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Abstract: This paper aims to present two inertial iterative algorithms for estimating the solution of
split variational inclusion (SpVIsP) and its extended version for estimating the common solution of
(SpVIsP) and fixed point problem (FPP) of a nonexpansive mapping in the setting of real Hilbert
spaces. We establish the weak convergence of the proposed algorithms and strong convergence of
the extended version without using the pre-estimated norm of a bounded linear operator. We also
exhibit the reliability and behavior of the proposed algorithms using appropriate assumptions in a
numerical example.
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1. Introduction

The split feasibility problems (S,FP), due to Censor and Elfving [1], have ample
applications in medical science. Therefore, (S,FP) has been widely used over the past
twenty years in the design of intensity-modulation therapy treatments and other areas
of applied sciences, see, e.g., [2-5]. Censor et al. [6,7] merged the variational inequality
problem (VI;P) and (SpFP), and a different kind of problem came to existence known as
split variational inequality problem (S, VI;P) defined as:

Find out I* € Qq such that!* € VI;P(F;; Q1) and B(I*) € VI;P(F,; Q2), 1)

where Q; and Q» are subsets of Hilbert spaces X; and X», respectively, B : X1 — Xy is a
bounded linear operator, F; : X; — Xj and F, : X, — Xj are two operators, VIP(F;; Q1) =
{g€C:(RF@),pr—9q) >0, Vp € Q1} and VLP(F;Q2) = {r € Qz : (F(r),s—r) >
0,Vse Qz}

Moudafi [8] extended S, VI;P into a split monotone variational inclusion problem
(SpMVIP) defined as:

Find out I* € X; such that[* € VI;P(F; Ay; X1) and B(I*) € VIP(Ag; F; Xo), ()

where A1 : X3 — 2%X1 and A, : X, — 2%2 are set-valued mappings on Hilbert spaces X; and
X, respectively, VI,P(F, A1;; Xq) = {p € X1 : 0 € Fi(p) + A1(p)} and VI,P(F,, Ay; Xp) =
{7 € X2 : 0 € F(q) + A2(q9) }. Moudafi [8] proposed the following iterative scheme for
(SpMVIsP). Let u > 0, choose any starting point zg € X; and compute

Zyy1 = V]zn + AB*(W — I)Bz,], ©)]

Axioms 2023, 12, 848. https:/ /doi.org/10.3390/axioms12090848

https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms12090848
https://doi.org/10.3390/axioms12090848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-3217-8295
https://orcid.org/0000-0003-1416-5351
https://doi.org/10.3390/axioms12090848
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090848?type=check_update&version=1

Axioms 2023, 12, 848

20f17

where B* is an adjoint operator of B, A € (0,1/R) with R being the spectral radius of
the operator B*B, V = R;h (I —uF) = (I+pA)~ (I — uF) and W = RP’?Z(I —ubk) =
(I+pA2) (I = pFy).

If i = F, = 0, then (SyMVIP) turns into the split inclusion problem (in short,
(SpVIsP) suggested and discussed by Byrne et al. [9]:

Find out I* € X; such that!* € VI;P(Ay; X;) and B(I*) € VIP(Ay; Xp), (4)

where VI;P(A1;X7) = {p € X1 : 0 € A1(p)} and VIP(Ap; Xp) = {g € X2 : 0 € Ax(9)},
A1, Ay are the same as in (2). Moreover, Byrne et al. [9] suggested the following iterative
scheme for (SpVIsP). Let u > 0 and select a starting point zg € Xy; then, compute

Zut1 = Ry [zn + AB* (I — R?)Bz,], (5)

where B* is the adjoint operator of B, R = ||B*B|| = ||B||>, A € (0,2/R) and RAl RA2
are the resolvents of monotone mappings A, Ay, respectively . It is obvious to see that
I* solves (SpVIsP) if and only if [* = R;‘l [I* +AB*(I — R;‘Z)Bl*]. Kazmi and Rizvi [10]
studied the following iterative scheme for calculating the common solutions of (S, VIsP)
and (FPP) of a nonexpansive mapping S. For zy € X;, compute

Yn = Ry [zq + AB* (Ry2 — I)Bzy],

(6)
Zn1 = Guf(zn) + (1= Cn)Syn,

where f is contraction and A € (0, ﬁ) By extending the work of Kazmi and Rizvi [10],

Dilshad et al. [11] discussed the common solution of (S,VIsP) and the fixed point of a
finite collection of nonexpansive mappings. Sitthithakerngkiet et al. [12] investigated
the common solutions of (SpVIsP) and a fixed point of a countably infinite collection of
nonexpansive mappings and proposed and discussed the following method. For zg € X3,
compute

Yn = Ry [zq + AB*(R2 — I)Bzy),

Zyt1 = Qutt + Cnzp + [( — (:n) — §nD}Wnyn, Vn >1,

where u € Xj is arbitrary, and W;, is W-mapping, which is created by an infinite collection
of nonexpansive mappings. Furthermore, Akram et al. [13] modify the method discussed
in [10] and investigate the common solution of (SpVIsP) and (FPP):

@)

Yn = 2n — A[(I = R)zy + B*(I — R}2)Bz,),
Zny1 = Cuf(zn) + (1= 8u)S(yn),

where A = W, Cn € (0,1) satisfying hm in =0, Z {n = oo and Z |Cn — Cn-1] <

0. Some results related to (SpVIsP) and (FPP) can be found in [14- 19] and the refer-
ences therein.

It is noted that the step size depending upon the norm ||B*B|| is commonly used in the
above-mentioned iterative schemes. To skip this restruction, a new type of iterative method
with a self-adaptive step size has been invented. Lépez et al. [20] composed a relaxed
iterative method for (S,FP) with a self-adaptive step size. Dilshad et al. [21] studied the
(SpVIsP) without using a pre-calculated norm || B||. Some useful related work can be found

n [22-26] and the references therein.

In recent years, great efforts have been made to speed up various algorithms. The iner-
tia term as one of the speed-up techniques has been studied by many scientists because
of its simple form and good speed-up effect. Recall that using the concepts of implicit
descritization for the derivatives, Alvarez and Attouch [27] have developed the inertial
proximal point method, which can be expressed as

®)
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Zp4+1 = R]I;‘ [Zn + P (Zn - anl)]/

where A is monotone mapping, Rﬁ‘ is the resolvent of A and y > 0. Such types of schemes
have a better convergence rate, and hence, this scheme was modified and applied to solve
numerous nonlinear problems; see [28-34] and the references therein.

Following the above-mentioned inertial method, we consider two inertial iterative
algorithms for approximating the solution of (S,VIsP) and common solutions of (S, VIsP)
and (FPP) of a nonexpansive mapping.

The next section contains some theory and auxiliary results which are helpful in the
proof of the main results. In Section 3, we explain two self-adaptive inertial iterative
methods. Section 4 is focused on the proof of the main results discussing the solution of
(SpVIsP) and a common solution of (S, VIsP) and (FPP). At last, we illustrate a numerical
example in favor of the proposed iterative algorithms showing their behavior and reliability.

2. Preliminaries

Assume that (X, || - ||) is a real Hilbert space with the inner product (-, -). The strong
convergence of the real sequence {z, } to z is indicated by z, — z and the weak convergence
is indicated by z,, — z. If {z, } is a sequence in X, wy(z,) indicates the weak w-limit set of
{zn}, thatis

ww(zn) ={z€ H: Zn; = Z asj — oo where Zn; is a subsequnce of z,, }.

We know that for some z € X, there exists a unique nearest point in Q denoted by Pyz
such that

Iz - Pozll < Iz —o|l, Yo € Q.
Pgz is called the projection of z onto Q C X, which satisfies
(z — v, Pz — Pcv) > ||Pgz — Pgo||, Vz,v € X.
Moreover, Ppz is identified by the fact
Poz=x (z—v,0—x)>0,0ve€Q.

For all p, g, r in Hilbert space X, ¢, ¢, ¢ € [0,1] such that ¢ + ¢ + ¢ = 1; then, we have the
following equality and inequality

lpp + oq -+ yr> = pllpl* + @lgl* + ¢llrl> — pollp — ql* — @yllg — r — w||* — ppllp — r[|, ©)

and
Ip+al* < Ipl*+2(q,p+q). (10)

Definition 1. A mapping F : X — X is called

(i) Contraction, if |[F(p) — F(q)|| < «l|lp—4qll, Vp,g € X,x € (0,1);

(ii) - Nonexpansive, if | F(p) — F(q)| < |[p —qll,¥ p.q € X;

(iii) Firmly nonexpansive, if |F(p) — F(q)||> < (p — q,F(p) — F()),V p,q € X;
(iv) T-inverse strongly monotone, if there exists T > 0 such that

(F(p) = F(q),p—q) = T|F(p) — F(9)|% ¥V p.q € X.

Definition 2. Let A : X — 2% be a set valued mapping. Then

(i) The mapping A is called monotone if (u —v,p —q) >0,V u,v € X,u € A(p),v € A(q);
(ii)  Graph(A) = {(u,p) e XxX:ue A(p)};
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(iti) The mapping A is called maximal monotone if Graph(A) is not properly contained in the
graph of any other monotone operator.

Lemma 1 ([35]). If {sx} is a sequence of non-negative real numbers such that
Spt1 < (1 - Cn)sn +6y, n>0,

where {&y,} is a sequence in (0,1) and {5, } is a sequence of real numbers such that
(i) Yp16n=09;

(ii) limsup & <0or ¥ [du] < co.
n—oo 7" n=1
Then lim s, = 0.
n—,oo

Lemma 2 ([36]). In a Hilbert space X,

(i) a mapping A : X — X is t-inverse strongly monotone if and only if I — TA is firmly
nonexpansive for T > 0.

(i) If A: X — 2% is monotone and Rﬁ is the resolvent of A, then Rﬁ and I — Rﬁ‘ are firmly
nonexpansive for y > 0.

(i) If A : X — X is nonexpansive, then I — A is demiclosed at zero and if A is firmly nonexpan-
sive, then I — A is firmly nonexpansive.

Lemma 3 ([37]). Let {4y, } be a bounded sequence in Hilbert space X. Assume there exists a subset
Q # @ and Q C X satisfying the properties

(i) limp_eo ||n — z|| exists, V z € Q,

(ii) ww(lpn) cQ.

Then, there exists z* € C such that ¢, — z*.

Lemma 4 ([38]). Let ', be a sequence of real numbers that does not decrease at infinity in the sense
that there exists a subsequence I'y, of I'y such that Ty, < Ty 11 for all k > 0. In addition, consider
the sequence of integers {o (1) }y>n, defined by

oc(n) =max{k <n:Tp <Tr1}
Then, {0 (1)} n>n, is a nondecreasing sequence verifying lim, o 0(n) = coand ¥V n > ny,
max{Ty (), Tiny b < To(ny41-

Lemma 5 ([38]). Assume that {s,} is a non-negative sequence of real numbers satisfying
(i) Sp41—5n < On(Sn—Sp—1) +0n;
(i) Y Op < oo

n=1

(iii) 6, € [0,x], where x € [0,1).

Then, {sy} is convergent and ofj (Sp41 — Sn) < oo, where [h] = max{h,0} forany h € R.

n=1

3. Inertial Iterative Methods

Suppose that X; and X, are real Hilbert spaces and A; : X1 — 2X1, Ay Xy — 2%2 are
monotone mappings; Rﬁll, Rﬁf are the resolvents of A; and Aj, respectively. We assume
that A NFix(F) # @, where A denotes the solution set of S, VI;P and Fix(F) denotes the

fixed point set of FPP. First, we suggest the following iterative algorithm for S, VIsP.
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Algorithm 1. Choose ¢ such that 0 < ¢ < 1and let 5,, be a positive sequence satisfying Y, 0, < co.
n=1

Iterative Step: Given arbitrary xo, and x1, for n > 1, choose 0 < ¢ < Py, where

- mln{ﬁ, (P}, ifx;q #xnfl,
¢n = nn-l . (11)
¢, otherwise.
Compute
Uy = Xp+t+ 47n(xn - xn—l)/
Up = Up _‘Tn(I_Rﬁll)(vn)/
Xpy1 = Up—0nB*(I— Rﬁzz)(Bun)/

where 0y, and o, are defined as

_RM 2
B (1R, (o) if [[(1 = Rt ) (o) |2 + [|B* (I = Ry2) (Bow) |2 # 0

On = [I-Ry1)(0n)|P+]B*(I-Rp2) (Boy) [ (12)
0, otherwise
and
IR ) i /(1= Ryf) () |2 + [ B* (T = Ri2) (B |2 # 0
0n = I=RED) () [+ (1-Rj2) (B |2 ”1 12 (13)
0, otherwise

where pq > 0, pp > 0and 7, € (0,2).

Algorithm 2. Choose ¢ such that 0 < ¢ < 1and let 6, be a positive sequence satisfying Y 6, < oo.
n=1

Iterative Step: Given arbitrary xg, and xy, for n > 1, choose 0 < ¢, < ¢py,, where

. O .
G = mm{m, cP}, if x, ;é Xp-1, 14
¢, otherwise.
Compute

U = Xp+ Pu(Xn — X4-1),

uy = g —0ou(I— Ry (vn),

wy, = uy—o0uB*(I— Rﬁ;)(gun),

Xn+1 = (1 —ln— én)un + GnF(wn).

where oy, and oy, are defined as

— 49 0, 2
o =Ry ) (o) if [ (1= Rpot) (0n) |2 + | B*(I = Rpi2) (Bow)|* # 0

oy = H(I*Rﬁf)(vn)I\QH\B*(I*Rﬁf)(an)HZ’ (15)
0, otherwise
and
i T, H(I—Rﬁf)(l@un)/\lz if H(I B Rﬁf)(un)llz + HB*(I B Rlzjnzz)(Bun)HZ £0
On = [[(I=Ry) () |2+ B* (1= Ry, ) (Butn ) |2 (16)
0, otherwise

where {y, Gy € (0,1), 11 > 0, po > 0, and v, € (0,2).
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Remark 1. It is not difficult to show that if [|(I — R}, A ()12 + ||B* (I — Ry2 )(Buy)||> = 0or

(I - Ry, )(vn)H2 + ||B*(I Rﬁzz)(an)H2 = 0 for some n > 0, then x, € A. In this case, the
iteration process ended after a finite number of iterations. We suppose that the proposed algorithms
generate infinite sequences which do not end in a finite number of terms.

[ee]

Remark 2. From the selection of 6, such that Y 6, < oo, we can conclude that liﬁm Gnl|xn —
n=1 =0

Xn,1H =0.

Remark 3. By using the definitions of resolvent of monotone mappings A1 and Ay, we can easily
obtain that I* € A if and only z'fR;ff (I*) = 1" and R;‘ZZ(BZ*) = B(I*).

4. Main Results

Theorem 1. Let Xy, Xp be real Hilbert spaces; A1 : X1 — 2X1, Ay + Xo — 2%2 be maximal
monotone mappings and B : X1 — Xy be a bounded linear operator. If T, € (0,2) and {y, &y €
(0,1) such that

lim &, =0, n;og" =00, lim (1~ n—Gn)ln >0, inftu(2— 1) > 0. (17)
Then, the sequence {x, } generated from Algorithm 1 converges weakly to a point z € A.

Proof. Let! € A, then (I — R;‘f)(l ) = 0. Since resolvent operator R;‘ll is firmly nonexpan-
sive, hence, so is (I — R;?ll) for 1 > 0, then by Algorithm 1 and (10), we have

lun — 1> = Jon—0u(I-R ]><vn>—zn2
< o — 112+ G2 = R (on) |2 — 200 (I~ Rj2) (o), 00 — 1)
= o — 12+ 02N (I — R (0n) > — 20w (I — R{1) (0n) — (I — R{)(1), 00 — 1) (18)
< lon =12+ 21— R (0a) |12 = 200 | (I = Rj1) (o) — (1= Ry (1)

IN

= low =1> + (o7 — 2ffn)H( — Ry (vn) |12
Now, using (12), we estimate that
A
(o7 —20) || (I = Ry ) (vn) |12

2 _ R4 4
= 0= RE) o) P T Ry ) )

(II(1 - Rj: <vn>|\2+||B* — Rj2)(Bow)|2)?
2rn||<1— ) (o) |2 ]
O (I—RE ><vn>u2+||B*< — R2)(Boy) |2

||(I_Rﬁll)(vn)”4lfn2 (1 = R (v )||2 21, (|| (1 - Hl)(vn)||2+||B*(1—R;‘;)(an)|2)]

(II(I — R (0n) |2+ [|B* (1 = Ri2) (Boa) [12)°
(tw® — 21) ( II( ) on) |2 + [|B*(I = Rp2) (Bow)||?)
I(I = R (0 )II4[ =2 ] (19)
' (H(I— )(vn)||2+||B*( — Ri2)(Bua) |2)°

(T = 27) || (T = Rpal) (o) |

(I = RE1) (vn) |12 + || B*(I — Ry2) (Bo) |2
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From (18) and (19), we obtain

(ta® = 2T)[|(I = Rj1) (vn) ||

i = 1% < [lon — 1] + A A '
I(1 = Ryt ) () > + [|B* (I = R},3') (Bon) ||?

(20)

Since (I — R;?ZZ) is firmly nonexpasive and using (I — R;;‘zz) (Bl) = 0 and (10), we estimate

Han—le = H“n_Qn(I_Rﬁf)(B“n)_le
< g — 12+ Q31— RE2) (Bu)||? — 20u (I — Ryp2) (Buty), ity — 1)
= Jlun — 1) + Q3|1 — R2) (Buy)||? (21)

—20,((I - R;j‘;)(Bun) —(I— R;‘,‘;)(Bz),un —1)
= JJun — 1)+ Q31 — RE2) (Bun)||? — 20a]| (I — Ryi) (Bun)|?
= JJun =12 + (g3 — 200) 752 (Bun) ||

By (13), it turns out that

(03 — 20n) | (I — R2) (Buy)||?

Ap
= ”(IRﬁf)(Bun)P[ w2 (1 - R (B

(T = Rys!) () |2+ [[B=(1 = Rp2) (Bun)[|2)°

21, ||(I = Rp2) (Buy)||? ]
= R () 2+ 1B (1 — R22) (Buy) |2
= (1= Ry2) (Buy)|[* (22)
lTnZII(IR{?f)(Bun)IIZ 2, (|| (1 — Ry} () |12 + || B* (I Rﬁ;)(BuaP)}
(11 = Ry ) (u >||2+||B*<1—R;‘;><Bun>||2>
< - )(Bun)|4[< zu»(n( R () |12 + || B*(1 R;};)(B?)m
(H (I-R ><un 12+ 1|B* (I — Ry2) (Buy) |2)
(T2 — 21,)||(I - RS ><Bun>||4

7 .
(T = Ry )(un)||2+|\B*( — Ry; ) (Bun) |12
It follows from (21) and (22) that

(tu® = 2T) [|(1 = Rj2) (Buy ) ||*

21 = 12 < Jlun =12 + . (23)
11— Ryt ) () |2 + | B* (I = Rj2) (Buy ) |2
Combining (20) and (23) , we obtain
_ I— Al 4
e A L e, T 0
11— R}, ><vn>||2+|\B*< R;2)(Boy)||2
T (Tn — )”(I_ 3) (Buy)||* (24)

(T = Rie!) (a2 + HB*(I — Ry?) (Bu) |2
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By using the Cauchy-Schwartz inequality, we observe that

an—l\lz = ||xn_l+¢n<xn_xn—l)||2
= |lxw = 11? + 200 (xn — Xp—1, X0 — 1) + Q5[0 — 20111
< loew = 1P+ 2¢nllxn — xu-1llllx0 = Ll + pullxn — x>
Since 2|y — 21| [|xn = 1| = [|2n — X1 [|* + [[n = L|* = [| (xn — 20 -1) = (xn = 1) ||, we get

low =112 < 1l — 12+ 29l — xu-1 |2 + @ v — 12 = a1 1P}, (25)

From (25) and (24), we obtain
xnr = 1% < llx = 11+ 20ullxn — %1 [ + @ {ltn — 112 = llta—1 — 1]}
T (T = 2)II(1 = Ry (o) [ a8
(1= Ri) (o) |2 + || B*(1 — Rj2) (Boy) |2
L w2 R Bt
1L = R () [+ [|B* (I = Ryi2) (Bun) |12

Since, T, € (0,2), thatis 7, — 2 < 0, we obtain
U =P = lxew =112 < @u{llxn = U1 = llxu—1 = U} + 20020 — x4

Applying Lemma 5, we deduce that the limit ||x, — I| exists, which guarantees the
boundednesss of sequence {x,} and hence {u,} and {v,}. From (26), it follows that

L ¢n(llxn = 11I” = Ilxu—1 = I]]?) < coand
n=

© A
l 10— R @) . (= Ri2) (Buua) ]<m
A N A ’
=t LI = R (0a) |2 + [1B*(1 = Ri2) (Boa) |12 (1= Ry ) (un)||2 + [|B*(I — Rj2) (Buy) |12
which concludes
A A
hm[ IO N (1= Ri2) (B ]
1 T = Ry ) (@) 12+ [1B*(I = Ry ) (Bow) 12 II(I = Ry ) (un) |12 + [|B*(I — Rpy') (Bua) |12
hence
A
- (1= R o)1 iy
00 A * -
1= ||(1— Ryt ) (o) |2 + [|B* (I — Rj2) (Boy) |2
A
o (1= R) (B I iy
00 A % A -
" (1= Ry ) (un) |2 + [|B*(I — Ry; ) (Bun) |2
which concludes that
(27)

: A . A
lim [[(1 = Ry!)(on) || = lim |[(I = Ry;?) (Buy) || = 0.

It remains to show that wy (x,) € A. Let I* € wy(x,) and {x,, } be a subsequence of {x, }
so that x,, — I*, as k — co. Applying (27) and Remark 2, in Algorithm 1, it follows that

X0 — vnll = $ullxn — xp-1ll = 0,n — 0
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0 —wnll =[x — [on — (I = Rt (0a)]]|
< lan = vull + 0l (I = R ) (o) |
Tl (I = R ) (o) |2
(1= RA1) (o) |2 + || B*(1 — Rj2) (Boa) |2

A

A

|0 — onll + —0,n —

and

[on —unll < llxn — tnll + [[on — xul| = 0,1 — 0.

Hence, there exist subsequences {u,, } and {v, } of {u,} and {v,}, respectively, which
converge to I*. From (27), we obtain

. A . A
B (/1= Rje,') (on )| = lim [|(1 = R ) ()] = 0,
. A . A
Jim [[(I = Rj;') (Buw )| = lim [|(I = Rj;")(BI) [ =0,
which imply that I* € A71(0) and B(I*) € A;*(0). O

Theorem 2. Let X;, Xy be real Hilbert spaces; and let A1 : X1 — 2X1, Ay - Xp — 2%2 be
set-valued maximal monotone mappings. If {Cn}, {&n} are real sequences in (0,1), 7, € (0,2) and

lim &, =0, n;)gn = oo, 7111520(1 —Cn—Cn)ln >0, irn1frn(2— Ty) > 0. (28)

Then, the sequence {xy } obtained from Algorithm 2 converges strongly to | = Prix(r)(0).

Proof. Let ! = Pynpix(r) (0). From Algorithm 2, we have

Hxn + 4)n(xn - xn—l) - ZH
(L= n)llxn — 1| + Pullxn—1 =1 (29)
max{||xy — |, [|xn—1 = I[[},

l[on =1

IN A

and

(L= Zn = Cn)un + CuF(wn) = 1|

1= Cn = Gn)llun = U + | + Zall F(wn) = 1 + &all — 1]
=G = Gn)llun = 1 + || + Cullwn — 1| + &ull — 1]
1= &) llon = + Eulll]l

1= ) [(T = pu)llxn =1 + Pullxn—1 = 1|} + SullL]

max{|[xp —[, flxn—1 = LIl |17}

%41 = 1]

(
(
(
(

ININININ A

INIA

max{||xo — Il [lxr = 11[, I},

which shows that {x;, } is bounded and hence the {v,, }, {u, }, and {w, } are bounded. From
(20) and (23) of the proof of Theorem 1, we have

(tu® — 27) || (I — Ry (0a) ||
(1= R31) (0a) |2+ ||B*(I — Rji2) (Bog) |12

n = 1I? < flon = 11> + < low =117 (30)
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(tu® = 2T) |(1 = Rj2) (Buy ) |4
(1= RE) () |2 + [|B* (I — Rp2) (Buy) |

leon =11 < [l — 1] + Psnw—m? (31)

Now,

[xpt1 =11 = |[(1=Cn— En)ttn + CuF(wy) — 1|
||(1_§n_‘:n)(un_l)"'gn(l:(wn)_l)“‘gn(_l)uz
< (U =Gn =)l = P + Zull F(wy) — 11> + &1
— Zn(1 = Cu — &) lun — F(wn)||? (32)
(1= Zn — &)l — 1> + Zullwn — 11> + & l1]?
—gn(l_gn_Cn)H“n_F(wn)Hz'

Combining (30)—(32), we obtain

72 = 21,)[|(1 = Ry (o) || 1
11 = Ri) (o) |12 + || B*(1 = Rf2) (Boa) |12
(T = 27) (T = Ry2) (Buy) |[*

11 = Ri) () [+ [|B* (I = Ryi2) (Bu) |12

—0n(1 = Cn — En)|ltn — F(wy) |2
< (1=Zn—E)llon — P+ Zulluw = 1I* = Zu(1 = Zu — &) 1wy — F(wn)|?
(1= G = &) (m® = 20) [ (T = Ry (o) |I*
1T = R ) (o) |2 + [|B*(1 = Rj2) (Boy) |12
Zn(ti® = 27) || (1 = Rp2) (Bu)[|*

- +Ealll)?
(1= RE) (un) |2 + [ B* (I — Rp2) (Buy) |2

Ixnrr =17 < (1=Gn—En) [llvn —1|* +

+ Zn |l = 101>+

] + &2

< (=G [llxn = 12 4+ 290 — xaa P + {1t = 12 = a1 = 1112}]
(1= Zn — &) (tu® — 270) | (I — Ry (0) ||
_Cn(l —Cn — Cn)””n - F(wn)Hz + 1
(1 — Rit ) (0a) |2 + || B*(I — Ri2) (Boy) |12
o (T2 = 27) | (T — R{2) (Buy ) ||*
5(11 T2>||< . )(Af)” gl )
(1 — Ritt) (1) |12 + (| B* (I — Ris2) (Bu ) |
< xn = 12+ 2010 — %1 1>+ {2 — 12 = [lx01 — 117}

(1= n — &)t (2 — ) | (I = RED) (0) ||
11 = Ritt) (0a) |2 + | B*(1 — Ryi2) (Bog) |12
CnTu(2 — ) |(1 — Rp2) (Buy) |4
11— Ryt ) () |12 + | B* (I = Ryi2) (Buy) |2

~Tn(1 =T — Cn) llun — F(wn)||2 +

+ &l

Two possible cases occur.
Case L. Suppose the sequence {||x, — [||} is nonincreasing; then, there exists m > 0
such that ||x, 1 —!|| < ||x, — 1|, for each n > m. Then, lijn |lx, — I|| exists and hence
n—oo

lim ([|x,+1 — || — ||lx» —1]|) = 0. Since {, — 0, 7y € (0,2), and inf{,(1 — {» — &n) > O,

n—oo
hence from (33), we have
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(I — R (o) |14

Ay 2 * Ay 2 0 (34)
(I = Ry ) (0n) I + [ B*(I = R} ) (Bo ) |
I — R:2)(Buy,) |4
= R (B L o5
(I = Ry ) (un) 12 + [ B*(I = Ry ) (Bun) ||
|y — F(wy)|| — 0. (36)
From (34) and (35), we obtain
. A . A
Tim [[(1 — Ri&) (1) | = Oand Tim (1~ Ri&2)(Boy)| = 0. 37
From Algorithm 2, using Remark 2, we obtain
nh_r){}o [on — xa[| = 0. (38)
From Algorithm 2, using (34) and (35), we obtain as n — oo
[tn — vl — 0, (39)
|lwn — uy|| — 0. (40)
By using (38)—(40), we obtain
lun — x|l < |lttn — ©nl| + ||lon — xu|| = 0, asn — o0 41)
lwn — xnll < |lwn — un|| + ||ttn — xn|| — 0, asn — oo. (42)

Thus, since ¢, — 0, and using (36), (40) and (41), we obtain

lxps1 —xnll = (1= Cn — Gn)un + CnF(wn) — xa|
< Nun = x|l + CullF(wn) — unl| +Gnll — unl| = 0asn — oo,  (43)
and
|F(wy) — wy| |F(wy) — tnll + ||tth — wn|| — 0as n — oo.

<
[F(un) —unll < ||F(un) — F(wn)|| + [ F(wn) — un|| — 0asn — oo. (44)
< |lun — wa|| + ||F(wy) — tn|| — 0as n — oo.

Hence, there exists a subsequence {1, } of {u,} which converges weakly to . By using
Lemma 3, we conclude that I € Fix(F). By Theorem 1, we have that wy(x,) C A. So, we
obtain I € Fix(F) N A. Setting s, = (1 — () un + {nF(wy) and rewrite x,,11 = (1 — &p)sn +
CnCn(F(wy) — uy), we have

[sn — 1] (X = Zn)un + CuF (wn) — 1|
(1= Cn)llun — 1| + Cul[F(wn) — 1|
(1 =Gn)llon =1 + Cullwn — 1|

[[0n — I

[VANVANVAN

From (45) and Algorithm 2, we obtain
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[P l||2 = [[(1=Gn)(sn — 1) + Enln(F(wn) — un) — l||2
< (1 =&n)llsn = 1> + 28 (Gn(F(wn) — un) = 1, Xp5q — 1)
< (1-¢n) ||xn—l||2+2¢n\|xn—xn71||2+¢n{||xn—le— 1 —1]1*} (45)
+ 28 {Cn(F( —tp, Xp1 — D) + (=L xpp1 = 1)},
< (1=&n)llxn — l||2 + 26 |0 — X1 |* + ¢n{lxn — LI = l|lxp—1 — 1]}

+2§n{§n<F(wn) —Up, Xn41 — l> + <*l, Xp+1 — l>}

Since wy (x) C Fix(F) N Aand I = Py (r)na (0), then using (35), we obtain

b
lim sup -+ = lim sup {20, (F(wy) — iy, Xps1 — 1) + (=L x,01 — 1)}
n—oo on n—oo
= lim sup (—/,x,41 — 1) <0.
n—oo

Thus, by Lemma 1 in (45), we obtain x;, — [.

Case II. If the sequence {||x, — ||} is increasing, we can construct a subsequence
{llxn, = 1||} of {||xn — ||} such that ||x,, — || < ||x, — | for all k € N. In this case, we
define a subsequence of positive integers (1)

v(n) = max{k <n: [lxe =1 < [lxea =11},

then (1) — coand n — co and [|x, () — I < [[x;(n)51 — ![|, it follows from (33) that

v(n)
2y =17 < (U= &) 1%y = LI A 200y 120 — Xy ()1 11+ oy ) {112 () — 117
_”x'y(n)—l - ZHZ} _g'y(n) 1 _g'y(n) _‘:'y )Hu (n) _F(w'y(n))HZ

_(1 757(71) 7(:7(11))’@( ( )”( )( Uy (n) )”4
(I = Rie!) (0 ||2+||B* (IR, )(BU DI?

4 y(n) 'y(n Ty(n) — )”( ) Bu y(n) H 1112
- 5 N A2 5 +§7(n)“ H
1T = RE) () I+ 1B (1 = Rpi2) (Bt ) |
that is
g’y(n)(Hl”Z - Hx'y(n) - le) +2(P"y ||x7(n - )71”2 +(Pn{”x7(n) - l||2 - Hx'y(n)fl - ZHZ}
+(1_€'y (: (n))Ty( ( - )H( yl)(v'y(n))||4
H(I — Ryt ) (0|12 + ||B*(1 — Ryi2) (Boy ()12
Tyt (T — 2)II(T — Ry2) (Buty)) |

(T = REe!) (1t ) 12 4 1B (1 = Rpi2) (Bt ) |12
2 gy(n)(l - gy(n) - (:'y(n))””'y(n) - P(w'y(n))Hz’

Since §,(,) — 0 and ¢,y — 0and y(n) — 0, then for subsequences {x,(,)}, {1,(,)} and
{Wo(n) } we obtain

lim it () = F(@y ) | = 0, lim [|(T = R ) (0)) || = Oand lim [[(I = Ri2) (Buty ) )| = O.

Similarly, we can show that [|x,, (1) — X, ()|l = 0,as 7 — 00 and wi (x,(y)) C Fix(F) N A.
It is remaining to show that x, — [.
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By using ||x, () — Il < [[%(n)+1 — || and the boundedness of ||x, — I||, we have

12y — LI 200 () (F(Wey (n)) = oy () Xy ng1) — 1)+ 2(=L Xy g1y — 1),

MIIF(% 1) =ty | =20 X ()1 — 1)

Since |[X(n)+1 — Xo(n)l| — 0, we obtain

IA A

lim sup (=1, xy (41 — 1) = —limsup (L, x, ) —1)
n—00 n—oo
= — max (Lr—1)<0, (46)
reww(x'y(n))

due to I = Pgiy(p)na(0), w(xy(ny) C Fix(F) N A and using [|[F(w.(;)) — Uy ()|l — 0, using
Lemma 1 in (46), we obtain that x,,,) — I, and

lxn =1 < xymy+1 = Ul < Mxynyr1 = Xy 1+ 124y = 1l =0,
thatis, x, — I. Hence, the theorem is proved. O

For 7, = 1, we obtain the following corollary of Theorem 2.

Corollary 1. Let X1, X5, A1, Az, B, B* and ¢y, be identical as in Theorem 2. Let {{n}, {Cn} be
sequences in (0,1) such that

nlglgogn =0, T;}gn = 0o, nlgl;lo(l *Cn *Cn)gn >0,

hold. Then, the sequence {xy} obtained by Algorithm 2 (with T, = 1), converges strongly to
I = Prix(r)na(0)-

For ¢, = 0, we obtain the following corollary of Theorem 2.

Corollary 2. Let X1, Xy, A1, Ay, B, B* and ¢, be identical as in Theorem 2. If {{,,} is a sequence
n (0,1) so that

lim (1 —2,)0sn >0, irnlf'cn(Z—Tn) >0

n—oo

holds, then the sequence {x, } obtained by the following scheme

On = Xn+ Pn(xn — X5-1),

Uy = vp—0ou(l— Rm )(0n),

wy, = Up— 0B (I— Ry2 )(Buy,),
Xpr1 = (L=Cn)wn + GnF(wn),

where oy, and o, are defined by (15) and (16), respectively, converges strongly to | € Fix(F) N A.
For 7, = 1 and ¢, = 0, we obtain the following corollary of Theorem 2.

Corollary 3. Let Xy, Xo, A1, Ay and B, B* be identical as in Algorithm 2. Let {(, } be a sequence
n (0,1) so that

lim (1 —Z,)0s > 0.

n—oo
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Then, the sequence {x, } obtained by the following scheme

On = Xn+Pu(Xn — xn1),

Up = vy —0ou(l— R;?ll)(vn),

Wn =ty — QuB*(I - Rj2)(Buy),
Xpr1 = (L=Cn)wn + GnF(wn),

where oy, and 0, are defined by (15) and (16), respectively (with T, = 1), converges strongly to
I € Fix(F) N A

5. Numerical Experiments

Suppose X; = Xp = R. Let us consider the monotone mappings A; and A; defined
as A1(x) = 3 +2and A(x) = x + 2. The nonexpansive mapping F : X; — X is defined
as F(x) = *5* and bounded linear operator B : X; — X, is defined as B(x) = . Itis not
a difficult task to show that A; and A; are monotone mappings and B is nonexpansive
mapping and Fix(F) N A = {—4}. The resolvents of A; and A, with parameter y; >
0,42 > Oare

x—2y2
14

2x —4
Rul (1) = [T+ ] () = 5B R = [T+ eds] () =

We choose 1, = 1 — n%rl, Ay = %, &= % and {, = (1 — %) satisfying the condition (28)
in Algorithm 2. We fixed the maximum number of iterations 50 as a stopping criterion.
The parameter ¢, is randomly generated in (0, ¢, ), where ¢, is calculated by using (14).
The behavior of the sequences {x,}, {v,} and {u,} are plotted in Figure 1 by applying
three distinct cases of parameters which are mentioned below:

Case (I):xg=0,x1 =5,¢ =0.1, yy = 0.5, uyp = 0.9.
Case (II): Xg = —3, X1 = 4, (P = 0.5, H1 = 5, Ho = 8.
Case (III): xo = 5, x1 = =5, ¢ = 0.75, y; = 10, up = 20.
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Figure 1. Cont.
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Figure 1. Numerical behavior of ||[wy, — uy||, | xn — ttn ], |00 — tnll, [[wn — unl|, || Xnr1 — x| and |2, ||
choosing three cases of parameters.

Observations:

e In Figure la—d, we observed that the behavior of {w,},{v,} and {u,} is uniform
irrespective of the selection of parameters.

e  From Figure le—f, we notice that the sequence obtained from Algorithm 2 converges
to the same limit with a suitable selection of parameters.

e Itis worthwhile to mention that the estimation of || BB*|| is not required to implement
the algorithm, which is not so handy to calculate in general.

6. Conclusions

We have suggested and analyzed inertial methods to estimate the solution of (S, VIsP)
and common solution of (S, VIsP) and (FPP). We proved the weak and strong convergence
of algorithms to estimate the solution of (S,VIsP) and (FPP) with suitable assumptions
in such a way that the estimation of the step size does not require a pre-estimated norm
||BB*||. Finally, we perform a numerical example to exhibit the behavior of the proposed
algorithms using different cases of parameters.
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