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Abstract: Modeling and predicting time-to-event phenomena in engineering, sports, and medical
sectors are very crucial. Numerous models have been proposed for modeling such types of data sets.
These models are introduced by adding one or more parameters to the traditional distributions. The
addition of new parameters to the traditional distributions leads to serious issues, such as estimation
consequences and re-parametrization problems. To avoid such problems, this paper introduces a
new method for generating new probability distributions without any additional parameters. The
proposed method may be called a weighted cosine-G family of distributions. Different distributional
properties of the weighted cosine-G family, along with the maximum likelihood estimators, are
obtained. A special model of the weighted cosine-G family, by utilizing the Weibull model, is
considered. The special model of the weighted cosine-G family may be called a weighted cosine-
Weibull distribution. A simulation study of the weighted cosine-Weibull model is conducted to
evaluate the performances of its estimators. Finally, the applications of the weighted cosine-Weibull
distribution are shown by considering three data sets related to the time-to-event phenomena.

Keywords: cosine function; trigonometric function; Weibull distribution; distributional properties;
simulation; time-to-event data; statistical modeling

MSC: 62N01, 62N02

1. Introduction

The literature on distribution theory contains a series of probability distributions for
analyzing and predicting real phenomena in various applied areas, such as the healthcare
and biomedical sectors, engineering sector, actuarial and management sciences, education,
and hydrology [1–8]. However, no particular probability model is appropriate for analyzing
and predicting every phenomenon. Therefore, every year, the impetus to develop new
probability models with higher distributional flexibility is growing [9].

The increased interest of researchers in data analysis and modeling motivates re-
searchers to look for new approaches (new family of distributions). Therefore, researchers
have been trying to look for new methods to obtain updated versions of the existing models
with greater distributional flexibility. Most of the new methods developed for the deriva-
tion of new probability distributions contain additional parameters, ranging from one to
seven or more [10]. As the number of the parameters increases, the new resultant probabil-
ity model faces two major problems: (i) the fact that estimation consequences arise, and
(ii) re-parametrization.

There are only a few methods that are developed without any additional parameters.
In this regard, Kumar et al. [11] introduced a new class of distribution by combining
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a baseline cumulative distribution function (CDF) with a sine function, named the SS
transformation. For any baseline CDF G(t; ηηη), this is defined as F(t; ηηη) = sin

[
π
2 G(t; ηηη)

]
,

where ηηη is a parameter vector. Mahmood et al. [12] proposed another family of distributions
using a trigonometric function, called a new sine-G family. For any baseline G(t; ηηη), a new
sine-G family is defined as F(t; ηηη) = sin

[
π
4 G(t; ηηη)(1 + G(t; ηηη))

]
. Another contribution to

such families of distributions was introduced by Ampadu [13], by means of developing the
hyperbolic Tan-X family. For any baseline G(t; ηηη), the hyperbolic Tan-X family is defined
as F(t; ηηη) = Tanh[3πG(t; ηηη)]. For more studies on the development of probabilistic models
based on trigonometric functions, please refer to [14–18].

Taking motivation from the above discussion, we also propose a new method for
obtaining new probability models without adding additional parameters. The proposed
method may be called weighted cosine-G (WC-G) distributions. The WC-G method signifi-
cantly improves the fitting power of the existing models, as is shown in Section 5.

Definition 1. Let S(t; ηηη) be the survival function (SF) of a continuous baseline probability model
having CDF G(t; ηηη) and probability density function (PDF) g(t; ηηη); that is S(t; ηηη) = 1− G(t; ηηη).
Then, the CDF F(t; ηηη) of the WC-G family is given by

F(t; ηηη) =
e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
− 1

e− 1
, t ∈ R, (1)

with PDF f (t; ηηη) is

f (t; ηηη) =
πg(t; ηηη) sin

[
πG(t;ηηη)

1+G(t;ηηη)

]
(e− 1)[1 + G(t; ηηη)]2

e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
, t ∈ R, (2)

where g(t; ηηη) = d
dt G(t; ηηη).

Furthermore, the survival function (SF) S(t; ηηη), hazard function (HF) h(t; ηηη), and cu-
mulative HF H(t; ηηη) of the WC-G distributions are given by

S(t; ηηη) =
e− e

(
1−cos

[
πG(t;ηηη)

1+G(t;ηηη)

])
e− 1

, t ∈ R,

h(t; ηηη) =
πg(t; ηηη) sin

[
πG(t;ηηη)

1+G(t;ηηη)

]
[1 + G(t; ηηη)]2

(
e− e

(
1−cos

[
πG(t;ηηη)

1+G(t;ηηη)

])) e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
, t ∈ R,

and

H(t; ηηη) = − log

 e− e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
e− 1

, t ∈ R,

respectively.
The next section introduces a special member of the WC-G family, called the weighted

cosine-Weibull (WC-Weibull) distribution. The WC-Weibull distribution is obtained by
taking the Weibull model as a baseline model of the WC-G family. Some basic functions of
the WC-Weibull distribution are provided in Section 2. Furthermore, visual illustrations
(including the plots of PDF and HF) of the WC-Weibull distribution are also provided.
Different distributional properties of the WC-Weibull distribution are derived. A simulation
study of the WC-Weibull distribution is conducted for three different sets of parameters
to evaluate the performances of the estimators. The evaluation of the estimators of the
WC-Weibull distribution is conducted by adopting two criteria, called the mean square
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error and average bias. Then, we show the applicability of the WC-Weibull distribution by
considering two data sets from the medical sector.

2. The WC-Weibull Distribution

Here, we provide a complete description of the WC-Weibull distribution with support
(0, ∞) using G(t; ηηη) as a CDF of the Weibull model given by

G(t; ηηη) = 1− e−γtθ
, t ≥ 0, θ, γ > 0, (3)

with PDF

g(t; ηηη) = θγtθ−1e−γtθ
, t > 0,

where ηηη = (θ, γ).
Thus, our goal is to construct an updated form of Equation (3) with greater distri-

butional flexibility. Using Equation (3) in Equation (1), we obtain the CDF F(t; ηηη) of the
WC-Weibull distribution, given by

F(t; ηηη) =
e

1−cos

 π

(
1−e−γtθ

)
2−e−γtθ


− 1

e− 1
, t ≥ 0, (4)

and PDF f (t; ηηη)

f (t; ηηη) =

πθγtθ−1e−γtθ
sin

[
π
(

1−e−γtθ
)

2−e−γtθ

]
(e− 1)

[
2− e−γtθ

]2 e

1−cos

 π

(
1−e−γtθ

)
2−e−γtθ


, t > 0. (5)

Furthermore, the SF and HF of the WC-Weibull distribution are, respectively, ex-
pressed by

S(t; ηηη) =
e− e

1−cos

 π

(
1−e−γtθ

)
2−e−γtθ


e− 1

, t > 0,

and

h(t; ηηη) =

πθγtθ−1e−γtθ
sin

[
π
(

1−e−γtθ
)

2−e−γtθ

]
e− e

1−cos

 π

(
1−e−γtθ

)
2−e−γtθ


[2− e−γtθ

]2

e

1−cos

 π

(
1−e−γtθ

)
2−e−γtθ


, t > 0.

To show the distributional flexibility of the WC-Weibull distribution, we provide some
graphs of the PDF f (t; ηηη) of the WC-Weibull distribution in Figure 1. The plots of f (t; ηηη) of
the WC-Weibull distribution are obtained for (i) θ = 2.9, and γ = 0.3 (red curve), (ii) θ = 2.5,
and γ = 2.8 (blue curve), (iii) θ = 0.5, and γ = 2.9 (black curve), and (iv) θ = 7.2, and
γ = 0.005 (green curve). From the plots of f (t; ηηη) of the WC-Weibull distribution, it is obvious
that the WC-Weibull distribution is very flexible, as it captures the following four different
patterns of f (t; ηηη): (i) symmetrical pattern (red curve), (ii) right-skewed pattern (blue curve),
(iii) decreasing pattern (black curve), and (iv) left-skewed pattern (green curve).
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Furthermore, the plots of h(t; ηηη) of the WC-Weibull distribution are also presented in
Figure 1. The plots of h(t; ηηη) of the WC-Weibull distribution are obtained for (i) θ = 0.4,
and γ = 1.2 (red curve), (ii) θ = 1.1, and γ = 1.3 (gold curve), (iii) θ = 0.5, and γ = 2.9
(black curve), (iv) θ = 1.01, and γ = 0.8 (green curve), and (v) θ = 1.01, and γ = 0.6
(blue curve). From the plots of h(t; ηηη) of the WC-Weibull distribution, it is obvious that the
WC-Weibull distribution captures the following different patterns of h(t; ηηη): (i) increasing
patterns (green and gold curves), (ii) decreasing patterns (black and red curves), and
(iii) unimodal pattern (blue curve).
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Figure 1. The plots of f (t; ηηη) and h(t; ηηη) of the WC-Weibull model for different values of θ and γ.

3. Distributional Properties

In this section, we derive some distributional properties of the WC-G family of distribu-
tions. These properties include the quantile function, quartiles, skewness, kurtosis, and the
rth moment. The motivation for deriving the quantiles, moments and other properties of the
distribution is to study the characteristics and nature of the distribution. These are useful
to obtain skewness and kurtosis of the distribution. Based on the measure of skewness,
one can study the nature of the distribution, such as the symmetric or asymmetric curve of
the distribution. Similarly, the peakedness of the distribution can be studied based on the
measure of kurtosis, namely mesokurtic, platykurtic, or leptokurtic.

3.1. The Quantile Function

The quantile function (QF) of the WC-G family of distributions, say Q(u), is given by

Q(u) = G−1
(

cos−1(1− log[u(e− 1) + 1])
π − cos−1(1− log[u(e− 1) + 1])

)
, (6)

where 0 < u < 1.
The expression in Equation (6) shows that the QF of the WC-G distributions is in an

explicit form, which helps to generate random numbers easily.

3.2. The Median and Quartile Measures

The median (which is also known as the second quartile) of the WC-G distributions is
obtained by replacing u = 1

2 in Equation (6), as given by

Q
(

1
2

)
= G−1

 cos−1
(

1− log
[

1
2 (e− 1) + 1

])
π − cos−1

(
1− log

[
1
2 (e− 1) + 1

])
.
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Furthermore, the 1st quartile and 3rd quartile of the WC-G distributions are obtained,
respectively, by using u = 1

4 and u = 3
4 in Equation (6). Henceforth, the 1st quartile and

3rd quartile of the WC-G distributions are given, respectively, by

Q
(

1
4

)
= G−1

 cos−1
(

1− log
[

1
4 (e− 1) + 1

])
π − cos−1

(
1− log

[
1
4 (e− 1) + 1

])
,

and

Q
(

3
4

)
= G−1

(
cos−1(1− log

[ 3
4 (e− 1) + 1

])
π − cos−1

(
1− log

[ 3
4 (e− 1) + 1

])).

The skewness (the Galton’s skewness (GS)) of the WC-G distributions is obtained
as follows:

GS =
Q6/8 − 2Q4/8 + Q2/8

Q6/8 −Q2/8
,

where the quantities Q6/8, Q4/8, and Q2/8 can be obtained by using u = 6
8 , 4

8 , and u = 2
8 in

Equation (6), respectively.
The kurtosis (the Moor’s kurtosis (MK)) of the WC-G distributions is obtained as follows:

MK =
Q7/8 −Q5/8 −Q1/8 + Q3/8

Q6/8 −Q2/8
,

where the quantities Q7/8, Q5/8, Q1/8, and Q3/8 can be obtained by using u = 7
8 , 5

8 , 1
8 ,

and u = 3
8 in Equation (6), respectively.

3.3. The rth Moment

The rth moment of the WC-G distributed random variable T with PDF f (t; ηηη), say µ′r,
is derived as

µ′r =
∫

Ω
tr f (t; ηηη)dt. (7)

Using Equation (2) in Equation (7), we obtain

µ′r =
∫

Ω
tr

πg(t; ηηη) sin
[

πG(t;ηηη)
1+G(t;ηηη)

]
(e− 1)[1 + G(t; ηηη)]2

e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
dt. (8)

As we know that

ex =
∞

∑
i=1

xi

i!
. (9)

Using x =
(

1− cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
in Equation (9), we obtain

e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
=

∞

∑
i=1

(
1− cos

[
πG(t;ηηη)

1+G(t;ηηη)

])i

i!
,

or

e
(

1−cos
[

πG(t;ηηη)
1+G(t;ηηη)

])
=

∞

∑
i=1

i

∑
j=0

(−1)j
(

i
j

)(cos
[

πG(t;ηηη)
1+G(t;ηηη)

])j

i!
. (10)

We also know that
1

(1 + x)2 =
∞

∑
k=1

(−1)kkxk−1. (11)
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Using x = [1 + G(t; ηηη)] in Equation (11), we derive

1

[1 + G(t; ηηη)]2
=

∞

∑
k=1

(−1)kk[1 + G(t; ηηη)]k−1,

or
1

[1 + G(t; ηηη)]2
=

∞

∑
k=1

k

∑
m=0

k(−1)k
(

k− 1
m

)
[G(t; ηηη)]m. (12)

Using Equations (10) and (12) in Equation (8), we obtain

µ′r = π
∞

∑
i=1

i

∑
j=0

∞

∑
k=1

k

∑
m=0

πk(−1)j+k(i
j)(

k−1
m )

(e− 1)

∫
Ω

trg(t; ηηη)[G(t; ηηη)]m sin
[

πG(t; ηηη)

1 + G(t; ηηη)

]

×
(

cos
[

πG(t; ηηη)

1 + G(t; ηηη)

])j
dt,

µ′r = π
∞

∑
i=1

i

∑
j=0

∞

∑
k=1

k

∑
m=0

πk(−1)j+k(i
j)(

k−1
m )

(e− 1)
κr,i,j,k,m(t; ηηη),

where

κr,i,j,k,m(t; ηηη) =
∫

Ω
trg(t; ηηη)[G(t; ηηη)]m sin

[
πG(t; ηηη)

1 + G(t; ηηη)

](
cos
[

πG(t; ηηη)

1 + G(t; ηηη)

])j
dt.

For different values of θ and γ, the numerical description of the moments, coefficient of
variation (CV), skewness, and kurtosis of the WC-Weibull distribution are presented in Table 1.

Table 1. Numerical description of certain key measures of the WC-Weibull distribution.

Parameters Measures

γ θ µ′
1 µ′

2 µ′
3 µ′

4 σ2 CV Skewness Kurtosis

0.25

0.5 39.8608 7667.83 3.66955× 106 3.28445× 109 6078.95 1.956 36.9047 74.8206
1.0 4.82182 39.8608 480.029 7667.83 16.6109 0.845251 3.55452 8.51061
2.0 2.02246 4.82182 13.123 39.8608 0.731455 0.422876 0.434448 3.44383
3.0 1.56719 2.65779 4.82182 9.27623 0.201703 0.286572 0.0722435 2.92154

0.7

0.5 5.08429 124.75 7614.9 869357. 98.9 1.956 36.9047 74.8206
1.0 1.72208 5.08429 21.8672 124.75 2.11874 0.845251 3.55452 8.51061
2.0 1.20865 1.72208 2.80088 5.08429 0.261234 0.422876 0.434448 3.44383
3.0 1.11191 1.33787 1.72208 2.3505 0.101533 0.286572 0.0722435 2.92154

2.0

0.5 0.622826 1.87203 13.9982 195.768 1.48412 1.956 36.9047 74.8206
1.0 0.602727 0.622826 0.937557 1.87203 0.259545 0.845251 3.55452 8.51061
2.0 0.715049 0.602727 0.579959 0.622826 0.0914319 0.422876 0.434448 3.44383
3.0 0.783595 0.664447 0.602727 0.579765 0.0504257 0.286572 0.0722435 2.92154

3.0

0.5 0.276811 0.369784 1.22892 7.63857 0.293159 1.956 36.9047 74.8206
1.0 0.401818 0.276811 0.277795 0.369784 0.115354 0.845251 3.55452 8.51061
2.0 0.583835 0.401818 0.31569 0.276811 0.0609546 0.422876 0.434448 3.44383
3.0 0.684533 0.507068 0.401818 0.337647 0.038482 0.286572 0.0722435 2.92154

4. Estimation and Simulation

In this section, we obtain the mathematical expressions of the maximum likelihood
estimators (MLEs)

(
θ̂MLE, γ̂MLE

)
of the WC-Weibull distribution. Besides deriving of the

mathematical expression of θ̂MLE, and γ̂MLE, we also provide a simulation study to assess
their performances (numerically and visually).
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4.1. Estimation

Assume a set (size n) of random samples, say T1, T2, . . . , Tn, taken from f (t; ηηη) of the
WC-Weibull distribution defined by Equation (5). Corresponding to f (t; ηηη), the likelihood
function (LF), say λ(θ, γ|tt, t2, . . . , tn), is given by

λ(θ, γ|tt, t2, . . . , tn) =
n

∏
i=1

f (ti; ηηη). (13)

Using Equation (5) in Equation (13), we obtain

λ(θ, γ|tt, t2, . . . , tn) =
n

∏
i=1

πθγtθ−1
i e−γtθ

i sin

π

(
1−e−γtθi

)
2−e−γtθi


(e− 1)

[
2− e−γtθ

i

]2 e

1−cos

 π

(
1−e
−γtθi

)

2−e
−γtθi




. (14)

Corresponding to λ(θ, γ|tt, t2, . . . , tn) in Equation (14), the log LF (LLF), say `(θ, γ), is
given by

`(θ, γ) = n log π + n log θ + n log γ + (θ − 1)
n

∑
i=1

log ti − γ
n

∑
i=1

tθ
i − n log(e− 1)

− 2
n

∑
i=1

log
[
2− e−γtθ

i

]
+

n

∑
i=1

log sin

π
(

1− e−γtθ
i

)
2− e−γtθ

i


+

n

∑
i=1

1− cos

π
(

1− e−γtθ
i

)
2− e−γtθ

i

.

The partial derivatives of `(θ, γ) are given by

∂

∂θ
`(θ, γ) =

n
θ
+

n

∑
i=1

log ti − γ
n

∑
i=1

(log ti)tθ
i − 2γ

n

∑
i=1

(log ti)tθ
i e−γtθ

i[
2− e−γtθ

i

]
+ πγ

n

∑
i=1

cot

π
(

1− e−γtθ
i

)
2− e−γtθ

i

 (log ti)tθ
i e−γtθ

i(
2− e−γtθ

i

)2

+ πγ
n

∑
i=1

sin

π
(

1− e−γtθ
i

)
2− e−γtθ

i

 (log ti)tθ
i e−γtθ

i(
2− e−γtθ

i

)2 ,

and

∂

∂γ
`(θ, γ) =

n
γ
−

n

∑
i=1

tθ
i −

n

∑
i=1

2tθ
i e−γtθ

i[
2− e−γtθ

i

] + π
n

∑
i=1

cot

π
(

1− e−γtθ
i

)
2− e−γtθ

i

 tθ
i e−γtθ

i(
2− e−γtθ

i

)2

+ π
n

∑
i=1

sin

π
(

1− e−γtθ
i

)
2− e−γtθ

i

 tθ
i e−γtθ

i(
2− e−γtθ

i

)2 .

Equating ∂
∂θ `(θ, γ) and ∂

∂γ `(θ, γ) to zero, and solving, we obtain, respectively, the MLEs(
θ̂MLE, γ̂MLE

)
of the parameters (θ, γ) of the WC-Weibull distribution. As we can see, the

expressions ∂
∂θ `(θ, γ) and ∂

∂γ `(θ, γ) of the WC-Weibull distribution are not in explicit forms. So,

to ensure the uniqueness of θ̂MLE and γ̂MLE, we obtain the profiles of their LLF; see Section 5.
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4.2. Simulation

This subsection evaluates the behaviors of θ̂MLE and γ̂MLE of the WC-Weibull dis-
tribution. The evaluation of θ̂MLE and γ̂MLE was performed by conducting a simulation
study (SS). The SS was conducted with the help of R-script, by means of generating random
numbers from the WC-Weibull distribution using the inverse CDF approach.

The SS was carried out for θ = 1.4, γ = 1.0, θ = 0.9, γ = 1.2, and θ = 1.1, γ = 0.8. For
a random sample of size, say n = 50, 100, 150, 200, . . . , 1000, the simulation results were
simulated 1000 times. Out of these 1000 iterations, the simulation results were reported for
n = 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

We considered two statistical measures as decisive tools to observe the performances
of θ̂MLE and γ̂MLE. These measures included the bias and mean square error (MSE) with
mathematical expressions given, respectively, by

Bias(η̂ηηMLE) =
1

1000

1000

∑
i=1

(η̂ηηi − ηηη),

and

MSE(η̂ηηMLE) =
1

1000

1000

∑
i=1

(η̂ηηi − ηηη)2.

Corresponding to (i) θ = 0.5, γ = 1, (ii) θ = 1.5, γ = 1, and (iii) θ = 1.5, γ = 1,
the simulation results are reported in Tables 2–4 (numerical illustration) and in Figures 2–4
(visual illustration). Based on the given facts in Tables 2–4 and Figures 2–4, we can see that
as n increased (i.e., as n −→ ∞), the

• values of θ̂MLE and γ̂MLE became closer to the true values.
• the MSE of θ̂MLE and γ̂MLE decreased to zero.
• the bias of θ̂MLE and γ̂MLE decayed to zero.

Table 2. The simulation results (numerical illustration) of the WC-Weibull distribution for θ = 1.4
and γ = 1.

w Parameters MLEs MSEs Biases

50 θ 1.4296460 0.02405948 0.02964635
γ 1.0431000 0.03529194 0.04309999

100 θ 1.4212070 0.01200113 0.02120715
γ 1.0130417 0.01491238 0.01304166

200 θ 1.4111950 0.00610701 0.01119543
γ 1.0108342 0.00682204 0.01083417

300 θ 1.4081410 0.00375586 0.00814085
γ 1.0101036 0.00518498 0.01010361

400 θ 1.4051080 0.00297678 0.00510784
γ 1.0051150 0.00348963 0.00511498

500 θ 1.4036400 0.00241264 0.00364035
γ 1.0023226 0.00277201 0.00232259

600 θ 1.4024130 0.00192576 0.00241314
γ 1.0052975 0.00220275 0.00529752

700 θ 1.4023780 0.00169136 0.00237846
γ 0.9983985 0.00209227 −0.00160147

800 θ 1.4015180 0.00132295 0.00151838
γ 1.0030077 0.00186708 0.00300772

900 θ 1.4025340 0.00123326 0.00253402
γ 1.0011655 0.00173252 0.00116550

1000 θ 1.4027230 0.00113616 0.00272319
γ 0.9995966 0.00133558 −0.00040337
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Figure 2. The simulation results (visual illustration) of the WC-Weibull distribution for θ = 1.4 and
γ = 1.

Table 3. The simulation results (numerical illustration) of the WC-Weibull distribution for θ = 0.9
and γ = 1.2.

w Parameters MLEs MSEs Biases

50 θ 0.9301292 0.010420608 0.030129186
γ 1.2587990 0.054114017 0.058799380

100 θ 0.9190032 0.004904806 0.019003196
γ 1.2302100 0.023946464 0.030209555

200 θ 0.9083318 0.002087803 0.008331841
γ 1.2147470 0.009057488 0.014747452

300 θ 0.9067783 0.001287310 0.006778291
γ 1.2107980 0.006254901 0.010797619

400 θ 0.9048156 0.000789564 0.004815557
γ 1.2079350 0.003876875 0.007935161

500 θ 0.9015265 0.000492410 0.001526458
γ 1.2020270 0.002638221 0.002026584

600 θ 0.9035450 0.000448842 0.003544961
γ 1.2037500 0.001965831 0.003750256

700 θ 0.9027654 0.000369818 0.002765412
γ 1.2025920 0.001510795 0.002592192

800 θ 0.9020800 0.000248739 0.002080045
γ 1.2008570 0.001217765 0.000856731

900 θ 0.9017151 0.000199939 0.001715065
γ 1.2028740 0.001146012 0.002873864

1000 θ 0.9026201 0.000202154 0.002620059
γ 1.2004670 0.000825658 0.000466553
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Figure 3. The simulation results (visual illustration) of the WC-Weibull distribution for θ = 0.9 and
γ = 1.2.
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Table 4. The simulation results (numerical illustration) of the WC-Weibull distribution for θ = 1.1
and γ = 0.8.

w Parameters MLEs MSEs Biases

50 θ 1.1307770 0.017107187 0.030776790
γ 0.8234098 0.019228798 0.002340984

100 θ 1.1162240 0.007458450 0.016223649
γ 0.8115002 0.009817093 0.001150019

200 θ 1.1089390 0.003489588 0.008939034
γ 0.8071731 0.004698275 0.000717306

300 θ 1.1080430 0.002455605 0.008043088
γ 0.8028852 0.002875517 0.000288516

400 θ 1.1057100 0.001785741 0.005709626
γ 0.8017098 0.002251494 0.000170975

500 θ 1.1046660 0.001251863 0.004666320
γ 0.8029802 0.001741128 0.000298020

600 θ 1.1028690 0.001034179 0.002868828
γ 0.8000814 0.001298472 0.000008142

700 θ 1.1026830 0.000934220 0.002683266
γ 0.8024500 0.001270398 0.000245001

800 θ 1.1021630 0.000702283 0.002163235
γ 0.8003387 0.001051193 0.000033872

900 θ 1.1028780 0.000730588 0.002878359
γ 0.8012919 0.000900604 0.000129185

1000 θ 1.1021200 0.000572035 0.002120053
γ 0.8009227 0.000773674 0.000009226
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Figure 4. The simulation results (visual illustration) of the WC-Weibull distribution for θ = 1.1 and
γ = 0.8.

5. Applications to Medical Data Sets

In this section, we analyze three practical applications (i.e., three data sets) using the
WC-Weibull distribution to illustrate its applicability in the medical sector. These data sets
are taken from the medical sector and represent the times until the events occur. In the next
subsection, we provide a complete description of these data sets.

5.1. Description of the Data Sets

The first data set (onward, it is expressed as Data 1) represents the remission times of
128 patients. These patients were suffering from bladder cancer. This data set was originally
reported by [19].

The second data set (onward, it is expressed as Data 2) represents the survival times of
72 guinea pigs. These pigs were infected with a disease called the virulent tubercle bacilli.
In recent times, Data 2 has been considered by numerous researchers, for example, see [20,21].

The third data set (onward, it is expressed as Data 3) represents the survival times
of 46 patents. These patients were given chemotherapy treatment. For a more detailed
description of Data 3, we refer to [22,23].
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Corresponding to Data 1, Data 2, and Data 3, some basic descriptive plots are presented
in Figure 5, Figure 6 and Figure 7, respectively. These descriptive plots are:

• Kernel density, which provides a smooth curve that represents the distribution of the
data, allowing for insights into its shape, central tendency, and variability.

• Histogram, which is a basic graphical representation of the distribution of a variable.
It divides the range of values into intervals, or bins, and displays the frequency or
density of data points falling within each bin.

• Box plot, which provides a concise summary of the distribution of a variable. It dis-
plays key statistical measures, including the median, quartiles, and potential outliers.

• Violin plot, which combines the features of a box plot and a kernel density plot. It
presents a mirrored density plot on each side of a central box plot, providing insights
into both the summary statistics and the distributional shape of the data.

0 20 40 60 80

0
.0

0
0

.0
4

0
.0

8

Kernel density

(a)

D
e

n
s
it
y

Histogram

(b)

F
re

q
u

e
n

c
y

0 20 40 60 80

0
2
0

4
0

6
0

8
0

0 20 40 60 80

Box plot

(c)

Mean point

Distribution of the data

0
2

0
4

0
6

0
8

0

(d)

Violin plot

Figure 5. The kernel density (a), histogram (b), box plot (c), and violin plot (d) of Data 1.
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Figure 6. The kernel density (a), histogram (b), box plot (c), and violin plot (d) of Data 2.
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Figure 7. The kernel density (a), histogram (b), box plot (c), and violin plot (d) of Data 3.

5.2. The Rival Distributions

In this subsection, we discuss some rival distributions that were selected to com-
pare with the WC-Weibull distribution using the medical data sets (i.e., Data 1, Data 2,
and Data 3). These distributions were selected with the aim of showing the superior fitting
power of the WC-Weibull distribution over some existing distributions in the literature.
The rival distributions included the following: (i) Weibull distribution, (ii) new extended
exponential Weibull (NEE-Weibull) distribution, and (iii) new alpha cosine Weibull (NAC-
Weibull) distribution. The Weibull distribution was considered as a rival distribution of the
proposed model because the proposed model is an extension of the Weibull distribution.
The reasoning behind this was to show whether the proposed model performed better than
the Weibull distribution or not. The other two competitive distributions were selected as
they also have the Weibull distribution as a baseline model.

The CDFs of these rival distributions are given, respectively, by

G(t; ηηη) = 1− e−γtθ
, t ≥ 0, θ, γ > 0,

G(t; β, ηηη) = 1− βe−γtθ

β + 1− e−γtθ
, t ≥ 0, θ, γ, β > 0,

and

G(t; α, ηηη) =
α

cos
(

π
2 e−γtθ

)
− 1

α− 1
, t ≥ 0, θ, γ, α > 0, α 6= 1.

5.3. The Decisive Tools

This subsection offers a description of the decisive tools that were implemented to check
the performances of the WC-Weibull and other rival distributions. The decisive tools that were
considered in this paper consisted of information criteria (IC) and goodness-of-fit tests. The IC
included the following: Akaike IC (AIC) with mathematical expression 2k− 2`(.), Consistent
AIC (CAIC) calculated by 2nk

n−k−1 − 2`(.), Bayesian IC (BIC) obtained by k log(n)− `(.) and
Hannan–Quinn IC (HQIC) with mathematical formula 2k log[log(n)]− 2`(.).

In the formulae of IC, the term k represents the model parameter(s), n indicates the
sample size, and `(.) represents the LLF. The goodness-of-fit tests included the following:

• Anderson Darling (AD) test, having the mathematical formula

−n− 1
n

n

∑
i=1

(2i− 1)[log G(ti) + log(1− G(tn−i+1))],
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• Cramer-Von-Messes (CM) test, computed as

1
12n

+
n

∑
i=1

[
2i− 1

2n
− G(ti)

]2
,

• Kolmogorov-Smirnov (KS) test, obtained as

supt[Gn(t)− G(t)].

In the formulae of the goodness-of-fit tests, the terms i represent the ith sample in the
data, when the data is ordered in an increasing way, Gn(t) represents the empirical CDF,
G(t) is the CDF of a probability distribution and supt represents the supremum of the set
of distances between Gn(t) and G(t). In addition to the above decisive tools, the p-value
was also computed for all the fitted distributions.

Among the possible set of probability distributions, the best-suited distribution was
the one in which the numerical values of the decisive tools was lower and in which the
p-value was higher than in its rival distributions.

5.4. Analysis of First Real Data Set

In this subsection, we provide the numerical results of the MLEs, decisive tools,
and some visual description of the fitting power of the WC-Weibull and the rival distribu-
tions using Data 1.

Corresponding to Data 1, the values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE of the fitted
models are reported in Table 5. The visual illustration of the profiles of the LLF of θ̂MLE
and γ̂MLE of the WC-Weibull distribution are provided in Figure 8. These plots show the
uniqueness of the θ̂MLE and γ̂MLE of the WC-Weibull distribution. Figure 8 reveals that the
estimated parameters were the maximization of the LLF of the WC-Weibull distribution.

Using Data 1, the values of the decisive measures of the fitted distributions are pro-
vided in Table 6. For the WC-Weibull distribution, the values of the decisive measures were
CM = 0.0568, AD = 0.3645, KS = 0.0497, p-value = 0.9089, AIC = 826.3411, CAIC = 826.4371,
BIC = 832.0452, and HQIC = 828.6587. Looking at Table 6, we can see that the WC-Weibull
distribution had the lowest values of the decisive measures and a high p-value, as compared
to the rival distributions. Thus, from Table 6, we can easily conclude that the WC-Weibull
distribution was the best model for Data 1.

Furthermore, we also considered different graphical approaches to confirm the close-
fitting capability of the WC-Weibull distribution. For the graphical comparison, we ob-
tained the plots of the estimated PDF, Kaplan–Meier survival plot, and empirical CDF;
see Figures 9 and 10. The visual illustrations in Figures 9 and 10, show that the WC-Weibull
distribution closely fit Data 1.

Table 5. The numerical values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE along with standard errors (presented
in the parenthesis) of the fitted models for Data 1.

Dist. θ̂ γ̂ β̂ α̂

WC-Weibull 0.85133 (0.05379) 0.18984 (0.02808) - -
Weibull 1.05357 (0.06668) 0.09165 (0.01832) - -
NEE-Weibull 1.20118 (0.20839) 0.04084 (0.02911) 0.92755 (0.52344) -
NAC-Weibull 0.75268 (0.10561) 0.17150 (0.07296) - 8.00968 (8.67012)
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Figure 8. The plots for the (a) log-likelihood profile of θ̂MLE and (b) log-likelihood profile of γ̂MLE of
the WC-Weibull distribution for Data 1.

Table 6. The values of the decisive tools of the WC-Weibull and its rival probability distributions for Data 1.

Dist. CM AD KS p-Value AIC CAIC BIC HQIC

WC-Weibull 0.0568 0.3645 0.0497 0.9089 826.3411 826.4371 832.0452 828.6587
Weibull 0.1324 0.7925 0.0742 0.4798 832.1903 832.2863 837.8943 834.5078
NEE-Weibull 0.0816 0.5073 0.0625 0.6993 831.1741 831.3676 837.7302 834.3505
NAC-Weibull 0.1248 0.7378 0.0667 0.6185 833.1293 833.3229 841.6854 836.6057
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Figure 9. The plots for the fitted PDF of (a) WC-Weibull distribution, (b) Weibull distribution,
(c) NEE-Weibull distribution, and (d) NAC-Weibull distribution for Data 1.
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Figure 10. The plots for the (a) fitted CDF and (b) fitted SF of the WC-Weibull and rival models for
Data 1.

5.5. Analysis of Second Real Data Set

In this subsection, we analyze Data 2 to show the superior performance of the WC-
Weibull distribution using the decisive measures and graphical illustration.

Using Data 2, the values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE of the WC-Weibull distribu-
tion and rival models are provided in Table 7. Corresponding to Data 2, the uniqueness of
θ̂MLE and γ̂MLE of the WC-Weibull distribution is shown visually in Figure 11. The plots
in Figure 11 show that the estimated parameters were the maximization of the LLF of the
WC-Weibull distribution.

Based on Data 2, the comparative results of the WC-Weibull distribution and com-
peting distributions are presented in Table 8. For Data 2, the decisive measures of the
WC-Weibull distribution were the following: CM = 0.1008, AD = 0.1008, KS = 0.0931,
p-value = 0.5602, AIC = 192.5671, CAIC = 192.7410, BIC = 197.1205, and HQIC = 194.3798.
Based on Table 8, it is obvious that the WC-Weibull distribution again outperformed the
Weibull, NEE-Weibull, and NAC-Weibull distributions.

For Data 2, the plots of the estimated PDF, Kaplan–Meier survival plot, and empirical
CDF of the WC-Weibull, Weibull, NEE-Weibull, and NAC-Weibull distributions are pro-
vided in Figures 12 and 13. These plots again confirmed the close-fitting capability of the
WC-Weibull distribution for Data 2.
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Figure 11. The plots for the (a) log-likelihood profile of θ̂MLE and (b) log-likelihood profile of γ̂MLE

of the WC-Weibull distribution for Data 2.

Table 7. The numerical values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE along with standard errors (presented
in the parenthesis) of the fitted models for Data 2.

Dist. θ̂ γ̂ β̂ α̂

WC-Weibull 1.47357 (0.12474) 0.46923 (0.06400) - -
Weibull 1.82376 (0.15865) 0.28374 (0.054179) - -
NEE-Weibull 2.34318 (0.61212) 0.07853 (0.11671) 0.31447 (0.55515) -
NAC-Weibull 1.22748 (0.20337) 0.45063 (0.14358) - 13.81467 (15.71335)
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Table 8. The values of the decisive tools of the WC-Weibull and its rival probability distributions for
Data 2.

Dist. CM AD KS p-Value AIC CAIC BIC HQIC

WC-Weibull 0.1008 0.6203 0.0931 0.5602 192.5671 192.7410 197.1205 194.3798
Weibull 0.1647 0.9702 0.1051 0.4032 195.5797 195.7536 200.1331 197.3924
NEE-Weibull 0.1191 0.6590 0.1069 0.3821 194.5930 194.9460 200.4230 196.3121
NAC-Weibull 0.1565 0.9033 0.1018 0.4444 196.4686 196.8215 203.2986 199.1876
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Figure 12. The plots for the fitted PDF of (a) WC-Weibull distribution, (b) Weibull distribution,
(c) NEE-Weibull distribution, and (d) NAC-Weibull distribution for Data 2.
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Figure 13. The plots for the (a) fitted CDF and (b) fitted SF of the WC-Weibull and rival models for
Data 2.

5.6. Analysis of Third Real Data Set

This subsection offers the third illustration of the WC-Weibull distribution using Data 3.
We again compare the fitting results of the WC-Weibull distribution with rival distributions.
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For Data 3, the values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE of the WC-Weibull distribution
with rival distributions are displayed in Table 9. To confirm the uniqueness of θ̂MLE and
γ̂MLE of the WC-Weibull distribution, the plots of the profiles of their LLF are provided
in Figure 14. Figure 14 shows that the estimated parameters maximized the LLF of the
WC-Weibull distribution.

After analyzing Data 3, the fitting results of the WC-Weibull, Weibull, NEE-Weibull,
and NAC-Weibull distributions are provided in Table 10. From Table 10, the values of the
decisive measures of the WC-Weibull distribution were given by CM = 0.0618, AD = 0.4282,
KS = 0.0936, p-value = 0.7909, AIC = 119.7899, CAIC = 120.0756, BIC = 123.4032, and
HQIC = 121.1369. The numerical results in Table 10, again confirmed the superior fitting of
the WC-Weibull distribution.

In addition to the third illustration of the WC-Weibull distribution in Table 10, we
again provide a visual comparison to assess its performance. Corresponding to Data 3,
the fitted plots are provided in Figures 15 and 16. The fitted plots show that the WC-Weibull
distribution also fit Data 3 very closely.
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Figure 14. The plots for the (a) log-likelihood profile of θ̂MLE and (b) log-likelihood profile of γ̂MLE

of the WC-Weibull distribution for Data 3.

Table 9. The numerical values of θ̂MLE, γ̂MLE, β̂MLE, and α̂MLE along with standard errors (presented
in the parenthesis) of the fitted models for Data 3.

Dist. θ̂ γ̂ β̂ α̂

WC-Weibull 0.81779 (0.08997) 1.01124 (0.13157) - -
Weibull 1.05460 (0.15865) 0.71613 (0.05417) - -
NEE-Weibull 1.26571 (0.20517) 0.38501 (0.21702) 0.62759 (0.73089) -
NAC-Weibull 1.08096 (0.20755) 0.33115 (0.19496) - 0.49814 (0.89409)

Table 10. The values of the decisive tools of the WC-Weibull and its rival probability distributions for
Data 3.

Dist. CM AD KS p-Value AIC CAIC BIC HQIC

WC-Weibull 0.0618 0.4282 0.0936 0.7909 119.7899 120.0756 123.4032 121.1369
Weibull 0.0813 0.5439 0.1102 0.6055 122.2476 122.5334 125.8610 123.5947
NEE-Weibull 0.0661 0.4523 0.0986 0.7215 121.6609 122.2462 127.0808 123.6814
NAC-Weibull 0.0803 0.5377 0.1115 0.5913 122.2846 122.8700 127.7046 124.3052
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Figure 15. The plots for the fitted PDF of (a) WC-Weibull distribution, (b) Weibull distribution,
(c) NEE-Weibull distribution, and (d) NAC-Weibull distribution for Data 3.
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Figure 16. The plots for the (a) fitted CDF and (b) fitted SF of the WC-Weibull and rival models for
Data 3.

6. Conclusions

In this paper, a new methodology was adopted and implemented to introduce a new
probabilistic approach without any additional parameters. The proposed distributional
method is called the weighted cosine-G family of distribution. The weighted cosine-
G method was introduced by using the cosine function with the aim of avoiding re-
parametrization problems. Some distributional properties of the WC-G models were
derived. The MLEs of the WC-G distributions were obtained and their performances
assessed through different simulation studies. To illustrate the WC-G family, a special
model, called the weighted cosine-Weibull distribution, was developed. The practical
importance of the WC-Weibull distribution was shown by analyzing three time-to-event
data set. These data sets were taken from the medical sector. The first data set represented
the remission times of bladder cancer patients. The second data set represented the survival
times of guinea pigs infected with virulent tubercle bacilli. The third data set represented



Axioms 2023, 12, 849 19 of 20

the survival times of chemotherapy patents. Based on eight different statistical procedures,
it was established that the WC-Weibull distribution is a reasonable distribution to apply in
modeling the medical data sets involved.
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