicircular when m ≥ 2.
Then, the projection π has degree deg(π) = maxu|π−1(u)| = deg(K)− µI(K) = d−m.

Putting deg(π) = deg(K)− µI(K) and g(K) := g(K) into the formula for B(π) gives
the number of foci of K:

|foci(K)| = B = 2(deg(K)− µI(K) + g(K)− 1). (1)

In our applications, |foci(K)| will in fact count distinct foci u0 since these will always be
simple: bP(π) = 0, for all but one point in π−1(u0), and for that point, bP0(π) = 1. (Note:
the classical term simple focus has a different meaning as is explained in Appendix C.)

To begin with the main example, let K be a bicircular quartic: K is an irreducible
real quartic with double points at I and J. In particular, suppose K has δ = 2 nodes or
κ = 2 cusps, and no other singularities. Then, by the Clebsch formula [21], the curve has
genus g(K) = 1

2 (d− 1)(d− 2)− δ− κ = 1. Thus, K is an elliptic curve. Since µI(K) = 2,
Equation (1) gives |foci(K)| = 2(g(K) +deg(K)− µI(K)− 1) = 2(1+ 4− 2− 1) = 4. Thus,
we have the following.

Proposition 1. A bicircular quartic has four foci.
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Aside from the elliptic curves, we will also have occasion to consider rational bicircular
quartics. For example, the Bernoulli lemniscate B is trinodal (δ = 3), giving g = 0 and
|foci(B)| = 2(0 + 4− 2− 1) = 2. In fact, B is inverse to a (rectangular) hyperbola H, which
satisfies |foci(H)| = 2(0 + 2− 0− 1) = 2. The fact that |foci(H)| = |foci(B)| is an instance
of inversive invariance, to be discussed below.

3. Bicircular Quartics: Focal and Elliptic Discriminants

A bicircular quartic takes the form

F(x, y, z) = a(x2 + y2)2 + (bx + cy)(x2 + y2)z + F2(x, y, z)z2 = 0,

with F2(x, y, z) homogeneous of degree 2. It depends on nine homogeneous coefficients
a, b, c, · · · ∈ R, and may thus be represented by a point in eight-dimensional projective
space {a : b : c : . . . } ∈ P8.

However, every bicircular quartic is symmetric with respect to a pair of real, mutually
orthogonal circles of inversion (or lines of reflection). For brevity, we refer to these as
mirrors. In fact, the following result is classical (see, for example [19]):

Theorem 1. A bicircular quartic (or circular cubic) is self-inverse with respect to each of four
mutually orthogonal circles or lines, and the sixteen (real and complex) foci lie by fours on these
four circles. At least two and at most three of these circles are real.

The proof may be found in Appendix E.
Thus, for the purpose of studying confocal families up to inversive equivalence, it

will suffice to consider such curves in rectilinear position (symmetric with respect to the
x, y-axes):

F(x, y, z) = s(x2 + y2)2 + 2(px2 + qy2)z2 + rz4 = 0. (2)

In isotropic coordinates, K(u, v, w) = F(x, y, z) = F( u+v
2 , u−v

2i , w):

K(u, v, w) = su2v2 +
p− q

2
(u2 + v2)w2 + (p + q)uvw2 + rw4 = 0. (3)

Thus, we may represent a bicircular quartic K as a point in the real projective space
P3 = {(p : q : r : s)} of rectilinear positions.

Now, we begin to analyze the foci of K. Like any bicircular quartic, K is quadratic in
either of the first two isotropic coordinates u, v, which simply reflects the fact that isotropic
projection π : K → C has degree two. In particular, the affine curve k(u, v) = K(u, v, 1) = 0
may be expressed in the form k = A(u)v2 + B(u)v + C(u):

k(u, v) = (su2 +
p− q

2
)v2 + (p + q)u v + (

p− q
2

u2 + r). (4)

A point u0 ∈ C is regular if k(u0, v) has two distinct roots. Otherwise, u0 is exceptional: the
number of distinct solutions to the equation k(u0, v) = 0 is 0 or 1 (or ∞ in case k(u, v) has a
linear component u− u0). A focus u0 ∈ C is exceptional, but the converse is false in general
(as will be seen below).

To identify exceptional points, we consider the v-discriminant of k:

∆vk = (∆vk)(u) := B2 − 4AC = 2(q− p)(su4 + r) + 4(pq− rs)u2, (5)

We will also refer to ∆vk as the focal discriminant (see Proposition 2). In the generic, elliptic
case, π : K → Ĉ is a branched double cover with four branch points, i.e., foci, and these are
the roots of the quartic ∆vk.
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To distinguish elliptic cases (|foci(K)| = 4) from non-elliptic cases (|foci(K)| < 4), we
take the discriminant ∆u of the quartic ∆vk:

∆K = ∆k :=
1

16384
∆u(∆vk) = rs(p− q)2(p2 − rs)2(q2 − rs)2. (6)

This elliptic discriminant gives a natural stratification P3 = ∪Pk
j . (Note: we use “elliptic”

to distinguish ∆k from the usual curve discriminant—which vanishes for any singular
quartic; in particular, for genus g < 3.) The discriminant locus D : ∆K = 0 consists of
lower-dimensional strata defined via factors of ∆K. The 3-strata P3

j —the four connected

components of the complement P3 \ D = ∪3
j=0P3

j —are foliated by hyperbolas representing
confocal families of equivalent elliptic curves (see Section 4 and Appendix B). Several of
the 2-strata P2

j are likewise foliated by hyperbolas representing confocal families of rational
(trinodal) quartics and conics, while others represent circle pairs (Appendix A). Finally,
the circles/lines of reflection for the bicircular quartics in P3 (Appendix E) belong to the
1/0-strata (albeit with p = q = ±i in one case).

To summarize the significance of the discriminants, we state a proposition (proved in
Appendix A):

Proposition 2. Let k be a quartic in rectilinear position (Equation (4)), with focal discriminant
∆vk (Equation (5)) and elliptic discriminant ∆k (Equation (6)).

(a) u0 ∈ C is a focus of k if and only if it is a simple root of ∆vk;
(b) k is an elliptic curve⇔ ∆k 6= 0⇔ |foci(K)| = 4;
(c) k is rational-non-circular⇔ |foci(K)| = 2;
(d) k is circular or degenerate⇔ |foci(K)| = 0.

4. The Confocal Families of Bicircular Quartics Hr
α

In this section, we consider the confocal families of curves represented by points in the
space P3 of rectilinear positions. For this purpose, we replace the elliptic strata P3

j by reduced

strata P̂2
j obtained simply as follows. Since s 6= 0 and r 6= 0, we may scale coefficients using

s = 1, then scale the affine curves k(u, v) = 0 (Equation (4)), via (u, v) 7→ (λu, λv) so that
r = ±1. With this scaling, f (x, y) = k(u, v) is said to be in standard position.

Remark 2. Standard position has the following geometric significance. All bicircular quartics
are known to be symmetric with respect to four mirrors—circles of inversion (Appendix E). While
rectilinear position makes two of these mirrors the x and y axes, standard position fixes the remaining
two: for r = 1, the (real/imaginary) circles x2 + y2 = ±1; for r = −1, the (complex) circles
x2 + y2 = ±i.

The reduced strata P̂2
j are open subsets of one of the p, q-planes R2

r := {(p : q : r : 1)},
r = ±1. As will be seen presently, each P̂2

j is foliated by hyperbolasHα (Equation (10)); for
a fixed value of a parameter α, which determines the four foci, Hα represents a confocal
family of curves. In fact, α is related to the j-invariant for K (Remark 3), andHα consists of
equivalent elliptic curves (Section 6). Hα itself is “parameterized” by the squared singular
focus σ2 = q−p

2 (the singular foci ±σ is discussed in Appendix A).
Thus, we express the standard position:

k(u, v) = (u2 − σ2)v2 + (p + q)uv + (r− σ2u2); σ2 =
q− p

2
. (7)

We “normalize” the focal discriminant ∆vk (Equation (5)) by factoring out 4σ2. Noting
that p 6= q on P̂2

j , we obtain the monic polynomial:

δ(u) = δr
α(u) :=

∆vk
4σ2 = (u2 − b2)(u2 − r

b2 ) = u4 − 2αu2 + r. (8)
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Here, the foci (roots of δ(u)) are denoted ±b,±
√

r
b and we introduce the focal parameter α:

α :=
pq− r
p− q

=
1
2
(b2 +

r
b2 ). (9)

The foci are distinct from the singular foci ±σ (except in the case of Cassinians, where
q = −p = σ2 and α = 1

2 (σ
2 + r

σ2 )). Finally, we note that these formulas are meaningful
even when r = 0, and will thus include the trinodal quartics as a limiting case.

Remark 3. The focal parameter α is related to the cross ratio of the four foci (or the “pencil of isotropic
tangents”). Namely, λ = [p0, p1, p2, p3] := (p0−p1)(p2−p3)

(p1−p2)(p3−p0)
, becmes λ = [b,−

√
r

b ,
√

r
b ,−b] =

α
2
√

r +
1
2 , i.e., α =

√
r(2λ− 1). Ultimately, this implies equivalence of confocal bicircular quartics,

since λ may be shown to determine the j-invariant of k as an elliptic curve. But we do not require
the j-invariant for this conclusion since we have more direct arguments in Section 6.

We formally define elliptic confocal familiesHr
α ⊂ R2

r of a given type r = ±1 by fixing
the focal parameter α, while allowing p, q to vary.

Definition 2. For r = 1 and real α 6= ±1, or for r = −1, α ∈ R, we define
Hr

α = {K = (p : q : r : 1) ∈ P3 : p 6= q, pq−r
p−q = α}.

For a given α = pq−r
p−q , we see that indeed H = Hr

α consists of points (p, q) on a

rectangular hyperbola in the p, q-plane R2
r :

H : (p + α)(q− α) + α2 − r = 0. (10)

For variable α,H in fact describes a pencil of hyperbolas, each of which represents a
confocal family of elliptic curves.

In case r = −1, each quartic is one-circuited, and the mirrors are the x and y axes
and the complex circles x2 + y2 = ±i (Appendix E). The left side of Figure 2 shows the
orthogonal pair of foliations for the particular choice α = 0.

Figure 2. (Left): The orthogonal (green/blue) foliations of the confocal family Hr
α with α = 0,

r = −1; the foci are the four red points. The (green/blue) bold curves are the two Cassinians inH−1
0 .

(Right): The p, q-plane for r = −1. The region P̂2
0 = {p 6= q} is filled by hyperbolasHα representing

confocal families for each α ∈ R. The (green/blue) points and their branches represent the Cassinians
and corresponding foliations ofH−1

0 .
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On the right side of the figure, the complement of the diagonal in the p, q-plane is
foliated by the hyperbolas Hα, α ∈ R. The upper branch of Hα represents all the (blue)
curves enclosing the foci ±b; the lower branch represents (green) curves enclosing the foci
±ib. Points on the anti-diagonal p = −q represent Cassinians. These play a distinguished
role in Sections 6 and 7; each represents the “half-way” curve in its family (see Remark 8).

Remark 4. It is easy to explain why two curves in the confocal family pass through a general point
(x0, y0) ∈ R2. (Orthogonality will follow from Theorem 2.) Consider the line in the p, q-plane:

L(x0,y0)
: f (x0, y0) = (x2

0 + y2
0)

2 + 2x2
0 p + 2y2

0q + r = 0. (11)

Since L(x0,y0)
is a line of negative slope (for x0, y0 6= 0), and the hyperbola H has a positive

slope, there is a point of intersection on each branch. (For points on the x or y axes, the horizon-
tal/vertical lines L(x0,y0)

meetH in only one finite point, and determine just one irreducible quartic;
the other quartic is either y2z2 or x2z2.)

Remark 5. The confocal family plotted in the figure is atypical of the case r = −1 in one respect; it
belongs to the exceptional case α = 0, and consequently the foci ±1,±i happen to be concyclic (with
the harmonic cross ratio). The other values of α result in a rhombic focal set. We note that the case
r = 1 also includes a confocal family with foci ±1,±i (but its curves are two-circuited). Since the
picture is more complicated to describe in detail for r = 1, we defer this discussion to Appendix B.

5. Bicircular Quartics and Quadratic Differentials

Though the constructions of this section apply, in principle, to bicircular quartics in
general, we usually assume a standard (or at least rectilinear) position. We define the focal
quadratic differential of k(u, v),

Q{k} = Qr
α =

du2

δ(u)
=

du2

u4 − 2αu2 + r
=

du2

(u2 − b2)(u2 − r
b2 )

, (12)

a quadratic differential on Ĉ, whose horizontal/vertical trajectories are parameterized by
solutions to the ODE: ( du

dt )
2 = ±δ(u).

Since the poles of Q{k} are exactly the foci of the confocal familyHr
α, it is already plausi-

ble that such trajectories of Qr
α represent the two confocal foliations definingHr

α. Of course,
we depend on the identification of the real plane R2 = {(x, y)} with C = {u = x + iy} to
relate the curves in the two settings. To be quite precise, we make a distinction between
the confocal families H in RP2 and the corresponding orthogonal families F = F r

α in Ĉ,
which differ also in the following respect. In order for F to define a pair of foliations on the
complement of the focal set in Ĉ, the leaves of F are understood to include the real mirrors
ofH (or arcs between foci on such the circles/lines). The notion of the orthogonal family is
discussed in greater detail in Appendix B, where the case r = 1 more fully illustrates the
difference betweenH and F .

The divide between the two settings RP2 (or CP2) and Ĉ is undoubtedly reflected in
the difficulty of identifying curves in H with those in F by direct computation. For in-
stance, one may integrate the ODE for trajectories u(t) = x(t) + iy(t) of the quadratic
differential Qr

α in terms of elliptic functions, but the process of eliminating t to obtain
quartics f (x, y) (or k(u, v)) requires extensive computations involving various elliptic func-
tion identities (as in [3]). But since the ODE and the required implicit solution are both
specified by polynomials—δ(u) and k(u, v)—one may naturally seek to bypass the elliptic
functions altogether.

This is, in fact, not hard to do, with the help of quadratic differentials. For this purpose,
we first introduce an auxiliary quadratic differential Qk defined on a given real, irreducible
curve f (x, y) = k(u, v) = 0. Heuristically, Qk may be obtained via the analytic continuation
of the real arc length element ds2 = dx2 + dy2 = dudv along the curve in R2 to the complex
curve Γ ⊂ C2. Along a real arc γ ⊂ Γ ∩R2, Qk is positive, i.e., γ is horizontal.
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More formally, isotropic coordinates u = x + iy, v = x− iy on kreg extend to meromor-
phic functions on the Riemann surface K as in Section 2. The corresponding meromorphic
differentials du = (dx + idy), dv = (dx− idy) satisfy the equation dk = kudu + kvdv = 0.
Then, we may express Qk, locally, in various ways:

Qk = dudv =
dv
du

du2 = − ku

kv
du2 = − kv

ku
dv2. (13)

We call Qk the clinant quadratic differential of k, for reasons to be explained below (see
also [11,14,25] for geometric applications of Qk).

In particular, one of u or v will be used as the local coordinate near a regular point
of the curve, e.g., if v = S(u) is one of the locally defined analytic functions satisfying
k(u, S(u)) = 0, then Qk = S′(u)du2. Here, S denotes the Schwarz function, as defined by
Davis [26]. Given an analytic arc γ ⊂ C, this is the unique analytic function w = S(z),
defined in a suitable neighborhood of γ, satisfying z̄ = S(z) along γ.

The clinant (or inclination function) along γ is the complex unit S′(z) = dz̄
dz = e−2iθ ,

where θ measures the angle that the tangent to γ makes with the real axis. (This explains our
name for Qk = S′(u)du2. The word clinant was defined as such by Davis [26] but appears
to date back to Franklin [27], who explains the usage for the reciprocal, e2iθ . Franklin may
have been familiar with Darboux’s earlier use of the quantity dx+idy

dx−idy = e2iθ [28].) Now

observe that if γ(τ) = x + iy = u parameterizes a real arc of k, we may write γ′ = ρeiθ ,
and thus verify the required condition (γ′)2S′(γ) = ρ2 > 0 for γ to be a horizontal arc of
Qk = S′(u)du2.

Now to relate the trajectories of Qk and Q{k}, we require the following lemma (which
will also be used in Section 6):

Lemma 1. Let k(u, v) be a bicircular quartic (Equation (4)) and let ∆vk be its focal discriminant
(Equation (5)). Then the polynomial ( ∂k

∂v )
2 − ∆vk belongs to the ideal (k) ⊂ R[u, v]. In fact,

the following identity holds (introducing the “operator" �v)

�vk(u, v) := (
∂k
∂v

)2 − ∆vk = 4(u2 − σ2)k(u, v), (14)

where σ2 = q−p
2s is the squared singular focus of k. Interchanging the roles of u, v, the corresponding

statement holds for �uk(u, v).

Proof. Equation (14) may be verified by a straightforward computation, which we omit. But
the main consequence—that �uk and �vk belong to the ideal (k)—may be shown more sim-
ply, as follows. We note that the discriminant of a quadratic polynomial P(x) = ax2 + bx + c
is the square of its derivative at a root x0; that is, ∆P = b2 − 4ac = (2ax0 + b)2 = (P′(x0))

2.
This applies to k(u, v), which can be regarded as a quadratic polynomial in either variable,
u or v. Thus, along the curve k = 0, the corresponding partial derivatives and discriminants
are related by ∆vk(u) = b2 − 4ac = k2

v, ∆uk(v) = B2 − 4AC = k2
u.

The proof of the following theorem uses the lemma to compare the two quadratic
differentials Q{k} and Qk along the real locus of k:

Theorem 2. A circuit of a bicircular quartic k in standard position is a horizontal or vertical
trajectory of its focal quadratic differential Q{k} =

du2

δ(u) . Thus, the curves comprising the orthogonal
family of algebraic curves F r

α are exactly the trajectories of Qr
α = Q{k}.

Proof. Combining Lemma 1 with dk = kudu + kvdv = 0, we conclude that the following
separable ODE holds along k (see Remark 6):(

dv
du

)2

=

(
− ku

kv

)2

=
∆uk
∆vk

=
δ(v)
δ(u)

.
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Here, ∆uk = 4σ2δ(v) and ∆vk = 4σ2δ(u) involve the same monic polynomial δ for reasons
of symmetry. Namely, bicircular quartics in rectilinear position have the reflection sym-
metry f (x,−y) = f (x, y) = ∑ arsxry2s. In this case, k(u, v) and k(v, u) have identical, real
coefficients, and consequently so do ∆uk and ∆vk. (This symmetry is convenient, but our
argument generalizes to all bicircular quartics.)

In particular, at a real point of the curve, we have δ(v) = δ(ū) = δ(u), so the above
equation gives ( dv

du )
2 = ( |δ(u)|

δ(u) )
2. Taking the square roots, we can write this as dv

du = ±λ
δ(u) ,

with λ = |δ(u)| > 0. Since a real arc of k is an arc of its clinant quadratic differential
Qk =

dv
du du2, it follows that it is also a horizontal or vertical arc of Q{k} = du2/δ(u).

Next, we use this conclusion (the first claim) to prove its converse. Namely, for given
r and α, we wish to show that all horizontal and vertical trajectories of the quadratic
differential Q = Qr

α correspond to curves in the orthogonal family F = F r
α.

So let u0 = x0 + iy0 ∈ C be any point other than a pole of Q, and let γ± be the
horizontal and vertical trajectories of Q through u0. As discussed in Remark 4, there are
also two distinct curves k± ∈ F containing the point u0. For most u0, these are both
irreducible bicircular quartics f±(x, y) = k±(u, v). By the first claim, each agrees with one
or the other trajectory γ±. But k± cannot both agree with the same trajectory; so, γ+ and
γ− must each correspond to one of the curves k± ∈ F . The exceptional trajectories of Qα

are easily identified with (arcs of) a line/circle of reflection.

Not only are all (horizontal/vertical) trajectories of Qα = du2

δ(u) algebraic but Qα will be
seen to be algebraically integrable: the (elliptic) trajectories of Qα may be produced directly
from the elliptic curve w2 = δ(u) via explicit birational transformation (Theorem 3).

Remark 6. Separable ODEs of the form ( dy
dx )

2 = f (y)
f (x) , i.e., dy√

f (y)
= ± dx√

f (x)
, feature prominently

in the classical literature. This is especially so in the case of quartics f (x) = ax4 + bx3 + cx2 +
dx + e, where the ODE is intimately related to the addition theorem for elliptic integrals [1,29,30].
See also [31], Ch. XIV, which begins with a method of algebraic integration of Lagrange. (This is not
exactly algebraic integrability in the sense of Theorem 3.)

6. Edwards Normal Form and Algebraic Integrability

In 2007, Harold Edwards [29] presented an alternative to the elliptic curve normal
forms associated with Jacobi or Weierstrass elliptic functions. Any elliptic curve can be
represented as a quartic in the Edwards normal form (ENF): a2(x2y2 + 1) = x2 + y2, a5 6= a.
One advantage of this normal form is that the addition p + p′ = p′′ on the elliptic curve
may be expressed in a very symmetrical form: x′′ = 1

a
xy′+yx′

1+xyx′y′ , y′′ = 1
a

yy′−xx′
1−xyx′y′ (see

Theorem 3.1 in [29]).
Edwards notes the close resemblance to the original Euler–Gauss addition law for the

special elliptic curve x2 + y2 + x2y2 = 1, which famously generalized the addition law on
the circle x2 + y2 = 1—the addition formulas for x = sin t and y = cos t. He also implicitly
raises a historical question: “I have not been able to find [this addition law] in the literature.
If it is not new, it is certainly not as well known as it deserves to be”. We will not attempt to
address this historical question, but we believe that the best answer is to be found in the
investigations of bicircular quartics and their connections to elliptic functions and integrals
(see Appendix D for references).

Without going too far afield here, we now proceed to interpret ENF quartics (in the
real case) as Cassinians, then relate the Edwards theory more generally to the confocal
families of bicircular quartics and their focal quadratic differentials. In fact, we will regard
the confocal families as a kind of generalized ENF—obtained by “variation of Cassinians”
(or in one case Cayley Cassinians) by a one-parameter family of birational equivalences.
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To begin with the ovals of Cassini, we consider Equation (7) in the special case
q = −p = σ2 (so α = 1

2 (q +
r
q ) =

1
2 (σ

2 + r
σ2 )):

f := (x2 + y2)2 − 2σ2(x2 − y2) + r; k := u2v2 − σ2(u2 + v2) + r. (15)

Observe that k(u, v) is exactly ENF after substitutions x → u, y→ v, a→ 1/σ—provided
r = 1; here, we allow r = −1 as well. (Note: To put Cassinians with r = −1 exactly into ENF
has certain advantages, but this would ultimately have a modified standard position—with
awkward consequences for our discussion of the non-concyclic case, mirrors, Siebeck’s
result, etc.)

To develop his normal form, Edwards makes essential use of an auxiliary quartic
curve which is birationally equivalent to ENF. In our notation for the Cassinian k(u, v),
the equivalent curve is h(u, w) := w2− (σ2− u2)(r− σ2u2)—roughly, the Legendre normal

form. The required birational equivalence has the simple form (u, v) E←→ (u, w), and is
given by: w := v(u2 − σ2). In fact, substitution into h(u, w) results in k(u, v) (modulo an
extra factor (u2 − σ2), which can be neglected). Likewise, v = w/(u2 − σ2) turns k(u, v)
into h(u, w).

Where does this birational equivalence come from, and can it be generalized? In view
of Lemma 1, the fact that w = v(u2 − σ2) = 1

2
∂k
∂v is the key. This (and normalization by σ)

yields the following generalization of the above equivalence (u, v) E←→ (u, w) to bicircular
quartics k(u, v) in standard position (Equation (7)):

2σw :=
∂k
∂v

= 2(u2 − σ2)v + (p + q)u; v =
2σw− (p + q)u

2(u2 − σ2)
, (16)

where σ2 = q−p
2 . Writing Lemma 1 as ( ∂k

∂v )
2 − ∆vk = ( ∂k

∂v )
2 − 4σ2δ(u) = 4(u2 − σ2)k,

we find that 4σ2(w2 − δ(u)) = 4(u2 − σ2)k, so the bicircular quartic k has the equivalent
normal form h(u, w) := w2 − δ(u):

h : w2 = δ(u) = (u2 − b2)(u2 − r
b2 ) = u4 − 2αu2 + r. (17)

The resulting “new curve” h is now independent of p, q—the reason we normalized via σ.
For r = ±1, let Ep,q denote the parameterized Edwards transformation defined by

Equation (16). Trajectories of the quadratic differential Qr
α = du2

δ(u) satisfy the ODE

( du
dt )

2 = δ(u), to which we associate the elliptic curve h : w2 = δ(u). By applying Ep,q
to the latter, for points (p, q) on the hyperbola Hα, all but finitely many trajectories of
Qr

α are obtained (the exceptions being linear or circular arcs). In fact, for a given initial
condition u0 = x0 + iy0, the pair of trajectories through u0 are thus explicitly produced (the
required p, q are given in terms of u0 by the quadratic formula). This is what we mean by
the following:

Theorem 3. The ODE ( du
dt )

2 = δ(u) is algebraically integrable.

7. Birational Equivalence of Confocal Curves

In this section, we consider how two curves in a confocal family are related to each
other. Namely, if k and k′ are two such bicircular quartics, we can use Ep,q and Ep′ ,q′ to relate
both to h, and hence to each other: k(u, v)↔ h(u, w)↔ k′(u, v). To be clear, the resulting
equivalence k ' k′ is a complex birational equivalence of real curves.

More explicitly, if k and k′ are represented by two points (p, q) and (p′, q′) on Hα,
the two formulas of Equation (16) may be combined to prove the following.
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Theorem 4. If k and k′ are confocal bicircular quartics in standard position, they are related by the
following birational equivalence:

u2 − σ′2

σ′
v′ +

p′ + q′

2σ′
u =

u2 − σ2

σ
v +

p + q
2σ

u (18)

u2 − σ′2

σ′2
k′(u, v′) =

u2 − σ2

σ2 k(u, v). (19)

Proof. With σ′2 = q′−p′
2 , Equation (18) is obtained straightforwardly from Equation (16) as

described above. Solving for

v′ =
σ′
σ (2(u

2 − σ2)v + (p + q)u)− (p′ + q′)u

2(u2 − σ′2)

and inserting this expression into k′(u, v′) leads to the equation

u2 − σ′2

σ′2
k′(u, v′)− 2α′u2 =

u2 − σ2

σ2 k(u, v)− 2αu2.

Under the assumption α = α′ := p′q′−r
p′−q′ , this gives Equation (19), expressing the

equivalence of the two curves k′(u, v) and k(u, v).

Remark 7. As the theorem illustrates, birational transformations are to binodal quartics as projec-
tive transformations are to nonsingular cubics. Namely, if two of the latter plane curves c, c′ are
equivalent to the elliptic curves (j(c) = j(c′)), they are in fact projectively equivalent (though not
necessarily real projectively equivalent, in the case of real curves [32]). But projective transforma-
tions do not suffice for binodal quartics, e.g., if k, k′ are confocal bicircular quartics, no projective
transformation preserves the shared isotropic tangents to k, k′ while appropriately moving the
isotropic tangents at circular points. The fact that birational transformations fill the gap is not
surprising, given that the two classes of curves are themselves related by inversive equivalence
(Appendix E), but this is quite awkward to exploit directly.

Equations (18) and (19) may also be used, e.g., to transfer the group structure from Cas-
sians (ENF) to bicircular quartics in standard position, or to show that such confocal k(u, v)
and k′(u, v) are rationally equivalent, say, when p, q, p′, q′ ∈ Q and ( σ′

σ )
2 = q′−p′

q−p = m2

n2 ,
for integers m, n.

The simplest case of the latter arises from reflection symmetry of the hyperbola Hr
α

across the anti-diagonal: (p, q)↔ (−q,−p). In this case, σ′
σ = 1, and Equation (18) reduces

simply to v′ = v + (p+q)u
u2−σ2 . Introducing self-evident notation, Equation (19) becomes

k(u, v; p, q) = k(u, v +
(p + q)u
u2 − σ2 ;−q,−p) (20)

The involution k(u, v; p, q) R←→ k(u, v;−q,−p) fixes Cassinians, and pairs the remain-
ing curves in a confocal family with the same singular foci ±σ. In fact,R corresponds to
the Cassinian reflection as explained in the following remark.

Remark 8. For an analytic arc γ ⊂ C = {u = x + iy} with Schwarz function S(u), the Schwarz
reflection in γ is the antiholomorphic involutionRγ(u) := S(u) fixing γ [26], e.g., the Schwarz
function of the circle |u| = ρ, is S(u) = ρ2/u andRγ(u) := ρ2/ū gives circle inversion.

Turning now to Cassinians—say, one of those in Figure 2—such a curve γ determines a
maximal ring domain [33]: D is foliated by closed trajectories of Q = du2

δ(u) , including γ, and is
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maximal with respect to this property. In fact, γ is the core curve of D—it is the unique curve fixed
by an antiholomorphic involution of D.

To check this, we solve for v in Equation (15), obtaining the two-valued function

S(u) =
√

σ2u2−r
u2−σ2 . The branch points of S(u) are the foci ±σ,

√
r/σ. These, together with

0, ∞ lie on the boundary of D, and they correspond under reflectionRγ according to: ±σ
Rγ←→ ∞,

±
√

r/σ
Rγ←→ 0. Evidently, Schwarz reflection gives antiholomorphic involution Rγ : D → D

fixing γ. (In case r = 1, similar comments apply to the left and right halves of Figure A1.)
Now it turns out that R, as defined after Equation (20), agrees with Rγ in the sense that it

swaps the same pairs of curves foliating D. Yet this is rather curious;Rγ is a fixed antiholomorphic
involution on D, while R is realized by complex birational transformations defining Riemann
surface equivalences for each of the paired real curves.

In view of the pairingR of confocal curves with shared singular foci, it is reasonable
to regard the squared singular focus σ2 = q−p

2 as the “geometric parameter” for a confocal
family. (Of course, p or q may be used to rationally parameterizeHr

α, but for most purposes,
there does not appear to be a great advantage to doing so.)

Thus, the global geometric picture may be described roughly as follows. Returning
to the projective space of bicircular quartics in rectilinear position, P3 = {(p : q : r : s)},
the complement of the discriminant locus (∆k 6= 0) is foliated by confocal families; the foci
determine the confocal family, while the singular foci fix the position (essentially) on a
given confocal family.

8. Conclusions

We considered real bicircular quartics in two different contexts: as algebraic curves in
CP2, and as members of confocal families of curves in Ĉ. The relationship between these
two points of view was established by the use of quadratic differentials Qk defined on
each elliptic curve k in a confocal family {k}, and a quadratic differential Q{k} defined on
Ĉ. A moduli space of bicircular quartics (w.r.t. inversive equivalence) was presented as
a stratified real projective space P3, whose points in the top-dimensional strata represent
elliptic curves with four ordinary foci and two singular foci. A generic quartic k was
essentially specified by its focal discriminant ∆vk, a quartic polynomial in a variable u
whose roots are the foci of k, and a parameter σ2, the squared singular focus, which
parametrized the family of confocal quartics. We showed explicitly that curves in each
family are all birationally equivalent via a parameterized Edwards transformation.
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Appendix A. The Space of Bicircular Quartics P3 = ∪Pk
j

Here, we give further details regarding the stratification P3 = ∪Pk
j defined by the

elliptic discriminant ∆K, and prove Proposition 2.
First, for K as in Equation (3), we read off the tangents to K at I from the lowest-order

terms in the affine view v = 1:

K(u, 1, w) = su2 +
p− q

2
w2 + (p + q)uw2 +

p− q
2

u2w2 + rw4.
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Unless s = 0 or p = q, I is indeed a node, with distinct tangents

L+L− = su2 +
p− q

2
w2 = s(u− σw)(u + σw); σ =

√
q− p

2s
.

Here,±σ are the two singular foci of K. These are usually not foci (as noted in Section 2);
exceptions will be discussed shortly. For future reference, we observe that ±σ are the roots
of A(u) = (su2 + p−q

2 ), the leading coefficient of k(u, v) (Equation (4))—so k(±σ, v) has at
most one root.

In particular, when ∆K 6= 0, K has nodes at I and J. In fact, there are no other
singularities. It is useful to verify this directly by showing that the system Fx = Fy = Fz = 0
has no solution with z = 1. We scale coefficients so that s = 1:

Fx = 4x(x2 + y2 + p), Fy = 4y(x2 + y2 + q), Fz = 4(px2 + qy2 + r)

For these all to vanish, either: xy 6= 0 ⇒ p = q; x = y = 0 ⇒ r = 0; x = 0, y 6= 0 ⇒
r = q2; or y = 0, x 6= 0 ⇒ r = p2. In each case, a factor of ∆K vanishes. To conclude,
∆K 6= 0⇒ K is an elliptic curve.

Conversely, by considering the factors of ∆K, we find that ∆K = 0 implies that K is non-
elliptic. In particular, the 2-dimensional strata P2

j —defined by exactly one distinct factor
of ∆K vanishing—consist of rational or reducible curves satisfying one of the following
descriptions (here, we normalize by s = 1, except when s = 0):

• r = 0 Trinodal: F = (x2 + y2)2 + 2(px2 + qy2): nodes I, J, O = (0, 0).
• s = 0 Conics: F = F2z2 = (2px2 + 2qy2 + rz2)z2.
• p = q Concentric circles: K = C1C2 = u2v2 + 2puv + r, center O.

• p2 = r Circle pairs: K = C+C−; C± := ((u± σ)(v∓ σ) + p+q
2 ).

• q2 = r Circle pairs: K = C+C−; C± := ((u± σ)(v± σ) + p+q
2 ).

For the last two, the “centers” ±σ = ±
√

q−p
2 (singular foci) represent points on either

the x-axis or the y-axis as symmetry requires. Of the five non-elliptic cases, we refer to the
last three as circular, and to the first two as rational-non-circular.

Curves in the 1 and 0-strata (two or three factors vanish) play a special role. In case
r = 1, F = (x2 + y2 ± 1)2, x2z2, y2z2 correspond to the four mirrors of reflection symmetry
(Appendix E); in case r = −1, F = (x2 + y2 ± i)2, x2z2, y2z2 are the four mirrors (however,
the first two require the imaginary coefficients p = q = ±i).

Before turning to the proof of Proposition A1, we make a few additional observations.
First, a curve K which is a product of circles/lines has no foci. Second, u0 = ∞ is never
a focus of any K ∈ P3 (π−1(∞) ⊂ K consists of the “two points at J”, when J is a node,
and the two ideal points of a conic otherwise). A finite node P0 = (u0, v0) never gives a
focus u0; in particular, u0 = 0 in the trinodal case is not a focus. In fact, u0 = 0 is never a
focus of any K ∈ P3. The remaining issues addressed in the proof of the following result
have mostly to do with singular foci and Cassinians.

Proposition A1. Let k be a quartic in rectilinear position (Equation (4)), with focal discriminant
∆vk (Equation (5)) and elliptic discriminant ∆k (Equation (6)):

(a) u0 ∈ C is a focus of k if and only if it is a simple root of ∆vk;
(b) k is an elliptic curve⇔ ∆k 6= 0⇔ |foci(K)| = 4;
(c) k is a rational non-circular⇔ |foci(K)| = 2;
(d) k is circular or degenerate⇔ |foci(K)| = 0.

Proof. We already noted the first equivalence in (b). The second follows from Equation (1),
and likewise for (c) and (d). For (a), there are two possibilities to consider: B(u0) =
(p + q)u0 6= 0, and B(u0) = 0.
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Case B(u0) 6= 0 First, assume u0 is a focus. Then, A(u0) 6= 0; otherwise, k = Bv + C has a
simple root v0 = −C/B, so u0 cannot be a branch point of π. Thus, k is in fact quadratic in
v. Since k cannot have two distinct roots, it must have a double root, so (∆vk)(u0) = 0.

To see that u0 must be a simple root of ∆vk, we consider the different possibilities for K.
All roots are simple in the elliptic case ∆K 6= 0. Likewise, in the conic case s = 0, both roots
are simple (see Equation (5)). For the trinodal case r = 0, the only non-simple root is u = 0
(again, see Equation (5)), but B = (p + q)u0 6= 0. Finally, the circular cases have no foci so
need not be considered.

Conversely, let u0 be a simple root of ∆vk. Then, k(u0, v) has a double root v0. Consider
the corresponding finite point P0 = (u0, v0). We know that P0 cannot be the node P0 = O of
a trinodal curve, which yields a double root of ∆vk. It cannot be a double point for one of the
circular cases; in these cases, ∆vk is a “square” (e.g., when r = p2, ∆vk = 2(q− p)(p + u2)2).
The only possibility is that P0 is a regular point of K, but a ramification point of isotropic
projection π—that is, a point of isotropic tangency. So u0 is a focus.

Case B(u0) = 0 We already dealt with u0 = 0 (which only arises in cases r = 0 or p = q),
so we need only consider the case p = −q. When s = 0, this is just the case of a rectangular
hyperbola, and there is nothing new to consider.

When r = 0, K is a Bernoulli lemniscate. In this case, ∆vk = 4qu2(u2 − q) has simple
roots u0 = ±√q. Note that A(u0) = 0, i.e., u0 = ±σ is a singular focus. In fact, A = B = 0,
C = pu2

0 6= 0, and k(u0, v) = C is a non-zero constant. (Geometrically, the isotropic line
u = u0w meets K four times at I, a biflecnode, and u0 is a triple focus.) Thus, u0 is a branch
point of π, that is, a focus of K.

Finally, when p = −q and ∆K 6= 0, K is a Cassinian. In this case, there are two triple
foci and two ordinary foci—all of which are foci and simple roots of ∆vk. The two types of
foci correspond to the following two subcases: (i) A = B = 0, C 6= 0, which gives rise to
the singular foci u0 = ±√q (as for the lemniscate); (ii) A 6= 0, B = C = 0, which gives the
ordinary foci satisfying 0 = C = pu2 + r, i.e., u0 = ±

√
−r/p.

Appendix B. Concyclic Confocal Families

Figure A1 shows the orthogonal pair of foliations Hr
α in case r = 1 (for the partic-

ular choice α = 1 +
√

2). The mirrors are the x and y axes and the real/imaginary circles
x2 + y2 = ±1 (Appendix E). Each quartic is two-circuited; in one foliation (blue), the two
circuits of a curve are swapped by reflection in the y-axis; in the other foliation (green),
the two circuits are swapped by inversion in x2 + y2 = 1.

Figure A1. Confocal family of type r = 1 (α = 1 +
√

2); the foci are the four red points. Each
irreducible quartic inH1

α is two-circuited—e.g., see bold blue/green curves (the bold blue one is the
unique Cassinian inH1

α).
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In this example, all foci are on the x-axis. But this is not the only possibility for a
confocal family with r = 1. To determine all subcases, consider the normalized focal
discriminant δ = δr

α (Equation (8)) and corresponding “normalized” elliptic discriminant:

δk :=
1

256
∆δ =

r
16

(b2 − r
b2 )

4 = r(α2 − r)2 (A1)

The curve k is elliptic unless δk = 0, i.e., r = 0 or r = α2.
Thus, in the present case r = 1, k is elliptic for α = pq−1

p−q 6= ±1; that is, un-

less k belongs to one of the circular cases p2 = 1 or q2 = 1. In fact, the circular locus
C : (p − q)(p2 − 1)(q2 − 1) = 0 (where α = ±1 or ∞) divides the p, q-plane into the
following three reduced elliptic strata P̂2

j indicated in Figure A2:

P̂2
1 : α > 1 (blue); P̂2

2 : −1 < α < 1 (yellow); P̂2
3 : α < −1 (green).

V

H

-6 -4 -2 0 2

-4

-2

0

2

4

Figure A2. The p, q-plane R1 is foliated by hyperbolas: Hα represents a confocal family with concyclic
foci on the x-axis (blue), y-axis (green), or unit circle (orange). H/V denote (blue) regions whose
points represent horizontal/vertical trajectories. Dashed curves are explained in Remark A2.

We note that the three cases correspond to the four roots ±b,±1/b of δ1
α being real (P̂2

1),
imaginary (P̂2

3), or of unit modulus (P̂2
2)—see Figure A3, left. In particular, the foci are always

concyclic; in fact, the three subcases are all inversively equivalent.

Remark A1. We expand on the last comment. The two subcases α > 1 and α < −1 are related
by π

2 -rotation of the x, y-plane. The subcase −1 < α < 1 is related to the first via the Cayley map
C(u) = u−i

u+i (or the corresponding transformation on the x, y-plane). We note that C(u) is an order
three map which cyclically permutes the real mirrors in case r = 1.

Although this relationship implies that there is no essential difference from the other subcases,
our descriptions have to be modified somewhat. For instance, note that the anti-diagonal q = −p
does not intersect any of the corresponding hyperbolas—shown in orange in Figure A2. In other
words, there are no Cassinians in such S1-concyclic confocal families. There are, however, curves
which play essentially the same role. These curves—which are represented by points along the line
q = p + 2 (i.e., σ2 = 1)—are obtained from Cassinians via the Cayley map, so we call these curves
Cayley Cassinians.
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Figure A3. (Left): The confocal familyHr
α = H1

0; green/blue curves are horizontal/vertical trajecto-
ries of Qr

α. (Right): Confocal family of type r = 0. The blue curves are Booth lemniscates; the bold one
is the Bernoulli lemniscate (the unique Cassinian in the family). Green curves are S1-inverted ellipses.

Returning to the subcase α > 1, the anti-diagonal meets both branches of each hy-
perbolaHα—yet only one Cassinian appears in Figure A1. The apparent contradiction is
resolved by the following remark, which explains one of the main differences between the
two cases r = ±1, and between confocal vs. orthogonal families.

Remark A2. Though a confocal family is understood here to consist of real curves, a given curve in
the family may have an empty real locus in case r = 1. Note that f (x, y) = (x2 + y2)2 + 2(px2 +
qy2) + 1 ≥ 1 when p, q ≥ 0. In all other cases, f has a minimum either f (±√−p, 0) = 1− p2

or f (0,±√−q, 0) = 1− q2. Thus, f has no real points whenever p, q ≥ −1. In Figure A2, solid
portions of hyperbolas indicate curves in the foliation on Ĉ. In the blue region (where α > 1),
every point on an upper branch represents a curve in the orthogonal family F 1

α (in fact, a vertical
trajectory of Q1

α). On the other hand, the dashed portions of certain hyperbola branches indicate
“empty” curves, e.g., on the lower branch of a hyperbola in the blue region (where α > 1), only the
points up to© = (−1,−1) (indicated by a white dot) represent (horizontal) trajectories in the
foliation F 1

α . Finally,© itself represents the “squared circle” (x2 + y2 − 1)2 in P3, which has no
foci, and does not belong to the confocal familyH1

α, as strictly defined. But as Figure A1 illustrates,
the unit circle (like all real mirrors) clearly belongs to the orthogonal family F 1

α .

For convenient reference, we list the types of confocal families (and their figures):

Type r = 1 (Figure A1; Figure A3, left)) The four roots ±b,±1/b of δ1
α are always concyclic.

In each subcase P̂2
1, P̂2

2, P̂2
3, K is an elliptic curve forming two smooth closed curves in R2. In

fact, the three subcases are inversively equivalent.

Type r = −1 (Figure 2) For b > 0, α = 1
2 (b

2 − 1
b2 ) takes all real values. The four roots

±b,±i/b of δr
α are rhombic (non-concyclic, except when b = 1, i.e., α = 0). The bicircular

quartic k is an elliptic curve whose real locus consists of one smooth closed curve in R2.

Type r = 0 (Figure A3, right) k is a trinodal quartic with a (real or imaginary) pair of foci
u0 = ±b. If pq < 0, the double point at the origin is a node and k is a Booth lemniscate.
When pq > 0, it is an acnode, and the rest of k appears as an oval in R2. The case r = 0 may
be regarded as the transitional case between r = 1 and r = −1.

Type s = 0 k is a conic (K = w4k(u/w, v/w) ∈ P3) with a (real or imaginary) pair of foci;
the ellipses (pq > 0) and hyperbolas (pq < 0) are related to the curves of type r = 0 by
inversion in the unit circle.
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Appendix C. Remarks on the Classical Notion of Focus

Aside from providing geometrical intuition, our foray into the classical heuristics of
foci is meant to point out how confusions arise, and how they are resolved by Definition 1.

Focal properties of conics have been known since antiquity, but it was Kepler who
introduced the Latin word focus. Poncelet interpreted a conic’s foci as points of intersection
of the isotropic tangent lines through I with those through J. Plücker then used the latter
to define (real and complex) foci for curves of higher degree (see [16], p.160).

Here, we are mostly concerned with real foci (R-foci), a term which distinguishes such
real points P ∈ R2 from the general C-foci of Plücker’s definition, and from the foci u0 ∈ Ĉ
of Definition 1.

In the case of an ellipse or hyperbola, we note that there are two isotropic tangents from
each point I, J. The tangents from I are paired with those from J via complex conjugation
(as is the case for any real curve); consequently, two of the four C-foci are real foci.

More generally, the number m of tangent lines to a curve F from a general point P
is the class of F—which can be shown to be independent of P, and is in fact the degree
of the dual curve F∗. For a curve with δ nodes and κ cusps (and no more complicated
singularities), one of Plücker’s equations is m(K) = n(n− 1)− 2δ− 3κ.

Letting P = I, one accordingly expects m2 C-foci and m R-foci. Indeed, this is usually
the case for non-circular curves. Thus, for example, an ellipse or hyperbola, which has class
m = 2, has two real foci. (A parabola would appear to be an exception, but according to
Definition 1, it has a second focus at u0 = ∞.)

Now consider a circle that has a regular point at I. If P is a nearby point, there are
two tangents from P since m = 2. If P is allowed to approach I, these will merge into
one tangent at I (which may be viewed as contributing two to the class m). This would
presumably explain why the circle has just one real focus, namely, its center.

But a circle’s center is a singular focus—the classical term for a focus resulting from a tan-
gent at I—often viewed as quite different from an ordinary (or simple) real focus. (According
to Definition 1, a circle has no foci; on the unit circle uv = 1, e.g., π is evidently 1-1.)

Next, consider a bicircular quartic with a pair of nodes at the circular points. With δ = 2,
κ = 0, Plücker’s equation gives m = 8. Of course, such curves do not have so many real foci.
In fact, there can only be six distinct tangents through I, given that each of the two tangents
at the node I counts (at least) twice. Thus, if we discard the resulting pair of singular foci,
we would generally expect to obtain four real foci, as in Proposition 1.

But simply discarding the singular foci is not quite correct. This can be seen by con-
sidering the special bicircular quartics known as Cassinians (or ovals of Cassini, after the
astronomer who proposed such curves as candidates for planetary orbits [1]). Cassinians
belong again to the binodal case (δ = 2 or 3), but happen to be biflecnodal [18,34]; that is,
each of the two tangents at I meets its branch three times. Such a tangent also meets the
other branch once, thus accounting for all four intersections of the tangent with the curve.
Whereas the tangent to a circle at I results in a double focus (classical term), the two singular
foci of Cassinians are triple foci. Further, in view of the fact that a Cassinian has class m = 8,
such a curve accordingly has only two ordinary real foci. (A similar anomaly arises for
Cartesians, which are bicircular quartics with κ = 2; these have triple foci by virtue of their
cusps at I, along with three ordinary foci.)

Yet Cassinians are plainly seen to occur in confocal families of bicircular quartics
sharing four foci. Thus, in contrast with Proposition 1, the classical enumeration of foci
would appear to be full of caveats: A bicircular quartic K has four foci, provided the two singular
foci are discarded—except when K is a Cassinian (or Cartesian), in which case the singular foci
should not be discarded!

In other words, triple foci count, even though double foci do not. But from the standpoint
of Definition 1, this is easily explained: What ties the triple and ordinary foci of Cassinians
together—and sets both apart from the double foci—is that they are branch points of
isotropic projection. (In fact, they are both simple branch points.) Likewise, quadruple foci,
etc., are foci (though such higher order branch points of πI do not occur in our examples).
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Appendix D. Siebeck’s (Other) Theorem

Note that the identity of Siebeck appears to be a bit uncertain. He is likely the author
of the Ph.D. thesis listed as F. H. Siebeck, Universität Breslau 1845, “On conic surfaces for
any circumscribed surface”. In the important reference [35], the author of [36] is listed
as J. Siebeck—mistakenly, we believe. Regardless, Siebeck seems to be mostly known for
Siebeck’s theorem [36], which characterizes the zeros of f (z) = ∑3

1
mj

z−zj
as the foci of a related

conic (see [37] for the hyperbolic case). But his result on quartics and elliptic functions also
deserves to be well known—hence, this brief appendix on his paper [3].

Figure 1 itself delivers on the promise of an earlier paper [38], “On the graphical repre-
sentation of imaginary functions”. For this reason, and because of the satisfying parallel to
sine and confocal conics, it is the kind of thing one might expect to see browsing textbooks
“at random”. But so far, we have found just [39], which shows Siebeck’s first graphic.

In fact, it is hard to tell from the literature how much attention Siebeck’s paper received
at the time. What does seem clear is that Siebeck’s work should not be viewed as an isolated
contribution, and the general theme (B) would have seemed much more mainstream over
one hundred years ago than it is today.

Darboux studied the confocal systems of Cartesians and cycliques (or bicircular quar-
tics) [28,40–44], in the context of the theory of projective algebraic plane curves, triply
orthogonal systems of surfaces and spherical conics. (Note: though the connection between
bicircular quartics and spherical conics was made in Siebeck’s time, the intrinsic hyperbolic
setting for conics seems to have received much less attention—see, however, [4,45–47].)
Darboux and others investigating such topics were building on the geometric contributions
of Poncelet, Plücker [17], Chasles [48], and Kummer [49], to name a few. Over several
decades, a number of authors [27,50–57] also explored the intimate connections between
such curves and parallel developments in complex function theory—the Jacobi and Weier-
strass elliptic functions, their double periodicity and addition theorems. (See [58] for
historical background and many additional references.)

Returning to the Siebeck paper itself, we note that direct verifications of the curve
parameterizations (along the lines discussed in Section 1) involve elliptic function identities;
the computations are much more complicated than in the case of Euclidean conics. In
the course of developing a manageable approach to such computations, it seems that
Siebeck also discovered several of the main properties of such curves. He did so prior
to the closely related work of other authors—e.g., Darboux (on cycliques) and Casey (on
bicircular quartics)—and without the benefit of somewhat more systematic treatments of
foci, including his own [36].

Although Plücker’s general notion of foci was well established by 1860, Siebeck’s
provisional treatment of foci for the curves in question probably reflected the state of
understanding at the time. Siebeck considers three different features of his confocal families
to establish the connection with accepted notions of foci in projective geometry. Namely, he
finds analogues of the string and reflection properties of conics, and also the orthogonal pair
of foliations with singularities at the presumed foci.

Although the first paper [38] suggests that Siebeck’s starting point was the param-
eterization by elliptic functions sn z = sn(z, k) and cn z = cn(z, k), he begins [3] with an
analogue of the string property to define the class of curves as follows. Fix a pair of points
A, B, and let a general point P on a curve satisfy an equation of the form

mS2 + nD2 = 4a2, (A2)

where S = AP + PB and D = AP− PB denote the sum and difference of distances from P
to A and B, and m and n are real numbers.

By purely algebraic means, Siebeck discovers the underlying geometric symmetries
of Equation (A2) to show that there are actually eight special points with respect to which
similar equations for the same curves may be written down. (Thus, he locates half of the
sixteen complex foci of his curve families.) He then determines that exactly four of the latter
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points are real, and finds two qualitatively distinct types of such curve families, depending
on the pattern of the quadruple of points. Ultimately, the two cases turn out to correspond
to the ramification points of the elliptic functions sn z and cn z.

Figure 1 illustrates the main qualitative difference between the orthogonal systems
parameterized by sn z and cn z. In the case of sn z (upper curves in the figure), the four
foci A, B, A′, B′ are concyclic (in fact, collinear). For the elliptic cosine cn z (shown on the
lower left), the foci are non-concyclic (and lie symmetrically on an orthogonal pair of axes).
Finally, there is an intermediate case (lower right), in which the elliptic function becomes
elementary as a pair of foci in either of the previous two cases collide.

Next, Siebeck shows that the family of curves breaks up into two orthogonal sub-
families, concluding: “The points A, B, A′, B′ are therefore foci in the usual sense”. He
does not elaborate on “the usual sense”, but it seems likely that he was familiar with
Kummer’s theorem.

The striking heuristic argument of Kummer, based on Plücker’s definition of foci,
goes as follows. Assume a family of curves f (x, y; a) such that exactly two such curves
f (x, y, a±) meet orthogonally at a given general point (x0, y0). The latter condition
seems evident in Figure 1, and is exactly what Siebeck verifies algebraically (seem-
ingly for real planar points (x0, y0)). The orthogonality condition may be written
fx(x, y; a+) fx(x, y; a−) + fy(x, y; a+) fy(x, y; a−) = 0. Kummer apparently assumes analytic
dependence on a, so the latter equation holds also at complex points—which must therefore
include the “invisible" points of intersection of arbitrarily nearby curves in the planar
foliations by f (x, y; a). Therefore, in the limit where a pair of such curves coincide, a± = a
and the earlier equation becomes fx(x, y; a)2 + fy(x, y; a)2 = 0. This may be thought of as
the condition of “self-orthogonality” of the vector (v1, v2) = ( fx(x, y; a), fy(x, y; a)) with
respect to the complex-linear extension of the Euclidean metric on the plane. In other words,
(v1, v2) is an isotropic (or null) vector, i.e., it has an imaginary slope v2/v1 = ±i. This occurs
because the family f (x, y, a±) has an envelope belonging to a set of isotropic lines. These are
in fact isotropic tangents to each curve in the family f (x, y, a), which is therefore confocal.

The third focal property which Siebeck establishes for f (x, y; a) is a generalization
of the focal property of conics. Given a point P on one of the curves f (x, y; a), let θ be its
angular coordinate, and let θ1, . . . , θ4 be the angular coordinates formed by the vectors from
each of the four foci to P. Examining each of the two types of systems f (x, y, a), Siebeck
verifies that in both cases, the following relationship holds among the five angles:

tan(θ1 + θ2 + θ3 + θ4) = tan(2θ) (A3)

In other words, up to the addition of π
2 , the equation θ = 1

2 (θ1 + θ2 + θ3 + θ4) holds.
Further, Siebeck argues, as two of the four foci tend to infinity, that f tends to a conic,
and the latter equation becomes θ = 1

2 (θ1 + θ2)—which is a way of expressing the familiar
reflection property of the ellipse.

We remark that the analogy to the classical reflection property becomes much closer
when Siebeck’s quartic curves are interpreted as non-Euclidean conics [4,59]. We note also
that Equation (A3) can be immediately read off from the quadratic differential Q = du2

δ(u)
defining the family of curves as trajectories (Section 5).

Appendix E. Circles of Inversion for Circular Cubics

In this appendix, we prove Theorem 1 on the existence of four orthogonal mirrors.
A mirror C is given by an equation:

C(x, y) = c0(x2 + y2)− 2c1x− 2c2y + c3. (A4)

For c0 6= 0, we may consider the center c and squared radius κ,

c = (
c1

c0
,

c2

c0
), κ = ρ2 :=

c2
1 + c2

2 − c0c3

c2
0

. (A5)
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If the coefficients ci are real, then C may be real (real center and real radius), or imaginary
(real center and imaginary radius). Otherwise, C is complex, in which case there is a complex
conjugate mirror C̄. Point circles κ = 0 are excluded.

For a mirror with a center at the origin and squared radius κ, inversion is given by
ικ(x, y) = ( κx

x2+y2 , κy
x2+y2 )—essentially, the quadratic transformation (x : y : z) 7→ (κxz : κyz :

(x − iy)(x + iy)) in CP2. For c 6= (0, 0), inversion is obtained by conjugating such ικ by
translation. The meaning of orthogonal for non-real mirrors is discussed below.

We first show that a bicircular quartic can be put in rectilinear position; for this, it suf-
fices to find an orthogonal pair of real circles of inversion since these become perpendicular
axes after inversion about one of the two finite points of intersection. Further, since the
inverse of a bicircular quartic with respect to a general point on the curve is a circular cubic,
the problem reduces to finding such a pair of circles for a given circular cubic. We now
describe the elementary construction for this purpose, outlined in [19]; see Figure A4.

q
r

s

Q

S

Figure A4. A one-circuited circular cubic and its two real circles of inversion Q, S (centers q, s); real
foci ◦ (two on each circle); asymptote; collinear points qrs.

Let f (x, y) be a circular cubic, assumed to be real and nonsingular. We may also
assume that the unique real ideal point p is not a flex (which will be the case, e.g., if a
bicircular quartic is inverted about a generic point). By rotation, we may assume that
f has cubic term x(x2 + y2), so p = (0 : 1 : 0). There are four tangents to f from p
(aside from the tangent at p itself), namely, the vertical lines x = xj, where xj ∈ C is
one of the four roots of the discriminant ∆y f (x, y). ( f being of class six, four tangents
from p, was expected.) When the point of tangency is translated to the origin, the cubic
has the form f = x(x2 + y2) + ax2 + 2hxy + by2 + κx. Then, one easily verifies that f is
symmetric with respect to inversion in the circle x2 + y2 = κ. Here, the “radius”

√
κ ∈ C

is non-zero since f is nonsingular. To be precise, f is preserved by the inversion ικ in the
sense that f (x, y) = 1

κ2 (x2 + y2)2 f ( κx
x2+y2 , ky

x2+y2 ) (the extra linear components (x2 + y2)2

being “superfluous”).
Translating the center of the circle x2 + y2 = κ back to the point of tangency of the

original curve gives the corresponding mirror Cj. One can do the same for each of the four
roots xj to obtain four mirrors C1, . . . , C4.

We want to find real mirrors; for this, it suffices to show that at least two of the points
xj are real. We recall that all nonsingular real cubics may be divided into two classes: those
whose real locus consists of the odd circuit alone, and those which also have an even circuit
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fe (a simple closed curve in R2). The key is to examine the mirrors with centers on the odd
circuit fo (unbounded real connected component) of f .

Figure A4 shows a cubic of the former type, together with the vertical asymptote x = x0
(the tangent line to f at p); the argument works just the same for two-circuited cubics.

Since p is not a flex, fo meets x = x0 in a finite real point and extends to the left and
right of this line. In fact, fo has a left-most point q and a right-most point s, which are
points of vertical tangency. Thus, q and s are real centers of inversion as constructed above.
But we still need to verify that the corresponding mirrors have real radii

√
κ, and that they

meet orthogonally.
We denote these two mirrors Q = S1 and S = S2. Let L = qs be the line joining

their centers, and let r be the point on fo obtained as the third intersection of L with f . (L
cannot intersect fe since it would have to meet it twice.) Viewing fo as a topological circle
containing p, the four points have cyclic order (p, q, r, s) on fo. Regarding ιQ, by restriction,
as a homeomorphism of the circle fo, note that ιQ swaps p with q and swaps r with s. Thus,
ιQ has real fixed points “between” each pair. But the fixed points of ιQ belong to Q, which

must therefore be real. Likewise, ιS swaps points according to (p, q, r, s)
ιS7−→ (s, r, q, p),

and S is real.
For heuristics, it is expedient at this point to identify the composition of circle in-

versions T := ιQιS with a Möbius transformation of C ' R2. In this sense, T must be
elliptic—with a pair of real fixed points Q ∩ S—otherwise, T would have infinite order.

In fact, (p, q, r, s) T7−→ (r, s, p, q), so T2 = Id. In other words, inversions ιQ and ιS commute,
which can only happen if Q and S meet perpendicularly. Thus, a circular cubic has an
orthogonal pair of mirrors as required for the rectilinear position.

Some additional remarks may be in order. Suppose C is any mirror of a circular cubic
f and ` is one of the four isotropic tangents through the circular point I. If K is the finite
intersection point of C with `, then ` = IK inverts to the isotropic line ιC IK = JK. This line
must also be a tangent since ιC takes f to itself. Thus, K is among the sixteen (complex)
foci of f , four of which must lie on C. The same argument applies to each mirror; thus, we
established the last part of the classical result.

Next, we comment on the remaining mirrors S3, S4. In the one-circuited case, these
are a complex conjugate pair of mirrors S3 = T, S4 = T̄ determined by the two non-real
centers on fo. In the two-circuited case, the centers of S3, S4 are real, these being the
left- and right-most points on fe; it turns out that one mirror T is real and the other U is
imaginary. Evidently, T is orthogonal to Q and S, and consequently all four mirrors are
mutually self-inverse.

When a non-real mirror is involved, the notion of orthogonality requires a definition.
First, let C, C′ be real circles, with centers c, c′ and squared radius κ, κ′. If C′ and C meet
perpendicularly in R2, the Pythagorean theorem gives |c − c′|2 = κ + κ′. Let C, as in
Equation (A4), be represented by the vector C = (c0, c1, c2, c3), and likewise for C′. One
finds, using Equation (A5), that perpendicularity is equivalent to orthogonality with respect
to the bilinear form

〈C, C′〉 := 2(c1c′1 + c2c′2)− c′0c3 − c0c′3.

We note the relation to Möbius circle geometry [60]. If a plane a1x1 + a2x2 + a3x3 = a4
and sphere x2

1 + x2
2 + x2

3 = 1 in R3 intersect in a circle A, there corresponds a planar cir-

cle/line C as above via stereographic projection (x1, x2, x3) = ( 2x
x2+y2+1 , 2y

x2+y2+1 , x2+y2−1
x2+y2+1 ).

It’s coefficients are: c0 = a3 − a4, c1 = −a1, c2 = −a2, c3 = −a3 − a4. Then a short
computation yields the Minkowski inner product on vectors A, A′ representing spheri-
cal circles: 〈C, C′〉 = 2(a1a′1 + a2a′2 + a3a′3 − a4a′4) =: 2〈A, A′〉. In particular, note that
〈C, C〉 = 2c2

0κ > 0 for real circles, which explains why there can be at most three mutual
orthogonal real mirrors.
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Proceeding to the general case, orthogonality may be defined by the same equation
〈C, C′〉 = 0 by complex bilinear extension. We note some formal consequences of this
definition. First, no orthogonal pair can be imaginary. For if C and C′ are two such circles,
we can assume c0 = c′0 = 1, for simplicity, and obtain

0 ≤ (c1 − c′1)
2 + (c2 − c′2)

2 = c2
1 + c2

2 + c′21 + c′22 − 2(c1c′1 + c2c′2)

= c2
1 + c′21 + c2

2 + c′22 − c3 − c′3 = κ + κ′ < 0.

This leaves three possibilities for a set of mutually orthogonal mirrors:
(1) Three real mirrors and one imaginary mirror.
(2) Two real mirrors and two complex conjugate mirrors.
(3) Two pairs of two complex conjugate mirrors.

However, the third type cannot exist. Suppose C = (c0, c1, c2, c3) = v + iw is the vector
representation of a complex circle, where v and w are circles with real coefficients. The con-
dition that C be orthogonal to C̄ is v · v + w ·w = 0. Note that this implies one of v and w is
a real circle and the other is imaginary.

Now assume there are two pairs of complex mirrors C1, C̄1, C2, C̄2 that are mutually
orthogonal. Taking the inner product of C1 = v1 + iw1 with C2 = v2 + iw2, we have

v1 · v2 − w1 · w2 = 0, v1 · w2 + w1 · v2 = 0.

Comparing this with the equation C1 · C̄2 = 0, we conclude that the real and imaginary
part of each is orthogonal to both the real and the imaginary part of the other. But either vi
or wi is an imaginary circle, and imaginary circles cannot be orthogonal to each other.

To conclude this section, we list the mirrors and complex foci of bicircular quartics F
in standard position. First, the x and y axes are a pair of real mirrors. Further, one easily
verifies that the circles C± = x2 + y2 ∓

√
r are mirrors using ικ with κ = ∓

√
r. (All mirrors

can also be “derived” from the elliptic discriminant; each is found by setting three factors of
∆K equal to zero.) Thus, in case r = 1, there is a real circle C+ and an imaginary circle C−.
In case r = −1, there is a pair of complex conjugate mirrors with squared radius κ = ±i.
The apparent departure from the cubic case is rather striking: the two circular mirrors are
“concentric”, with center (0, 0) not on the curve. But there is no contradiction to any of the
above general claims about systems of mirrors; circle centers, being double foci, do not
respect inversive symmetry.

We list the sixteen complex foci for case s = r = 1, b > 1:

y = 0 : (±b, 0), (±1
b

, 0); x = 0 : (0,±ib), (0,± i
b
);

x2 + y2 = 1 : (± b2 + 1
2b

,±i
b2 − 1

2b
);

x2 + y2 = −1 : (± b2 − 1
2b

,±i
b2 + 1

2b
).

Likewise, the sixteen complex foci for s = 1, r = −1, b > 0 are

y = 0 : (±b, 0), (± i
b

, 0); x = 0 : (0,±1
b
), (0,±ib);

x2 + y2 = i : (± b2 + i
2b

,± ib2 + 1
2b

);

x2 + y2 = −i : (± b2 − i
2b

,± ib2 − 1
2b

).
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