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1. Introduction

Fractional differential equations (FDEs) have been applied to qualify multiplex prob-
lems in various fields of natural sciences, as physics, biology, chemistry, image processing
and so on, see [1-5]. In the literature, different types of fractional derivatives and fractional
integrals have been presented, where many of those definitions deal with the Riemann-—
Liouville and Caputo fractional derivatives. These definitions have been applied in many
nonlocal boundary problems to present some physical phenomena (see [6-9]). Addition-
ally, FDEs with a p-Laplacian operator appeared when Leibenson [10] was working to
deduce an exact formula to construct a turbulent flow. Recently, many applications of
FDEs with p-Laplacian operator have been obtained in the various areas such as glaciology
and dynamics, see [11-15] and references therein. Hence, it is important to consider FDEs
consisting of the p-Laplacian operator in different spaces. Recently, Srivastava et al. [16]
have applied the p-Laplacian operator to consider the existence of solutions for a class of
nonlinear differential equations of the form

CDF(0p[“DFo(w)]) + x(w,o(w)) =6, w € [c,d], 1)

supplemented with coupled nonlocal boundary conditions

o(c) =DM () =0, o(d) = Awln), c<ni<d, @
i=1

in which « : [c,d] x E — E is a given function, E is a Banach space with zero element
0,0<p<1,1<u<2 A;i=12,...,mare real constants, CDP, denote the Caputo
fractional derivatives, 6, indicates a p-Laplacian operator, that is

1 1
0,(s) =1s|"%s, p>1, 6, =86, 5 + .- 1
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The aim of this work is to extend the problem (1) and (2) on coupled system of
differential equations by introducing a new coupled system of FDEs. The significance of
coupled systems of FDEs is that such systems have appeared in various fields of sciences,
see [17-19]. In this paper, the existence of solutions for a system of nonlinear differential
equations consisting of the Caputo fractional-order derivatives of the form

“per (6, [CDm”l(w)]) =x1(w, o1 (w), 02(w)), w € [e1,d1],

®)
CDP2(9,, [CDM205(w)]) = K2 (w, 01 (w), 02 (w)),
supplemented with coupled nonlocal boundary conditions
m
o1(c1) = “DMoy(cr) =0, o1(dr) = Y Aioa(n;),
i=1
4)

0'2(61) = C'DH202(C1) =0, Uz(d]) =

M-

1Xj0'1 (ﬁ]’)

]

is investigated, in which 0 < p1, 02 < 1,1 < py, g < 2, “D? denotes the Caputo fractional
derivative of order 6 € {p1,02, 1,12}, 8p (p = p1, p2) indicates a p-Laplacian operator,
K1,k : [c1,d1] X R x R — R are continuous functions with some conditions, )\i,Xj,
i=1,2,...,mj=1,2,...,narereal constants and ¢; < Ui,ﬁ]- < d.

The tools of fixed point theory will be applied to develop the existence theory for
the problem (3) and (4). In fact, the Banach contraction mapping principle is applied to
prove a uniqueness result, while two existence results are derived via Leray-Schauder
alternative and Krasnosel’skii fixed point theorem. The presented system in this article
is not only new, but some other systems are special cases of this system, for example, by
taking y1 = p2 = p1 = p2 = 2 and p; = p2 = 1, we have the third order system of the form

m
Ul(cl) = (T{/(Cl) =0, O'l(dl) = Z/\i(fz(m), <1< dl, (5)
i=1

n
(Tz(Cl) = (Tél(cl) =0, (Tz(dl) = Z/\](Tl(ﬁ]), 1 < ﬁ] < dj.
j=1

The structure of this article is as follows: In the next section, some definitions and basic
Lemmas are collected, which will be required to prove the main results. In Section 3, an
auxiliary lemma is proved to convert the problem (3) and (4) into a fixed point problem. The
existence and uniqueness results are considered in Section 4. In Section 5, some examples
are included to illustrate the obtained results.

2. Preliminaries

In this section, some results and concepts concerning the fractional calculus are presented.

Definition 1 ([2,20]). The fractional integral of Riemann—Liouville type and order y > 0 of a
function o € LY[c1,d1] is defined by

R g (w) = L /w(w —8)1 Yo (s)ds, (w > ¢y, >0),

Wcl

where T is the Gamma function.
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oy (w)

o2 (w)

Definition 2 ([2]). The fractional derivative of Caputo type and order 1 of a function o €
AC"[cy,dq] is represented by

1 w

e _ \n—n—1_(n)

CDlg(w) = {r((;; —7) /C1 (w—s) o (s)ds, n¢N, ©
o " (ZU), 77 € N/

_ d'o(w)

where ") (w) T

n>0andn=[y]+1

Lemma 1 ([2]). Letn > p > Oand o € L[cy,dy]. Then,
n—1 .

(i) Rim CD”U(w) = o(w) + Z bi(w —cy)!, for some b € R (i = 0,1,2,...,n—1),
i=0

where n =[] +1,
(i) D1 R g (w) = o(w),
(iii) D RLTo(w) = RLTT =P (w).

3. An Auxiilliary Result
Lemma 2. Let hy, hy € C?([cy,dq],R). Then, the unique solution of the system

CDP1 (6, [CDM ey (w)]) = Iy (w), w € [e1,dy],

@)
€D b5, [CD"2 03 (w)]) = ha(w),
supplemented with coupled nonlocal boundary conditions
0’1((11) = CDMO’l(Cl) =0, Ul(dl) = Z)\ﬂfz(ﬂﬂ,
0’2(C1) = CDMO'Z(Q) =0, 0’2((11) = Z)\]O’z(ﬁ]),
j=1
is given by
REYA (G, (RE11 hy () ) + = ?Aq [(dl —c1) Y AR (05, (RFIP2 Ry (1))
i=1
n p—
= (dy = ) 1 (B, (TP (dh))) + A (1 AT (0, (T (7))
j=1
KL (0, (R112ha(h)))) |
RED (0, (RHIP hy () ) + < [ Aa (1 AL (8, (R11P2h (7))
i=1
—(d1 — 1)1 (0, ("R (1)) + (d1 — 1) ;X;‘RLHP” (6, (XM 11 (7))
]:
—(d1 = e R (B, (MM (1)) |,
©)

where

no_ 1 1 1 1
A=) N(ni—c1), Av=)Y A(77.—¢1), —+—=1, —+ —=1, 10
! ,; i 1) ? ]; ](;7] ) P 41 P2 92 10
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with
A= (di —c1)? — A1A,. (11)

Proof. Let ¢ (w) = 0, [“D" oy (w)] and ¢o(w) = 6, [“D*202(w)]. Then, the system (7)
can be divided into two problems:
Cpa (1 (w)] =hi(w), w e [c1,dq],
CDP2 o (w)] = ho(w), (12)
$1(c1) =0, ¢a(c1) =0.

and
CDyl(fl (ZU) = qu (RLlehl(ZU)), w e [Cl/dl]/
(13)
D20y (w) = Oy, (RLTP21y (w)),
supplemented with coupled nonlocal boundary conditions
m
o1(e1) =0, on(dr) = ) Aioa(17i),
= (14)

02(c1) =0, oa(di) = ) Ajen (7))

~.
™=
L

The solution of the system (12) can be written as ¢;(w) = REIP1h;(w) and
¢2(w) = RETP2hy (w), respectively. On the other hand, by applying the Lemma 1 and
the fractional integrals R-T#1 and RLT#2 on both sides of the equations in (13), we obtain

o1 (w) = R (0, (RETP1 Ry (w)) + g + €1 (w0 — c1),
02(w) = "1264, (K172 (w)) + fo + fi(w — c1). (15)

Now, by applying the boundary conditions ¢y (c1) = 02(c1) = 0 in (15), we obtain
ep = fo = 0. Hence, we have

o (w) = REM (64, (RL]Iplhl(w))) +ep(w—cq),
oo (w) = 12 (0, (RE1P2 Iy (w))) + fr(w — c1). (16)

By the boundary conditions o7 (d1) = Y24 Aioa (1), 02(d1) = Ly Ajo (ﬁj) and (16),
we obtain

m

RED (6, (RMTP (1)) + en(dr — e1) = ) ARMT2 (64, (R Ra())) + f1 ) Aili — 1),
i1 i=1

n n
KL (0, (R (d))) + fuldy — e1) = ) AR (8, (R (7)) + en ) A7 — ca). (17)
j=1 j=1
Consequently,

m
I (B, (11720 (1)) ) — FHT (6, (1T (),
i=1 - (18)
—e1hg + fi(dy —c1) = Y AR (6, (M1 (7)) ) — RET2 (0, (RETP2 R (d1))).
j=1

er(di —c1) — fih =
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By solving the above system, we obtain
m

{(dl — C1) Z /\,’RL]U‘Z (qu (RL]Ipzhz(ﬂi))) — (dl — Cl)RL]Iyl (qu (RL]Ipl I’ll (dl)))
i=1

+A (j:/\].RLHm (6, (RLlehl(ﬁj))) —REe (g, (RL]Ipzhz(dl))))] ,

o
=
|
> =

ho= % {A2( i/\iRLHM (69 (RLszhz(Uz’)))) — (dq — c7)RETM (6, (RLTP1 1y (dy)) )
i=1

+(d1 — 1) iX]‘RLHM (6, (RFTP1 1y (1)) — (dr — c1) M2 (65, (RLHPZhZ(dl)))}-
=1

Replacing e; and f; in (16), we have the solution (9). The converse can be proved by
direct computation. This completes the proof. O

4. Existence and Uniqueness Results
Let X* = {w(q) : w(q) € C([c1,d1],R)} be the Banach space of all continuous func-
tions from [c1, d;] into R, which has been equipped with the norm

loll = sup o(q)].
qe[clrdl]

The space (X*, ||.||) is a Banach space. In addition, the product space (X* x X*, ||.||)
is also a Banach space with the norm ||(v,w)|| = ||v| + ||w| for (v,w) € X* x X*. In
view of Lemma 2, we define an operator B : X* x X* — X* x X* as B(v,w)(q) =

(B1(v,w)(q), B2(v,w)(q)) where
Bi(v,w)(q) = "M (05 (R k1 (g, 0(q),w(q))))

o m
I (=) Yo AR (6, (F112a s, 0 (), 0 ()))
i=1

—(dq — c1)RET" (8, (RETP11q (dy, v(dh), w(dy )

h ( 'n1 AT (b, (11 (7, 0, w(ﬁﬂ)))
o
_RLppz (g, (RL]Ipzxz(dl,v(dl),w(zh)))))]r q € [c1,d1], (19)

and
By(v,w)(q) = REI"2(8,, (RLTP2Ka(g,0(q), w(q))))

A [ ($ A8 o (U, o), )

—(dq — c1)RLTM (6, (RETP1ky (d, v(dy), w(dh))))

+(dy —c1) f;AjRLﬂyl (6, ("MTP w1 (7, 0(py), w (1))
=

—(dy — c1)RF1#2 (6, (RLHPZKZ(dlrv(dl)/w(dl))>)]‘ (20)

For computational convenience, we set

F(Pl(ql - 1) + 1) (dl _ Cl)P1(¢11*1)+141
T(u1)T (o1 + 1)1 (01 (g1 — 1) + 1)

o =
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(dy —cq) zr(Pl (1 —1)+1) (d1 —c1)P (g1—1)+m
|A|F(P1 + 1)1 ()T (1 (q1 — 1) + pa)
[A1|T(p1(q1 —1) +1) Z A (7 — cp)Pri@n—D+m,
[AIT(pr + )BT ()T (o1 (g1 — 1) + 1) | il
o, — T(p2(q2—1)+1) Z Al (7 — c1)P2 @D+

|AIT(42)T (02 +1)271T(02(g2 — 1) + pi2) ;

[A1](d1 — 1) T(o2(g2 —1) +1) (dy — ¢ )P2l2=D)F2)
|AIT(u2)T (02 +1)%27 T (02 (g2 — 1) + pi2)

I(p2(q2—1) +1) (g2—1)+
[} = di — ¢ P2\92 H2
5 = Tl + 1) T palg — 1) ) 2~V
T(p2(q2 — 1) +1)|As] )+
A —cC Pz q2— H2
[A[T (o2 + 1) 1T ()T <<2—4.+uz§:" 1)
(dl — Cl)zr(PZ(’D — 1) _'_ 1) (dl _ Cl)pz(ﬂ]z*l)ﬁ*]/lz
|AIT (02 4+ 1) 71T ()T (02(g2 — 1) + p2) ’

|Ag|(d1 —c1)’T(p1(q1 — 1) + 1)

o, = di — ¢ )Pr@—1+m

4= ATy + U (Do~ D) )

T(o1(g1—1)+1) T 1
+ |37 — )P @D+,
|AIT (o1 + 1) T (1)L (p1(q1 — 1) + pa) ]; A = )

. T(p1(q1 —1)+1) -1
o7 = D - dy — cq )1 =D+

L T D) T (g — D )
CI); _ @3 . F(PZ(% - 1) + 1) (d] _ Cl)pZ('h*l)sz. (21)

T(p2)T (02 + 1) 71T (02 (g2 — 1) + p2)

The following lemma is used in the sequel.
Lemma 3. It holds:

1 gt _ _ T(p+1)
W/ (t— )P (s — a)Pds = Tt

4.1. Uniqueness Result

In the following theorem, the Banach contraction mapping principle is applied to
establish the existence and uniqueness result for the system (3) and (4).

Theorem 1. Assume that the functions k1,%; : [c1,d1] X R x R — R satisfies the condition

(Hy ) There exist real constants m;, n; (i = 1,2) such that forall g € [c1,d1] and v;, w; € R,i = 1,2,
we have

|k1(q, v1,w1) — K1(q, V2, w2)| < my|v1 — V2| + ma|wy — wy|,

[%2(q, 01, w1) — x2(g, 02, wa)| < nyl|vy — V2| + nz|wy — wy|.
Then, the system (3) and (4) has a unique solution on [c1,d1] if
(D1 + Py) (my + mz) + (D2 + P3)(n1 +12) <1, (22)
where ®; (i =1,2,3,4) are given in (21).

Proof. The hypotheses of Banach’s contraction mapping principle will be considered in
the following steps:
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Step 1. B(Bx) C By where By = {(v,w) € X* x X* : ||(v,w)|| < x} with

> (CI>1 +(134)M+ (CDz-F(I)g)N
T 1= [(Py + Py) (mq +ma) + (Py + P3) (11 +12)]”

M =sup (. 4] lx1(9,0,0)|, N = SUP, ¢, dy] |%2(g,0,0)].
Step 2. B is a contraction.

For Step 1, let (v, w) € B,. Then, we obtain

[B1 (0, w)(q)]
< K6y, (RLlelKl(q/ (7). w(q)) —x1(q,0,0)| + [x1(4,0,0)|))

ot a-a 2 A4 RET2 (0, (RLTP2 e i, 0t), (o)) — 1 71,0, 0)|
+r2(:,0,0)[)) + (dl — c1)REDM (05, (RETP i1 (dy, 0(dh), w(dq)) — x1(d3,0,0)]
n J—
+1x1(d1,0,0))) + A4 ( YA RET (0, (RETP1 iy (77, 0(7;), w(i;)) — x1(7;,0,0)]
=1

+[r1(7;,0,0)])) + RE12 (65, (*11 | (dy, v (d1 ), w(d1)) — k2(d1,0,0)]

+|K2(d1/0/0)|)))}
< ;/‘7( _symlg (/S(m o]| + m ||w||+M)wdr)ds
= TGa) o AV 2 I'(o1)
[(dr—c1)?|
TGl
S _ n—1
« ZIA I/ () qu(/l (Sr(g’)(nﬂm + ] + N)ar ) ds
(d —C ) dq - s (S_T)pl—l
m (dy —s)" 19@1 </C1 W(WHHUH + ma|jwl| + M)dT)ds
|A | d —C - M . s (S—T)Pl_l
111(];|)\]|r /C1 (77]'_5)} 19%(./;1 W(nﬁ”v”
+my||lwl|| + M) dT)ds
1 s (S _T)pzfl
") / (dy =) 16@2(/6l TPZ)(VHHUH + na|w|| +N)dT)ds>
< (mlo]| + maf|w| + M) L/q(q_s)ﬂl—l@ (M)ds
- T(i1) Jey "\ T(o1 +1)
di —ar* 1 d - (s —cp)P
U T ./cl =", (T gy )

Al —al ¢ 1y ((8—c)”
1 |&| 1 Z /1 ,7]_5) 19,72( (pl—il—l))ds}

2Wl — 2
5 [ et (-

(Tl1H’0H + I’lz”ZUH + N { |A|1—~

[Aq|]dy — 1] [ — (s—c1)
ATGa) o DY 19q2(r(p2+1)>ds}
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1 q _ _
< (m1|v|+m2”w”+M){F(y1)(T(p1+1))‘71_1/c (q_s)ﬂl l(s_cl)Pl(ql UdS
1
(d1—cl)2 /b _\Mm—1(e _ ~\01(q1—1)
ATy + DT Jo 07" e
A
Ry L o e 1>ds}
(di —c1)
+ + +N
(VlleH nZHwH ){|A|F(‘u2)r(p2+1)q21
> ZM |/ s)iz—1 (s — cq )22 gs
|Aq](dy — c1) /'dl va=lie o \pa(ga—1)
|A|1-(V2)1-(p2+1)q271 o (dl S) (S Cl) dS
T(o1(q1—1)+1) .
< (mljo]] +ma|lw| + M dy — cq)P @ Dm
el el ){r< (e + 1 TTor (g 1)+ ga) Y
(d1 =)’ T(o1(g1 —1) +1) (dy — cp)P1 @D+
TIATT (o1 + )T )T(or (g1 — 1) + i)
|A1|T (01(q2 —1) +1) = 1
/\ — Pl(ﬂz )2
For - )T () a2~ 1)+ ) 2 1T =)
+(m[[o]] + nzflw|| + N)
(d1 —c1)*T(p2(g2—1) +1) ‘ j2+02(g2—1)
X ) (771_‘31)
|AIT (u2)T (2 + 1) T (p2(g2 — 1) + p2)
|Aq[(dy — Cl)r(f)Z(‘h -1)+1) (dy — Cl)pz(q2—1)+y2
|AIT(u2)T (02 +1)27 1T (p2(q2 — 1) + pi2)
= (m|o|| + mallw| + M)P1 + (n1]]v]| + n2lw| + N)®2
= (Mm@ +m®)||v| + (ma®Pq + n2®P2)||w|| + P1M 4 PN
< (1411@1 +n1Py +mrydq + n2q>2)x + O M+ Dy N.

Similarly, we can show that
B2 (v, w)(q)| < (m1Py + n1P3 + mp®y + ny®3)x + PyM + P3N.
Consequently, we obtain

[B(o, w)|

1By (v, w) || + || B2 (o, )|
[(®1 + Py) (1 + mp) + (P + P3) (111 + 1) | x
+(q>1 + <I>4)M + (CDZ + @3)1\]

X,

IN

IN

which implies that B(B,) C By.
Now, we prove Step 2, that is, the operator B is a contraction. Let (v1, wy), (v, wp) €
X* x X* and g € [c1,d1]. Then, we have

|B1(v1, w1)(q) — B1(v2,w2)(9)|
< KA (6, (RETP ey (g, 01(q), w1(q)) — x1(g,02(q), wa(9))]))

e )Y IIRETE (B, (RE1 o, 0 ) 1 ()
i=1
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—xa(1;,02(11:), w2(11:))) )

+(dy — c1)REDM (8, (RETP1 i1 (d, 01 (dh), w1 (dh)) — K1 (da, 02 (d1), wa(dr))]))

i ( X A1 (B, (411 o (75 7 00 7)) = 7 22, 2(7))))
f

+RE2 (6, (RE1P2 |1y (d, 01 (1), w1 (d1)) — KZ(dlrUZ(dl)rwz(dl))D))]

1 q _ s (s — 7)1
< — [Tg=smg / —wy || + —w) ¥V gr)d
< gy L @9 o ([ omller =i 4 ma oy — wall) S S ds
|(d1 —c1)?
T(p2)|A]
y 1 (S_T)p !
me/ (i — )" eqz(/ Sy mller =l + malfer —wsl)dr) s
di — dq B s _ \p1—1
+(r(1yl)CX| (dp —s)Mt 19111(/ (SF(Z)(m1|01—02||+m2|w1—w2||)d7>d5
C C1
[Aqf(d1—c1) (v 5, 1 /7/, 1 /5 (s — 7)1
A1ildr — ) 1 g1y =7 - _
o (B Mlegey L, @ e ( [, gyl
+my||wy — w2\|)d1’)ds
1 _ s (s—T)P21
+W/ (dp —s) 19qz(/ (r(p)z)("1|0102||+n2||w1w2||)dT)dS>)
31
1 q
< _ _ _ym—1(g _ pypilm—1)
< (mlloy — o] + majwy w2||){1“(y1)(1"(p1+1))'111 /C](q s)17 (s —a) ds
(d —c1)” /b -1 p1(q1-1)
- - d
Aoy -+ Dt TGy Jo 079 el
T T
B B (dy —c1)?
“r(”l”vl UZH +7’12Hw1 w2||){|A|r(y2)r(p2+1)qzl
XZ‘M/ =8 (s — ¢ )2V g
|A1](dy —c1) /dl 1 (121
di — s)H2 _ o )P2(a2—1) g
|A|F(H2>F(P2+1)q2_1 o ( 1 S) (S Cl) S
< (mllvr — o2l + malwy — wyl|)
r(pl(ql — 1) + 1) -1
di — ¢ )P1 @ —1)+m
X{ (Vl)F(ler)‘“*lF(pl(ql—1)+141)( 1=e1)
(dy —c1)’T(p1(g1 —1) +1) (di — ¢p)P (@ =D+m
AT (o1 + DT ()T (pr (g = 1) +pua)
[A1[T(p1(92 = 1) +1) (e VT
Flor 1% (i) (pr(g2— 1)+ ) Z 10 =)

+(n1l|vr — va| + n2|lwy — wy||)

(d1 —c1)T(p2(g2 — 1) +1) (i — cq)P2tP2(a2=1)
[AIT(2)T (02 +1)%2 71T (2 (g2 — 1) + pi2) '
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|A1|(d1 — Cl)r(PZ(‘h — 1) + 1) (dl _ Cl)pz(q2—1)+]42
|A[T(u2)T (2 +1)27 T (p2(q2 — 1) + pi2)
(mq||or — va| 4+ ma||wy — wa||)®1 + (n1]|v1r — v2| + n2||wy — wy||)P
= (mlfbl + Tll(bz)HUl — UZH + (mszl + nzq)z)le — WQH
Hence,
IB1(v2, wa) — By (v1,w1)|| < (M1 @1 + n1Po + mpy®Pq + n2®;) ([[va — v1|| + [|wa — w1 ]). (23)
Similarly, one can find that
IBa (v, wa) — By (v1,w1)|| < (M1 Py + n1P3 + mp®Py + no®3) (||va — v1|| + [|wa — w1 |]). (24)

By (23) and (24), we infer that

|B(v2, w2) — B(vy, wy) ||
< ((P1+ DPg)(my +mp) + (D2 + P3) (11 +12)) (lo2 — 01| + [lwz —wn]), (25)

which implies that B is a contraction. Thus, by applying the Banach contraction map-
ping principle, the system (3) and (4) has a unique solution on [c1,d;]. The proof is
completed. O

4.2. Existence Results

Now, two existence results for the system (3) and (4) are proved via Leray-Schauder
alternative [21] and Krasnosel’skii fixed point theorem [22].

Theorem 2. Let x1,x3 : [c1,d1] X R X R — R be two continuous functions such that for all
q € [c1,d1] and v;, w; € R, we have

k1 (g, v1,w1)| < to+ ti|o1] + ta|wy ],
|12(q, v2, w2)| < g + ur|va| + uz|ws|,

where t;, u; are real constants with ty, ug > 0. Then, the system (3) and (4) has at least one solution
on [c1,d4], provided that

((I)l + @4)t1 + ((I)z + @3)1/{1 <1, and (@1 + @4)f2 + (CDZ + @3)1/{2 <1, (26)

where ®;,i = 1,2,3,4 are defined in (21).

Proof. In view of the continuity property of the functions x; and x,, we conclude that the
operator B is continuous. Next, the completely continuous property of the operator B is
showed. Let S be a bounded set of X* x X*. Then, there exist positive constant I and D,
such that for all (v, w) € S we have |x1(q,v(q), w(q))| < Dj and |x2(gq,v(q), w(q))| < Ds.
In consequence, for all (u,v) € S, we have

By (0, w)(q)|
F(Pl(‘]l - 1) + 1) — e)Pr@=1)+m
< o Fp T 1
(d1—c1)’T(pa(q1 —1) +1) (dy — ¢ )1 @ —D+m
|A|F(Pl + 1)1 71T (py)T(o1(q1 — 1) + 1)
|A1|T(p1(q2 — 1) + 1) < o=+
T(p1 +1)27 1T (u2)T (1 (g2 — 1) + p2) ; U ”}
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(d1 —c1)*T(p2(q2 — 1) + 1) o yiea@a-1)
+D2{ IAIT(12)T(p2 + 1)%2 T (02(q2 — 1) + p2) (1 — cq)H2 P2
|Aq|(dy — e1)T(p2(g2 — 1) + 1) T

AT ()T (o2 T 1) T (pa(as 1) + i) 1~ ™" }

which yields
[B1(o,w)|| < @1y + 2Dy
Similarly, we have
1Bz (0, w)|| < P3Dy + P4D,.
Hence, we obtain
IB(o,w)| = [[B1(v, w)|| + [[B2(v, w)|| < (@1 + P3)Dy + (P2 + Py)Dy.

Consequently, the uniformly boundedness property of the operator B is obtained.
Now the equicontinuous property of the operator B is verified. Let 41,42 € [c1,d1] with
g1 < 42, Then, we obtain

B1 (v, w)(F2) — B (v, w)(q1)]

< FED;ll)/:l (qz—s)ﬂl1_(171—5)“11‘8,71(/: (S;(Tp)lp)lldr>ds
+}(D;11> /_.q2 (472—5)#1—1’9%(/; o r(;)sl_ldr>ds
+(A|I’( 5 D12|A|/ (i —s)1°" 19q2(/ Dls_sz 1d1’>ds
b [ ([ e
+|A|1AL|?2V1171 ]x|A/”J 7 sy 19q1</ Dy S—Tpl 1dT)ds
+|A|11|&(|?:2(y2?1) ./cll(dl S)H2_19q2</ D175 r&);;_l dT) ds
J1 01
: r<u1><r<21+1>>%1 [ 1@ =9t o (i <plc+1)1>>ds
D 72 P1
G Tl Ty |9 1‘9%((@ C+1>1>)ds
_ 2—1
+(Ax|r<;$§( DlZ'A'/ i) 1%(/ D, (P)zp) ’”)ds
(32— @) (s— ot
\Er@)/ (e =)™ 19%(/ P )ds
-1
o S [ oo ([ g
A|(Ga—q1) [ - s s—T)PZ’1
+ ﬁ&ﬁm? /cl (=) 1"q2</q P o) ‘”)ds
< (32 =) = (@1 = )17 (s —c1)Pds

]D)l ‘71
L(p1)(T(o1+1))n-t /q !

D 2 . 1
+r(}l1)(r(pll+ 1))%*1 \/‘71 (‘72 - S)H 1 ‘ (S — Cl)p ds
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( ) ,— (s —T)P2~ 1
i 0B L [ syt ([0 s
+(‘72— 1;

- s — 1)1
AT / (dy — 5)" 19?1(/(;1D1F(p1) dT)ds
_ T B s _ 11
R L [ oo ([ oy as

j=1

|A1|(l72—671)/d1 1 ( s (s—T)el )
A = @) [ e /Did'r ds — 0,
ATGR) o BT 0 PR

as §1 — g, independently of (v, w) € S. Hence, B; (v, w) is equicontinuous. Similarly, we
can show that B, (v, w) is equicontinuous. Consequently, B(v, w) is equicontinuous.
Finally, it will be indicated that the set £ = {(v,w) € X* x X*;||(v,w)|| =
AB(v,w)},0 < A < 1} is bounded. Let (v,w) € &, then ||(v,w)|| = AB(v,w) and
for all g € [c1,d1] we have v(q) = AB; (v, w)(q) and w(q) = AB, (v, w)(q). Thus, we have

o(4)]

I(p1(q1 —1)+1) (1-1)+
to + t1)|v|| + £2||w di — cq)P1n M
(to+ uffel + e ”){T(M)T(Pﬁ)qllr(Pl(fh -1) +#1)( 1=e)

(di =)’ T(o1(q1 —1) + 1) (dy — oy P11+
|AT (o1 + 1)1 1T (ug)T (01 (g1 — 1) + Ml)

|A1]T(p1(q2 —1) +1) e 1)+M}
Tlor + 1% () (o1 (g2 — 1) 1 112 Z‘ Aj107; = 1)

+(uo +up [|v]| + uz|[wl])
X{ (d1 — Cl)zr(pZ(qZ -1)+1) (n; — Cl)szrpz(qul)
|AIT (42)T (02 + 1) 1T (02(q2 — 1) + p2)
|A1|(dl - Cl)r(pZ(qZ — 1) + 1) (dl _ Cl)pZ(qzl)Jer}.
|AIT (42)T (02 +1)27 T (02(g2 — 1) + p2)

and consequently

IN

o]l < (to + talloll + t2[|w][) 1 + (uo + wa[|v]| + uz||w]|) P2
Similarly, we obtain
lwl| < (to + tallvll + t2[|w][ )Py + (uo + ua[|o]| + uz[w|[) 3
Hence, we have

o] + [[w]] < (D1 + Py)to + (P2 + P3)ug + [((P1 + Pa)t1 + (P2 + P3)uq]||0]|
H((P1 + Py)tr + (D2 + P3)uz]||w]|,

which implies that

(D1 + ®y)tp + (Do + P3)ug
(o)l < L ,

where
No = min{1 — [(P1 + Pg)t; + (P2 + P3)u1], 1 — [(P1 + Py )tr + (P2 + P3)uz]}-

Thus, the Leray-Schauder alternative implies that the operator B has at least one
fixed point. Hence, the system (3) and (4) has at least one solution on [c1, d1]. The proof is
completed. O
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Now, Krasnosel’skii’s fixed point theorem [22] is applied to prove the second
existence result.

Theorem 3. Let ky,k7 : [c1,d1] X R — R be two continuous functions satisfying the condition
(Hy) of Theorem 1. Moreover, suppose that

(Hy) There exist R, S € C([c1,d1],R4) such that
lk1(g,0,w)| < R(q), |k2(q,0,w)| < S(q), foreach (q,0,w) € [c1,d1] x R xR.
Then, the problem (3) and (4) has at least one solution on [c1,d;], provided that
(@] + Dy] (m1 + my) + [@F + Do) (11 +12) < 1. (27)
Proof. We split the operator B into four operator By 1, B1 5, By 1, By as

Bii(v,w)(q) = RM(6,, (R1P k1 (q,0(q),w(q)))), 4 € [e1,di],

Bia(v,w)(q) = d Acl {(dl —c1) i)\imﬂ”z (0g, (RETP212 (73, 0 (17), w(13)) )

i=1

—(dy = c)*H T (6, (VTP ry (o, o(dh), ()

e (]é ARLT (8, (1P (7, 07, (7))

_RLpp2 (qu (RLHPZKz(dl, v(dy), w(dr)))) )} ’

Byi(v,w)(q) = “M0% (6, (117 x2(q,0(9), w(q))),

€1

Baafow)(e) = 5% [ L AST 0 (1ol w0) )
—(dy — )R (6, (RMTP1 k1 (do, 0(dr), w(dy )

+(dy — 1) iw”w (6, (*M1° 51 (77, 0 (), w (1)) )
=

—(dy — o) K12 (0, (RH1P2rcy (dy, 0(dh), w(dh)) ) |

ObViOUSly, B, = Bl,l +B1’2 and B, = B2,1 + Byy. Let By = {(’U, ZU) e X* x
X5 (v, w)]| < x} with x > (P71 + O3)||R|| + (P2 + P4)||S||. According to the proof
of Theorem 2, we have

|1B1,1(v1,v2) + By o(wy, wp)|| < P1|R|| + D2||S|,
and
I1Bo,1(v1,02) + Bop(wy, wy)|| < 3| R|| + Pul|S].

Hence, Bi(v1,v2) + By (w1, wp) € By. Next, it will be proved that the operator
(B12,B55) is a contraction. As in the proof of Theorem 1, for (v1,wq), (v2,w2) € By
we have

B1,2(0v1,02)(9) — By (w1, wa)(q)]
< (mllor —wq || + m2||Uz - wzH)
(d1 —c1)

1 1
X{|A|F(P1+1 q1— 11" 141) m s-cl)Pl(fh )ds
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|Aq] S /ﬁf — -1 -1 }
)\‘ . —§ H2 s—¢ Pl(‘h )ds
oy +1)% 1T (2) ;|]| A (7, —s)F2( 1)
(dy —c1)?
+mor = vall + maln —wal) { .
lor = ol mallon =2l TG, + 1y
L N
X AL [ = ) s = eq)ralon Vs
i=1 €1
Aql(d — d
|A1](d1 — 1) - / dy —s) (s — cl)f’z(‘hl)ds}
|AT(p2)T (o2 +1)7271 Joy
< (Pi(mlog —wi | + [loz — w2||) + Pa(n1lor — wi || + [loz — w2)
[@Imy + Pony]|[or — wi|| + [PImy + Pona]|lv2 — wsl, (28)
and consequently
|IB1,2(v1,v2) — By (w1, ws) ||
< [@Tmy + Pom]|or — wi || + [Pyma + Pong]||o — wa|.
In a similar way, we obtain
IB2,2(v1,v2) — Boo(w, ws)l|
< [@ymy 4 Pim]|[vr — wy || 4 [Pyma + D3n2]||o2 — wo|. (29)

By (28) and (29), we obtain

[(B1,2,B22)(v1,02) — (B1,2, Ba2) (w1, wa) ||

< {[fbi‘ + @] (my 4 ma) + [P + 3] (11 + nz)}(||v1 —wi]| + oz —w2l),  (30)

which, by applying the condition (27), the contraction property of the operator (B 5, B;5)
is obtained. On the other hand, in view of the continuity property of 1 and x; , the operator
(By,1,B,,1) is continuous. In addition,

| (B1,2, B2,1) (v, w)]|
T(p1(q1 —1)+1) —
< di — cq)P1\91 MR
S T Tonlgr — 1)+ ) Y IR
T(p2(q2—1) +1) T
d — p2(q2 m2S]l,
T(#z)F(szr)%*lr(pz(qz—1)+y2)( 1-¢1) S]]

as

T(o1(q1 —1) +1) 1
B v, W < di — ¢ pl(ql )+]/l1 R ,
|| 1,2( )H = F(Hl)F(P1+)q1_1F(P1 (ql — 1) + ,141)( 1 1) H ||

and

T(p2(g2 —1) +1) -1
By (v, < di — ¢q)P2@=D+p2 ).
H 2,1<U w)” = F(VZ)r(p2+)q2_1F(p2(q2_1)+;‘42)( 1 Cl) || ||

Thus, (B1,1,B5,1) is uniformly bounded. In the final step, we prove that the operator
(B1,1,By1)By is equicontinuous. For 41,32 € [c1,d1] with §; < §» and for all (v, w) € By,
we have

IB1,1(v,w)(72) — By,1(v, w)(q1)]
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IRI %
+1‘(;41) /q

e[ e

€1 F(Pl)
IR o -1 s - (s —c1)
: T(p1)(T(oq + 1))t /cl (72 =)™ = (1 = )" 1’9‘“(F(P1Jlr1))ds
IR| Bl ), (s—c)n
ey |9 o ()
HRH ™ 1= — (g1 — )" (s —cq)ds
=< F(Hl)(r(P1+1))ql_l /C1 (G2 —s)¥ ! (41 )i l’( 1)fd

(G2 — s)”lfl‘(s —¢1)P1ds — 0,

IR / 72
T(p) Ty + 1)) Jgy
independently of (v, w) € B,. Similarly, one can find that
[B2,1(v,w)(72) = Baa (0, 0)(q1)| — 0 as 1 — 2.

Thus, [(B11,B21)(72) — (B11,B21)(41)] — 0 as §1 — 2. Hence, the operator
(By,1,B17) is equicontinuous. Arzeld—Ascoli theorem implies that the operator (B 1,B, 1)
is compact on B, and hence by applying Krasnosel’skii’s fixed point theorem, we conclude
that the operator B has at least one fixed point, which is a solution of the system (3) and (4).
The proof is finished. O

5. Examples

In this section, we illustrate our main results by considering the following system of
nonlinear differential equations consisting of the Caputo fractional-order derivatives of

the form
{CD% (02[CD3 01 (w)]) = 11 (w, o1 (w), o2 (w)), w € [1/4,11/4], o
1 5
D3 (0;[ D3y (w)]) = Ka(w, 01(w), 02 (w)),
with coupled boundary conditions as
1 4 1
0'1 1 == CDS(Tl 1 = O,
W) 112\2) "1372\1) "177%\a) 32)

0—2 1 — CD30‘2 Z — O,

1Y 4 3 5 7 6 9 7 5
0 4> = Eal (2> + ﬁal <4) + EU’] (4> + 3*10'1 (2)

Comparing problem (31) and (32) with (3) and (4), we have p; = 1/2, pp = 1/3,
up =4/3, 4 =5/3, p1 =2, p20=3,01 =2,90 =3/2,¢c1 =1/4,d, = 1114, m =3,
A o=1/11, Ay = 2/13, A3 = 3/17, 41 = 1/2, 12 = 3/4, 43 = 5/4, n = 4, Aoy = 4/19,
Ay =5/23, A3 =6/29, Ay =7/315j; =3/2,7], = 7/4,73 = 9/4,7, = 5/2. By using the
Maple program, we obtain A; ~ 0.2761209379, A, ~ 1.511102471, A ~ 5.832752968, ®; ~
13.37197426, @, ~ 1.880065187, &3 ~ 12.91632487, P, ~ 10.85384001, ®7 ~ 6.985157994
and @3 ~ 6.713970944.

(i) Assume that two nonlinear functions are given by

_ 2 0% +2|oq | 256 || 1
Kl(w’al’UZ)_5(4w+63)< 1+l ) @oriE\isie)) T P
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and s
Ko (w, 0,07) = 2(8wl+35)| sinoy| + 38(4w1+ 172 (Ui _t|2(|7;7|2|> + % (34)
Observe that both of them are unbounded and also satisfy the Lipschitz condition as
1 1
k1 (w, 01,02) — x1(w, 81, 02)| < %M —o1] + 8—1|02 — &,
and

1 1
|K2(w101/02) - KZ(w/51/52)| S ﬁ|0—1 - 51‘ + 76|02 - 52|/
with Lipschitz constants m; = 1/80, my =1/81, ny = 1/74 and ny = 1/76. Since
(D1 + Dy) (m1 + m2) + (D + D3) (11 + 12) ~ 0.9965473651 < 1.

by Theorem 1, the problem (31) and (32), with functions x1, x1 given in (33) and (34), has a
unique solution on the interval [1/4,11/4].
(ii) If two nonlinear functions are defined by

x1(w,01,02) = 1 + ! Ll i + L |0 |e"7% (35)
BT T 2w +20) \ 140292 ) T 54w +7) 20
and
Ko (w,01,0%) = E + ¥|01\ sin?® (7o) + ;|0'2| tan~!o?, (36)
3 28(w+1) 22w +9)

then they are bounded, since

1 1 1
k1 (w, 01, 0)| < = + —|o1| + == |0,
2R 40

and

1

3
By setting constants tg = 1/2,t; =1/42,t, =1/40,u9 =1/3,u; =1/35,u; =1/38,

the inequalities (26) are satisfied as

|2 (w, o 0)\<7+l|0\+i|0|
2 V1,02) 35 1 38 2]

(D1 + Da)ty + (P + P3)up ~ 0.9995591034 < 1

and
(D1 + Dy by + (P + P3)up &~ 09950240426 < 1.

By Theorem 2, the fractional p-Laplacian coupled system with multi-point boundary
conditions (31) and (32), with k1, k3 given in (35) and (36), has at least one solution on the
interval [1/4,11/4).

(iii) Consider the nonlinear functions

1 1 o] 1 i
1 7
KW o, 0) = g4 g (1 n 01|> ¥ w1 e 7
and
B 1 1 1 1 ‘02|
r2(w,01,02) = g+ ey B Al e 1 (1 +loal ) 9

It is clear that both of them are bounded by

1 1
(w+6) + 13(4w+1)2

1
1 (w, 01,0%)] < '3 R(w),
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References

and 1 1
T
< - = -
(o1, 22)l < g 56 1) T Baw @
In addition, they satisfy the Lipschitz condition as
11 (10, 00, 0) — 11 (0,61, 82)| < = |0y — 8y + = |03 — 6]
1\w, 1,02 1/1/2_501 1 522 21,
and

1 1
|2 (w, 01, 02) — K2 (w, b1, 02)| < @|U1 — &)+ %hfz — |,

with Lipschitz constants m; = 1/50, mp = 1/52, n1 = 1/60, np = 1/58. Unfortunately, the
inequality

(O + Oy) (m1 + ma) + (O + ©3) (17 + n2) ~ 1.452114004 > 1,
is failed and cannot be used to guarantee the uniqueness result. However, we have
(P + Dy) (m1 + my) + (D + DF) (1 + n2) ~ 0.9912445862 < 1,

which means that the inequality in (27) holds. Consequently, by Theorem 3, the fractional
p-Laplacian system (31) and (32), with two nonlinear bounded Lipschitz functions (37) and (38),
has at least one solution on the interval [1/4,11/4].

6. Conclusions

In this paper, the existence and uniqueness results have been established for a fractional
p-Laplacian coupled system of nonlinear differential equations involving the Caputo
fractional-order derivatives, subjected to multi-point boundary conditions. The fixed point
technique has been applied to the given system by transforming it into a fixed point
problem. Our problem is novel and some other problems are special cases of our problem.
For example, by taking y1 = yp = p; = p2 = 2 and p; = p2 = 1, our problem corresponds
to the problem (5). For future work, we plan to extend the results of this paper to other
kinds of boundary value problems.
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