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Abstract: In this paper, as a complement to the works by Monterio and Notargiacomo, we analyze the
dynamical behavior of a learning-process model in a case where the system admits a unique interior
degenerate equilibrium. Meanwhile, we acquire the sufficient condition for the cusp of codimension 2
and verify that the system undergoes Bogdanov–Takens bifurcation around the cusp. Finally, we give
a numerical simulation to support the theoretical results.
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1. Introduction

With the development of human society, educational issues [1–5] are gradually attract-
ing people’s attention and are not ignored. Doubts [6] are a universal phenomena during
the process of learning knowledge. The influence and significance of doubt in experience of
acquiring knowledge are focused on by many scholars [7–9]. As time goes by, there exists
a dynamic process of mutual transformation between understanding and doubt. That is,
understanding can be transformed into doubt, and doubt can also be transformed into
understanding [10]. Therefore, Monterio and Notargiacomo [11] proposed that the learning
process as the interplay between understanding and doubt can be studied by formulating
and analyzing a dynamical system written in term of differential equations. In order to
better study this, the entirety of knowledge is divided into two parts: one part is already
understood, and the other is still doubted. The first “understanding–doubt” model was
put forward as follows.

U̇ = a{U(U − 1)(α−U)− f UD}{1− (U + D)},
Ḋ = b{D(β− D) + gUD}{1− (U + D)}, (1)

U and D describe the level of understanding and doubt with time t during the learning
process, respectively. 0 < α < 1 and 0 < β < 1 stand for the minimum background required
to learn about a subject and the maximum level of doubt that learner can have about a
subject that they did not learn about it, respectively. a and b represent the speed of the
learning process. The parameters f and g describe the interaction between U(t) and D(t)
and f g > 0. At the standing point of physical meaning, the term 1− (U + D) restricts the
dynamics to the right triangle domain given by 0 ≤ U ≤ 1, 0 ≤ D ≤ 1 and 0 ≤ U + D ≤ 1.
Authors have studied the stability of the boundary equilibria and provided some numerical
simulations to verify the theoretical results.

Liu, Ding and Chen performed deep studies of System (1) in [12]. They gave a
complete analysis of the qualitative properties of the interior equilibria and a singular line
segment. They also investigated some local bifurcation, including transcritical, pitchfork,
and Hopf bifurcation [13,14] on isolated equilibrium, and transcritical bifurcation without
parameters on non-isolated equilibrium.
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However, dynamical behavior of the learning-process model in a case where the system
admits a unique interior equilibrium can be studied further. Meanwhile, bifurcation of a
higher codimension, which is the Bogdanov–Takens bifurcation of codimension 2, is worth
analyzing since, compared to bifurcation of codimension 1, bifurcation of codimension 2
demonstrates more realistic dynamic behavior between understanding and doubt in the
learning process.

Compared to the works by Liu, Ding and Chen in [12] we will give the analysis of
Bogdanov–Takens bifurcation [15–17] of codimension 2 when System (1) admits a unique
interior equilibrium (cusp).

This paper is arranged as follows. We obtain the sufficient conditions for the existence
of the cusp [18] of codimension 2 in Section 2. In Section 3, we prove that System (1)
undergoes Bogdanov–Takens bifurcation of codimension 2 and the theoretical results are
verified by numerical simulation. A brief ends this paper in Section 4.

2. The Existence of the Cusp of Codimension 2

For simplicity, we make a time rescaling dτ = adt, and System (1) becomes

U̇ = {U(U − 1)(α−U)− f UD}{1− (U + D)},
Ḋ = r{D(β− D) + gUD}{1− (U + D)}, (2)

where r = b
a .

For physical meaning, we only consider the dynamic behavior of System (2) in the
closure Ω := {(U, D) : 0 ≤ U ≤ 1, 0 ≤ D ≤ 1, 0 ≤ U + D ≤ 1} for all possibilities of
(α, β, f , g, r) ∈ Σ := {0 < α < 1, 0 < β < 1, f g > 0, r > 0}.

The equilibria of System (2) are determined by the following equation:

{U(U − 1)(α−U)− f UD}{1− (U + D)} = 0,
r{D(β− D) + gUD}{1− (U + D)} = 0.

(3)

There exists a singular line segment

L := {(U, D) : U + D = 1, 0 ≤ U ≤ 1, 0 ≤ D ≤ 1},

and three boundary equilibria E0(0, 0), E1(0, β), E2(α, 0). The interior equilibria of Sys-
tem (2) are determined by the following equation:

(U − 1)(a−U)− f D = 0,
β− D + gU = 0.

(4)

Substituting D = gU + β into Equation (4), we obtain

F(U) = U2 + ( f g− α− 1)U + f β + α

and
F′(U) = 2U + ( f g− α− 1)U.

From F(U) = 0, we have

α =
U f g + U2 + β f −U

U − 1
. (5)

The Jacobian matrix of System (2) at any equilibrium E(U, D) of System (2) takes
the form

JE =

 a b

c d

,

where
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a = 4 U3 + (3D− 3 α− 6)U2 + (2 f D + 2 α + (2 + 2 α)(1− D))U
−( f D + α)(1− D),

b = U3 + ( f − 1− α)U2 + ( f (D− 1) + α + f D)U,
c = (r− rg)D2 + (rg(1−U)− r(gU + β))D,
d = 3 rD2 − (2 r(gU + β) + 2 r(1−U))D + r(gU + β)(1−U),

and Det(JE) = ad− bc, Tr(JE) = a + d.
Substituting (5) into Det(JE) and F′(U), we can rewrite Det(JE) and F′(U) as

Det(JE) = r(Ug + β)(Ug + U + β− 1)2UF′(U)

and

F′(U) =
U2 − β f − f g− 2 U + 1

U − 1
.

Therefore, from F(0) > 0 and F(1) > 0, we consider quadratic function F(U) to have
double zeros U = U∗ if F′(U∗) = 0, which means that System (2) admits a degenerate
equilibrium E∗(U∗, β + gU∗). Furthermore, if Tr(JE∗) = 0 and Det(JE∗) = 0, then we have

α = f g + 2U∗ − 1 =: α1,

β = (U2
∗− f g−2U∗+1)

f =: β1,

r = gU∗ f 2

( f gU∗+U2∗− f g−2U∗+1)
=: r1.

Therefore, System (2) admits a degenerate equilibrium E∗(U∗, β1 + gU∗).
In order to ensure 0 < α1 < 1, 0 < β1 < 1 and r1 > 0, the parameters f , g and

U∗ should satisfy max
{

1
2 −

1
2 f g, 1−

√
f g + f

}
< U∗ < min

{
1− 1

2 f g, 1−
√

f g
}

, g > 0,
f > 0 and 0 < f g < 1.

Additionally, equilibrium E∗(U∗, β1 + gU∗) should lie on the right triangle domain Ω,
so we have 1− f g− f < U∗ < 1. On the other hand, 1−

√
f g + f < 1− f g− f , and we

need to ensure 1−
√

f g > 1− f g− f , thus f > g
(g+1)2 holds.

Summing up the above, we have the following theorem:

Theorem 1. Based on g > 0, f > g
(g+1)2 , 0 < f g < 1 and

max
{

1
2
− 1

2
f g, 1− f g− f

}
< U∗ < min

{
1− 1

2
f g, 1−

√
f g
}

,

there exists a unique degenerate equilibrium E∗(U∗, β1 + gU∗) in system (2).

Combining above results with Theorem 2.1 in [12], we have the following theorem:

Theorem 2. Depending on condition for existence of equilibrium E∗, boundary equilibria of
system (2) have the following qualitative properties:
(i) The origin E0: (0, 0) is a saddle;
(ii) Equilibrium E1: (0, β1) is a stable node;
(iii) Equilibrium E2: (α1, 0) is an unstable node.

In the following, we determine type of equilibrium E∗.

Theorem 3. From condition for existence of degenerate equilibrium E∗ and

f g( f g + U2
∗ − 1) + 2U∗(U∗ − 1)2

f g + U∗ − 1
6= 0,

equilibrium E∗ is a cusp of codimension 2.
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Proof. Making a transformation (x, y) = (U−U∗, D− β1− gU∗), then system (2) becomes

dx
dt = a10x + a01y + a20x2 + a11xy + a02y2 + O(|(x, y)|3),
dy
dt = b10x + b01y + b20x2 + b11xy + b02y2 + O(|(x, y)|3),

(6)

where
a10 = −gU∗ (U∗ − 1)( f g + f + U∗ − 1),

a01 = U∗ (U∗ − 1)( f g + f + U∗ − 1),

a20 =
U∗3+( f−2)U∗2+(− f 2g2−2 f 2g+ f g− f+1)U∗+ f 2g2+ f 2g− f g

f ,

a11 = − f g + 2 U∗ f + U∗2 − f − 2 U∗ + 1,

a02 = U∗ f ,

b10 = −(U∗ − 1)( f g + f + U∗ − 1)g2U∗,
b01 = gU∗ (U∗ − 1)( f g + f + U∗ − 1),
b20 = − f g2U∗,

b11 = − (2 f g2+2 gU∗−2 g−U∗+1)gU∗ f
f g+U∗−1 ,

b02 = (2 f g+ f+2 U∗−2)gU∗ f
f g+U∗−1 .

Since a01 6= 0, we perform linear transformation x = X, y = − a10
a01

X + 1
a01

Y, then
System (6) becomes

dX
dt = Y + c20X2 + c11XY + c02Y2 + O(|(X, Y)|3),
dY
dt = d20X2 + d11XY + d02Y2 + O(|(X, Y)|3),

(7)

where
c20 = U∗ (U∗−1)( f g+ f+U∗−1)

f ,

c11 = 2 f gU∗− f g+2 U∗ f+U∗2− f−2 U∗+1
U∗ (U∗−1)( f g+ f+U∗−1) ,

c02 = f
U∗ (U∗−1)2( f g+ f+U∗−1)2 ,

d20 = −U∗2(U∗−1)2( f g+ f+U∗−1)2g
f ,

d11 =
g( f g+ f+U∗−1)( f g−U∗2+2 U∗−1)

f g+U∗−1 ,

d02 = f g
(U∗−1)( f g+U∗−1) .

By Remark 1 of Section 2.13 in [19], we obtain an equivalent system of System (7) in
the small neighborhood of (0, 0) as follows

dX
dt = Y + O(|(X, Y)|3),
dY
dt = d̄20X2 + d̄11XY + O(|(X, Y)|3),

(8)

where
d̄20 = d20 = −U∗2(U∗−1)2( f g+ f+U∗−1)2g

f < 0,

d̄11 = 2c20 + d11 =
( f g+ f+U∗−1)

(
f g( f g+U2

∗−1)+2U∗(U∗−1)2
)

( f g+U∗−1) f .

If
f g( f g + U2

∗ − 1) + 2U∗(U∗ − 1)2

f g + U∗ − 1
6= 0,

then d̄20d̄11 6= 0, which means that degenerate equilibrium E∗(U∗, gU∗ + β1) is a cusp of
codimension 2.

Setting α = 3
25 , β = 13

60 , f = 3
5 , g = 1

5 , r = 18
95 , the phase portrait of cusp of codimension

2 of is described with the help of Matlab; see Figure 1.
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Figure 1. When α = 3
25 , β = 13

60 , f = 3
5 , g = 1

5 , r = 18
95 , equilibrium E∗ is a cusp of codimension 2 in

System (2).

Remark 1. From [11], if doubt destroys comprehension, then f > 0 and g > 0; if doubt drives
comprehension, then f < 0 and g < 0. Therefore, according to sufficient condition for existence of
cusp of codimension 2, doubt destroys comprehension.

3. Analysis of Bogdanov–Takens Bifurcation

From Section 2, we know that E∗ is a cusp of codimension 2. In this section, we
investigate Bogdanov–Takens bifurcation around E∗.

Theorem 4. Under the condition for the existence of equilibrium E∗, which is a cusp of codimension
2, we choose α and r as bifurcation parameters. As the parameters (α, r) disturb around (α1, r1),
system (2) undergoes Bogdanov–Takens bifurcation in a small neighborhood of E∗.

Proof. We choose α and r as two bifurcation parameters and replace α and r with α1 + ε1
and r1 + ε2, respectively, in System (2). Then, we acquire the unfolding system of System (2):

U̇ = {U(U − 1)(α1 + ε1 −U)− f UD}{1− (U + D)},
Ḋ = (r1 + ε2){D(β1 − D) + gUD}{1− (U + D)}, (9)

where ε = (ε1, ε2) is a parameter vector in a small neighborhood of origin. Obviously,
when ε1 = ε2 = 0, System (9) has a unique positive equilibrium E∗, which is a cusp of
codimension 2. For simplicity, the universal unfolding will be obtained with the help of a
series of transformation in the following.

Making a translation transformation u1 = U −U∗, v1 = D− β1 − gU∗, equilibrium
E∗ will be translated into (0, 0), then System (9) becomes

du1
dt = â00(ε) + â10(ε)u1 + â01(ε)v1 + â20(ε)u2

1
+â11(ε)u1v1 + â02(ε)v2

1 + O(|(u1, v1)|3),
dv1
dt = b̂10(ε)u1 + b̂01(ε)v1 + b̂20(ε)u2

1
+b̂11(ε)u1v1 + b̂02(ε)v2

1 + O(|(u1, v1)|3),

(10)

where
â00(ε) = −U∗ ε1 (U∗−1)2( f g+ f+U∗−1)

f ,

â10(ε) = − (U∗−1)(2 U∗ f g− f g+3 f U∗+2 U∗2− f−3 U∗+1)ε1
f

− (U∗−1)( f 2g2U∗+ f 2gU∗+ f gU∗2−U∗ f g)
f ,

â01(ε) = −U∗ (U∗ − 1)ε1 + U∗ (U∗ − 1)( f g + f + U∗ − 1),



Axioms 2023, 12, 853 6 of 11

â20(ε) = − (U∗ f g− f g+3 f U∗+U∗2−2 f−2 U∗+1)ε1
f

U3
∗−(2− f )U2

∗−( f 2g2+2 f 2g− f g+ f−1)+ f 2g2+ f 2g− f g
f ,

â11(ε) = (1− 2 U∗)ε1 − f g + 2 f U∗ + U∗2 − f − 2 U∗ + 1,

â02(ε) = f U∗,

b̂10(ε) = − (U∗−1)( f g+ f+U∗−1)g(U∗ f g− f g+U∗2−2 U∗+1)ε2

f 2

−(U∗ − 1)( f g + f + U∗ − 1)g2U∗,

b̂01(ε) =
(U∗−1)( f g+ f+U∗−1)(U∗ f g− f g+U∗2−2 U∗+1)ε2

f 2

+(U∗ − 1)( f g + f + U∗ − 1)gU∗,

b̂20(ε) = − g(U∗ f g− f g+U∗2−2 U∗+1)ε2
f − f g2U∗,

b̂11(ε) = − (2 f g2+2 gU∗−2 g−U∗+1)(U∗ f g− f g+U∗2−2 U∗+1)ε2
( f g+U∗−1) f

− (2 f g2+2 gU∗−2 g−U∗+1)gU∗ f
f g+U∗−1 ,

b̂02(ε) =
(2 f g+ f+2 U∗−2)(U∗ f g− f g+U∗2−2 U∗+1)ε2

( f g+U∗−1) f

+ (2 f g+ f+2 U∗−2)gU∗ f
f g+U∗−1 .

To save space, the current expression consists of a previous expression when System (10)
undergoes each approximate identity transformation in the following.

Letting u2 = u1, v2 = du1
dt , System (10) can be written as

du2
dt = v2,

dv2
dt = ĉ00(ε) + ĉ10(ε)u2 + ĉ01(ε)v2 + ĉ20(ε)u2

2
+ĉ11(ε)u2v2 + ĉ02(ε)v2

2 + O(|(u2, v2)|3),
(11)

where

ĉ00(ε) = − 1
a3

01(ε)

(
â3

00(ε)â02(ε)â11(ε)− â2
00(ε)â2

01(ε)b̂02(ε)

−â2
00(ε)â01(ε)â02(ε)b̂01(ε) + 2â2

00(ε)â2
02(ε)b̂00(ε)

+2â00(ε)â2
01(ε)â02(ε)b̂00(ε)− â4

01(ε)b̂00(ε) + â00(ε)â3
01(ε)b̂01(ε)

)
,

ĉ10(ε) = 1
â3

01(ε)

(
2â2

00(ε)â02(ε)â11(ε)− â00(ε)â2
01(ε)â11(ε)

−2â00(ε)â2
01(ε)b̂02(ε)− 2â00(ε)â01(ε)â02(ε)b̂01(ε) + 4â00(ε)â2

02(ε)b̂00(ε)

+â3
01(ε)â10(ε) + â3

01(ε)b̂01(ε) + 2â2
01(ε)â02(ε)b̂00(ε)

)
,

ĉ01(ε) = − 1
â3

01(ε)

(
â00(ε)â02(ε)â11(ε)− â2

01(ε)â11(ε)− â2
01(ε)b̂02(ε)

−â01(ε)â02(ε)b̂01(ε) + 2â2
02(ε)b̂00(ε)

)
,

ĉ20(ε) = − 1
â3

01(ε)

(
â2

00(ε)â01(ε)â2
11(ε)− 2â2

00(ε)â02(ε)â10(ε)â11(ε)− â00(ε)â3
01(ε)b̂11(ε)

−2â00(ε)â2
01(ε)â02(ε)b̂10(ε) + 2â00(ε)â2

01(ε)â10(ε)b̂02(ε)

+2â00(ε)â01(ε)â02(ε)â10(ε)b̂01(ε) + 2â00(ε)â01(ε)â02(ε)â11(ε)b̂00(ε)

−4â00(ε)â2
02(ε)â10(ε)b̂00(ε) + â4

01(ε)b̂10(ε)− â3
01(ε)â10(ε)b̂01(ε)

+â3
01(ε)â11(ε)b̂00(ε)− 2â2

01(ε)â02(ε)â10(ε)b̂00(ε)
)
,

ĉ11(ε) = − 1
â3

01(ε)

(
â00(ε)â01(ε)â2

11(ε)− 2â00(ε)â02(ε)â10(ε)â11(ε)

−2â3
01(ε)â20(ε)− â3

01(ε)b̂11(ε)− 2â2
01(ε)â02(ε)b̂10(ε)

+â2
01(ε)â10(ε)â11(ε) + 2â2

01(ε)â10(ε)b̂02(ε)− 4â2
02(ε)â10(ε)b̂00(ε)

+2â01(ε)â02(ε)â10(ε)b̂01(ε) + 2â01(ε)â02(ε)â11(ε)b̂00(ε)
)
,
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ĉ02(ε) = − 1
â3

01(ε)

(
â00(ε)â2

01(ε)â11(ε)â20(ε)− â00(ε)â01(ε)â10(ε)â2
11(ε)

+â00(ε)â02(ε)â2
10(ε)â11(ε)− â4

01(ε)b̂20(ε) + â3
01(ε)â10(ε)b̂11(ε)

−â3
01(ε)â11(ε)b̂10(ε) + â3

01(ε)â20(ε)b̂01(ε)

+2â2
01(ε)â02(ε)â10(ε)b̂10(ε) + 2â2

01(ε)â02(ε)â20(ε)b̂00(ε)

−â2
01(ε)â2

10(ε)b̂02(ε)− â01(ε)â02(ε)â2
10(ε)b̂01(ε)

−2â01(ε)â02(ε)â10(ε)â11(ε)b̂00(ε) + 2â2
02(ε)â2

10(ε)b̂00(ε)
)
.

To remove v2
2 from System (11), introduce a new time variable τ with dt =

(
1 −

ĉ02(ε)u2
)
dτ and make u3 = u2, v3 = v2

(
1− ĉ02(ε)u2

)
, then System (11) becomes (rewriting

τ as t):
du3
dt = v3,

dv3
dt = d̂00(ε) + d̂10(ε)u3 + d̂01(ε)v3 + d̂20(ε)u2

3
+d̂11(ε)u3v3 + O(|(u3, v3)|3),

(12)

where
d̂00(ε) = ĉ00(ε), d̂10(ε) = ĉ10(ε)− 2ĉ00(ε)ĉ02(ε),
d̂01(ε) = ĉ01(ε), d̂20(ε) = ĉ20(ε)− 2ĉ02(ε)ĉ10(ε) + ĉ00(ε)ĉ2

02(ε),
d̂11(ε) = −ĉ01(ε)ĉ02(ε) + ĉ11(ε).

From d̂20(0) = − (U∗−1)2( f g+ f+U∗−1)2gU∗2

f , when εi (i = 1, 2) are small, we have

d̂20(ε) < 0. Therefore, d̂20(ε) can be reduced into −1 with the following coordinates change:

u4 = u3, v4 =
v3√
−d̂20(ε)

, τ =
√
−d̂20(ε)t,

then System (12) can be transformed into (rewriting τ as t)

du4
dt = v4,

dv4
dt = ê00(ε) + ê10(ε)u4 + ê01(ε)v4 − u2

4 + ê11(ε)u4v4 + O(|(u4, v4)|3),
(13)

where

ê00(ε) = − d̂00(ε)

d̂20(ε)
, ê10(ε) = − d̂10(ε)

d̂20(ε)
, ê01(ε) =

d̂01(ε)√
−d̂20(ε)

, ê11(ε) =
d̂11(ε)√
−d̂20(ε)

.

Making the transformation

u5 = u4 −
ê10(ε)

2
, v5 = v4,

u4 in System (13) can be removed, then System (13) becomes

du5
dt = v5,

dv5
dt = f̂00(ε) + f̂01(ε)v5 − u2

5 + f̂11(ε)u5v5 + O(|(u5, v5)|3),
(14)

where

f̂00(ε) = ê00(ε) +
1
4 ê2

10(ε), f̂01(ε) = ê01(ε) +
1
2 ê10(ε)ê11(ε), f̂11(ε) = ê11(ε).
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From f̂11(0) =
( f g+ f+U∗−1)

(
f g( f g+U2

∗−1)+2U∗(U∗−1)2
)

( f g+U∗−1) f 6= 0, when εi (i = 1, 2) are small,

we have f̂11(ε) 6= 0. Employing the change of variables again,

u6 = f̂ 2
11(ε)u5, v6 = − f̂ 3

11(ε)v5, τ = − 1
f̂11(ε)

t,

we obtain the universal unfolding of System (9),

du6
dτ = v6,
dv6
dτ = ĝ00(ε) + ĝ01(ε)v6 − u2

6 + u6v6 + O(|(u6, v6)|3),
(15)

where
ĝ00(ε) = − f̂00(ε) f̂ 4

11(ε), ĝ01(ε) = − f̂01(ε) f̂11(ε).

The transversality condition∣∣∣∣∂(ĝ00, ĝ01)

∂(ε1, ε2)

∣∣∣∣
ε1=ε2=0

=

(
f g( f g + U2

∗ − 1) + 2U∗(U∗ − 1)2)5

( f g + U∗ − 1)4(U∗ − 1)3 f 4U∗6g3
6= 0

holds. Therefore, from the Bogdanov–Takens bifurcation theorem [19,20], System (2)
undergoes a Bogdanov–Takens bifurcation of codimension 2, which includes a sequence of
bifurcations of codimension 1: saddle-node bifurcation, Hopf bifurcation and homoclinic
bifurcation, when the parameters ε1 and ε2 vary in a small neighborhood of (0, 0).

Turning to Matlab, we provide some data groups to simulate the dynamic process of
Bogdanov–Takens bifurcation to support the theoretical results. Let U∗ = 1

2 , f = 3
5 and

g = 1
5 , then α1 = 3

25 , β1 = 13
60 , r1 = 18

95 and System (9) becomes

U̇ = {U(U − 1)( 3
25 + ε1 −U)− 3

5 UD}{1− (U + D)},
Ḋ = ( 18

95 + ε2){D( 13
60 − D) + 1

5 UD}{1− (U + D)}. (16)

System (16) will present different phase portraits according to following six examples
for disturbance of ε1 and ε2.

Example 1: System (16) admits a cusp of codimension 2 if (ε1, ε2) = (0, 0); see Figure 1.
Example 2: there exists no equilibrium in System (16) if (ε1, ε2) = (0.001,−0.001); see

Figure 2a.
Example 3: set (ε1, ε2) = (−0.001,−0.074), System (16) admits an unstable focus and

a saddle; see Figure 2b.
Example 4: take (ε1, ε2) = (−0.001,−0.06), System (16) has a stable focus surrounded

by an unstable limit cycle; see Figure 2c.
Example 5: System (16) has an unstable homoclinic loop consisted of a saddle and an

unstable homoclinic orbit if (ε1, ε2) = (−0.001,−0.05); see Figure 2d.
Example 6: if (ε1, ε2) = (−0.001,−0.04), there is a stable focus and a saddle in

System (16); see Figure 2e.
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Figure 2. Phase portrait of (16) under disturbance of ε1 and ε2. (a) There exists no equilibrium in
System (16) if (ε1, ε2) = (0.001,−0.001); (b) System (16) admits an unstable focus and a saddle if
(ε1, ε2) = (−0.001,−0.074); (c) System (16) has an unstable limit cycle if (ε1, ε2) = (−0.001,−0.06);
(d) System (16) has an unstable homoclinic loop if (ε1, ε2) = (−0.001,−0.05); (e) there is a stable
focus and a saddle in System (16) if (ε1, ε2) = (−0.001,−0.04).

4. Conclusions

The dynamical behavior of System (1) around the unique positive equilibrium E∗
was investigated in this manuscript. The case that the Jacobian matrix JE∗ has two zero
eigenvalues is focused. We proved that equilibrium E∗ is a cusp of codimension 2 through
linear transformation and normal form theory [20].

From Theorems 1 and 3, in order to ensure that System (1) admits a cusp of codi-
mension 2, parameters f and g must satisfy f > 0 and g > 0. Therefore, doubt should
be regarded as restraining force and destroys comprehension in the learning process if
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System (1) has a cusp of codimension 2 and undergoes Bogdanov–Takens bifurcation of
codimension 2.

By Theorem 4, System (1) undergoes Bogdanov–Takens bifurcation of codimension 2,
which leads to potentially dramatic changes in the system, hence bifurcation of codimension
2 should be not ignored. Due to a saddle-node bifurcation, the number of the interior
equilibrium is zero, one, or two as parameters α and r are disturbed.Thus, there are some
values of parameters such as that understanding and doubt co-exist in the form of interior
equilibrium for different initial values. Through a Hopf bifurcation, there is a limit cycle
appearing in System (1). As seen in Figure 2c, an unstable limit cycle is produced by the
Hopf bifurcation. When all initial values lying inside the limit cycle, the orbit will tend to
the interior equilibrium at last. That is, understanding and doubt will reach a steady state.
In other words, knowledge can not be absorbed fully; once the learner decreases the time
to understand, doubts regarding the knowledge will increase. From homoclinic bifurcation,
a homoclinic loop appears in System (1). As seen in Figure 2d, an unstable homoclinic loop
is consisted of a saddle and an unstable homoclinic orbit, which means that understanding
and doubt co-exist in the form of an interior equilibrium for all initial values lying inside
the homoclinic loop.

It is noteworthy that when all initial values lying outside the unstable limit cycle
and unstable homoclinic loop, combining with Theorem 2, the orbit will tend to the
equilibrium E1. That is, if enough time was taken, the learner will feel confident with the
knowledge at last.

Above all, the occurrences of Bogdanov–Takens bifurcation yields to more complex
dynamical behavior, including bifurcations of codimension one. It is very sensitive to the
choice of coefficient of difficulty in studying material and the speed of the learning process,
which indicates that the selection of learning and teaching methods should be put forward
higher requirements for students and teachers in education.

However, the existence condition of Bogdanov–Takens of codimension 2 is suffi-
cient and the Bogdanov–Takens bifurcation of higher codimensions in the distribution
functions [21] is worth studying in the future.
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