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Abstract: In this paper, we introduce a series of definitions of generalized affine functions for vector-
valued functions by use of “linear set”. We prove that our generalized affine functions have some
similar properties to generalized convex functions. We present examples to show that our generalized
affinenesses are different from one another, and also provide an example to show that our definition
of presubaffinelikeness is non-trivial; presubaffinelikeness is the weakest generalized affineness
introduced in this article. We work with optimization problems that are defined and taking values
in linear topological spaces. We devote to the study of constraint qualifications, and derive some
optimality conditions as well as a strong duality theorem. Our optimization problems have inequality
constraints, equality constraints, and abstract constraints; our inequality constraints are generalized
convex functions and equality constraints are generalized affine functions.
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1. Introduction and Preliminary

The theory of vector optimization is at the crossroads of many subjects. The terms
“minimum,” “maximum,” and “optimum” are in line with a mathematical tradition, while
words such as “efficient” or “non-dominated” find larger use in business-related topics.
Historically, linear programs were the focus in the optimization community, and initially,
it was thought that the major divide was between linear and nonlinear optimization
problems; later, people discovered that some nonlinear problems were much harder than
others, and the “right” divide was between convex and nonconvex problems. The author
has determined that affineness and generalized affinenesses are also very useful for the
subject “optimization”.

Suppose X, Y are real linear topological spaces [1].
A subset B ⊆ X is called a linear set if B is a nonempty vector subspace of X.
A subset B ⊆ X is called an affine set if the line passing through any two points of B is

entirely contained in B (i.e., αx1 + (1− α)x2 ∈ B whenever x1, x2 ∈ B and α ∈ R);
A subset B ⊆ X is called a convex set if any segment with endpoints in B is contained

in B (i.e., αx1 + (1− α)x2 ∈ B whenever x1, x2 ∈ B and α ∈ [0, 1]).
Each linear set is affine, and each affine set is convex. Moreover, any translation of an

affine (convex, respectively) set is affine (convex, resp.). It is known that a set B is linear if
and only if B is affine and contains the zero point 0X of X; a set B is affine if and only if B is
a translation of a linear set.

A subset Y+ of Y is said to be a cone if λy ∈ Y+ for all y ∈ Y+ and λ ≥ 0. We denote
by 0Y the zero element in the topological vector space Y and simply by 0 if there is no
confusion. A convex cone is one for which λ1y1 + λ2y2 ∈ Y+ for all y1, y2 ∈ Y+ and
λ1, λ2 ≥ 0. A pointed cone is one for which Y+ ∩ (−Y+) = {0}. Let Y be a real topological
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vector space with pointed convex cone Y+. We denote the partial order induced by Y+ as
follows:

y1 � y2iffy1 − y2 ∈ Y+, or, y1 ≺ y2iffy1 − y2 ∈ −Y+

y1 �� y2iffy1 − y2 ∈ intY+, or y1 ≺≺ y2iffy1 − y2 ∈ −intY+

where intY+ denotes the topological interior of a set Y+.
A function f : X→ Y is said to be linear if

f (αx1 + βx2) = α f (x1) + β f (x2)

whenever x1, x2 ∈ X and α, β ∈ R; f is said to be affine if

f (αx1 + (1− α)x2) = α f (x1) + (1− α) f (x2)

whenever x1, x2 ∈ D, α ∈ R; and f is said to be convex if

α f (x1) + (1− α) f (x2) ≺ f (αx1 + (1− α)x2)

whenever x1, x2 ∈ D, α ∈ [0, 1].
In the next section, we generalize the definition of affine function, prove that our

generalized affine functions have some similar properties with generalized convex func-
tions, and present some examples which show that our generalized affinenesses are not
equivalent to one another.

In Section 3, we recall some existing definitions of generalized convexities, which are
very comparable with the definitions of generalized affinenesses introduced in this article.

Section 4 works with optimization problems that are defined and taking values in
linear topological spaces, devotes to the study of constraint qualifications, and derives
some optimality conditions as well as a strong duality theorem.

2. Generalized Affinenesses

A function f : D ⊆ X→ Y is said to be affine on D if ∀x1, x2 ∈ D, ∀α ∈ R, there holds

α f (x1) + (1− α) f (x2) = f (αx1 + (1− α)x2)

We introduce here the following definitions of generalized affine functions.

Definition 1. A function f : D ⊆ X → Y is said to be affinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R,
∃x3 ∈ D such that

α f (x1) + (1− α) f (x2) = f (x3)

Definition 2. A function f : D ⊆ X→ Y is said to be preaffinelike on D if ∀x1, x2 ∈ D, ∀α ∈ R,
∃x3 ∈ D, ∃τ ∈ R\{0} such that

α f (x1) + (1− α) f (x2) = τ f (x3)

In the following Definitions 3 and 4, we assume that B ⊆ Y is any given linear set.

Definition 3. A function f : D ⊆ X→ Y is said to be B-subaffinelike on D if ∀x1, x2 ∈ D , ∀α ∈
R, ∃u ∈ B, ∃x3 ∈ D such that

u + α f (x1) + (1− α) f (x2) = f (x3)
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Definition 4. A function f : D ⊆ X→ Y is said to be B-presubaffinelike on D if ∀x1,
x2 ∈ D, ∀α ∈ R, ∃u ∈ B, ∃x3 ∈ D, ∃τ ∈ R\{0} such that

u + α f (x1) + (1− α) f (x2) = τ f (x3)

For any linear set B, since 0 ∈ B, we may take u = 0. So, affinelikeness implies
subaffinelikeness, and preaffinelikeness implies presubaffinelikeness.

It is obvious that affineness implies preaffineness, and the following Example 1 shows
that the converse is not true.

Example 1. An example of an affinelike function which is not an affine function.

It is known that a function is an affine function if and only it is in the form of
f (x) = ax + b; therefore

f (x) = x3, x ∈ R

is not an affine function.
However, f is affinelike. ∀x1, x2 ∈ R, ∀α ∈ R, taking

x3 = [α f (x1) + (1− α) f (x2)]
1/3

then
α f (x1) + (1− α) f (x2) = f (x3)

Similarly, affinelikeness implies preaffinelikeness (τ = 1), and presubaffinelikeness
implies subaffinelikeness. The following Example 2 shows that a preaffinelike function is
not necessary to be an affinelike function.

Example 2. An example of a preaffinelike function which is not an affinelike function.

Consider the function f (x) = x2, x ∈ R.
Take x1 = 0, x2 = 1, α = 2, then α f (x1) + (1− α) f (x2) = −1; but

∀x3 ∈ R, f (x3) = x2
3 ≥ 0

therefore
α f (x1) + (1− α) f (x2) 6= f (x3), ∀x3 ∈ R

So f is not affinelike.
But f is an preaffinelike function. For ∀x1, x2 ∈ R, ∀α ∈ R, taking τ = 1 if α f (x1) +

(1− α) f (x2) ≥ 0, τ = −1 if α f (x1) + (1− α) f (x2) < 0, then

α f (x1) + (1− α) f (x2) = τ f (x3)

where x3 =|α f (x1) + (1− α) f (x2)|1/2.

Example 3. An example of a subaffinelike function which is not an affinelike function.

Consider the function f (x) = x3 + 8, x ∈ D = [0, 1], and the linear set B = R.
∀x1, x2 ∈ D = [0, 1], ∀α ∈ R, taking x3 = 1 ∈ D, u = 8− [α f (x1) + (1− α) f (x2)] ∈ B,

then
u + α f (x1) + (1− α) f (x2) = f (x3)

therefore f (x) = x3 + 8, x ∈ [0, 1] is B-subaffinelike on D = [0, 1].
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f (x) = x3 + 8, x ∈ [0, 1] is not affinelike on D = [0, 1]. Actually, for α = −8 ∈ R,
x1 = 1 ∈ D, x2 = 0 ∈ D = [0, 1], one has α f (x1) + (1− α) f (x2) = 0, but

f (x3) = x3
3 + 8 6= 0, ∀x ∈ [0, 1]

hence
α f (x1) + (1− α) f (x2) 6= f (x3), ∀x3 ∈ D = [0, 1]

Example 4. An example of a presubaffinelike function which is not a preaffinelike function.

Actually, the function in Example 3 is subaffinelike, therefore it is presubaffinelike
on D.

However, for α = 9 ∈ R, x1 = 0 ∈ D, x2 = 1 ∈ D, one has

α f (x1) + (1− α) f (x2) = 0

but
f (x3) = x3

3 − 8 6= 0, ∀x ∈ [0, 1]

Hence

α f (x1) + (1− α) f (x2) 6= τ f (x3), ∀x3 ∈ D = [0, 1], ∀τ 6= 0

This shows that the function f is not preaffinelike on D.

Example 5. An example of a presubaffinelike function which is not a subaffinelike function.

Consider the function f (x, y) = (x2, y2), x, y ∈ R.
Take the 2-dimensional linear set B = {(x, y) : y = −x, x ∈ R}.
Take α = 3, (x1, y1) = (0, 0), (x2, y2) = (1, 1), then

α f (x1, y1) + (1− α) f (x2, y2) = (−2,−2)

Either x − 2 or −x − 2 must be negative; but x2
3 ≥ 0, y2

3 ≥ 0, ∀u = (x,−x) ∈ B;
therefore

u + α f (x1, y1) + (1− α) f (x2, y2) = (x− 2,−x− 2) 6= f (x3, y3) = (x2
3, y2

3)

And so, f (x, y) = (x2, y2) is not B-subaffinelike.
However, f (x, y) = (x2, y2) is B-presubaffinelike.

∀x1, x2 ∈ [0, 1], ∀α ∈ R

α f (x1, y1) + (1− α) f (x2, y2) = (αx2
1 + (1− α)x2

2, αy2
1 + (1− α)y2

2)

Case 1. If both of αx2
1 + (1− α)x2

2, αy2
1 + (1− α)y2

2 are positive, we take u = (0, 0),

τ = 1, x3 =
∣∣αx2

1 + (1− α)x2
2

∣∣1/2, y3 =
∣∣αy2

1 + (1− α)y2
2

∣∣1/2, then

u + α f (x1) + (1− α) f (x2) = τ f (x3)

Case 2. If both of αx2
1 + (1− α)x2

2, αy2
1 + (1− α)y2

2 are negative, we take u = (0, 0),

τ = −1, x3 =
∣∣αx2

1 + (1− α)x2
2

∣∣1/2, y3 =
∣∣αy2

1 + (1− α)y2
2

∣∣1/2, then

u + α f (x1) + (1− α) f (x2) = τ f (x3)
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Case 3. If one of αx2
1 + (1− α)x2

2, αy2
1 + (1− α)y2

2 is negative, and the other is non-
negative, we take

x = [(αy2
1 + (1− α)y2

2)− (αx2
1 + (1− α)x2

2)]/2, and u = (x,−x) ∈ B

Then
x + αx2

1 + (1− α)x2
2

= −x + αy2
1 + (1− α)y2

2
= [αx2

1 + (1− α)x2
2 + αy2

1 + (1− α)y2
2]/2

And so x + αx2
1 + (1 − α)x2

2,−x + αy2
1 + (1 − α)y2

2 are both non-negative or both
negative; taking τ = 1 or τ = −1, respectively, one has

u + α f (x1) + (1− α) f (x2) = τ f (x3)

where
x3 =

∣∣∣x + αx2
1 + (1− α)x2

2

∣∣∣1/2, y3 =
∣∣∣−x + αy2

1 + (1− α)y2
2

∣∣∣1/2

Therefore, f (x, y) = (x2, y2) is B-presubaffinelike.

Example 6. An example of a subaffinelike function which is not a preaffinelike function.

Consider the function f (x, y) = (x2, y2), x, y ∈ R.
Take the 2-dimensional linear set B = {(x, y) : y = x, x ∈ R}.
Take x1 = 0, x2 = 1, α = 2, then

α f (x1, y1) + (1− α) f (x2, y2)
= (αx2

1 + (1− α)x2
2, αy2

1 + (1− α)y2
2)

= (−2, 3)
6= τ f (x3, y3) = (τx2

3, τy2
3).

In the above inequality, we note that either τx2
3 ≥ 0, τy2

3 ≥ 0 or τx2
3 ≤ 0, τy2

3 ≤ 0,
∀τ 6= 0.

Therefore, f (x, y) = (x2, y2) is not preaffinelike.
However, f (x, y) = (x2, y2), x, y ∈ R is B-subaffinelike.
In fact, ∀x1, x2 ∈ R, ∀α ∈ R, we may choose u = (x, x) ∈ B with x large enough

such that

u + α f (x1, y1) + (1− α) f (x2, y2) = (x + αx2
1 + (1− α)x2

2, x + αy2
1 + (1− α)y2

2) � 0

Then,
u + α f (x1, y1) + (1− α) f (x2, y2) = f (x3, y3)

where
x3 = (x + αx2

1 + (1− α)x2
2)

1/2
and y3 = (x + αy2

1 + (1− α)y2
2))

1/2

Example 7. An example of a preaffinelike function which is not a subaffinelike function.

Consider the function f (x, y) = (x2,−x2), x, y ∈ R.
Take the 2-dimensional linear set B = {(x, y) : y = x, x ∈ R}.
Take x1 = 0, x2 = 1, α = 2, then

α f (x1, y1) + (1− α) f (x2, y2) = (αx2
1 + (1− α)x2

2,−(αx2
1 + (1− α)x2

2)) = (−1, 1)

So, ∀u = (x, x) ∈ B,

u + α f (x1, y1) + (1− α) f (x2, y2) == (x + 1, x− 1)
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However, for f (x3, y3) = (x2
3,−x2

3), ∀x3 ∈ R,

(x2
3,−x2

3) 6= (x− 1, x + 1), ∀x, x3 ∈ R (1)

Actually, if x = 0, it is obvious that (x2
3,−x2

3) 6= (−1, 1); if x 6= 0, the right side of (1)
implies that x2

3 + (−x2
3) = 0, and the left side of (1) is (x − 1) + (x + 1) = 2x 6= 0. This

proves that the inequality (1) must be true. Consequently,

u + α f (x1, y1) + (1− α) f (x2, y2) 6= f (x3, y3), ∀α ∈ R, ∀x1, x2, x3, y1, y2, y3 ∈ R

So f (x, y) = (x2,−x2), x, y ∈ R is not B-subaffinelike.
On the other hand, ∀x1, x2 ∈ R, ∀α ∈ R, we may take τ = 1 if αx2

1 + (1− α)x2
2 ≥ 0 or

τ = −1 if αx2
1 + (1− α)x2

2 ≤ 0, then

α f (x1, y1) + (1− α) f (x2, y2)
= (αx2

1 + (1− α)x2
2,−(αx2

1 + (1− α)x2
2))

= τ(x2
3,−x2

3)
= τ f (x3, y3)

where x3 =
∣∣αx2

1 + (1− α)x2
2

∣∣1/2.
Therefore, f (x, y) = (x2,−x2), x, y ∈ R is preaffinelike.
So far, we have showed the following relationships (where subaffinelikeness and

presubaffinelikeness are related to “a given linear set B”):

affineness
true
�

not true
affinelikeness

true
�

not true
preaffinelikeness

nottrue ↑↓ true nottrue↙↗nottrue nottrue↑↓ true

subaffinelikeness
true
�

not true
presubaffinelikeness

The following Proposition 1 is very similar to the corresponding results for generalized
convexities (see Proposition 2).

Proposition 1. Suppose f : D ⊆ X→ Y is a function, B ⊆ Y a given linear set, and t is any real
scalar.

(a) f is affinelike on D if and only if f (D) is an affine set;
(b) f is preaffinelike on D if and only if ∪t∈R\{0}t f (D) is an affine set;
(c) f is B-subaffinelike on D if and only if f (D) + B is an affine set;
(d) f is B-presubaffinelike on D if and only if ∪t∈R\{0}t f (D)+ B is an affine set.

Proof. (a) If f is affinelike on D, ∀ f (x1), f (x2) ∈ f (D), ∀α ∈ R, ∃x3 ∈ D such that

α f (x1) + (1− α) f (x2) = f (x3)∈ f (D)

Therefore, f (D) is an affine set.
On the other hand, assume that f (D) is an affine set. ∀x1, x2 ∈ D, ∀α ∈ R, we have

α f (x1) + (1− α) f (x2)∈ f (D)

Therefore, ∃x3 ∈ D such that

α f (x1) + (1− α) f (x2) = f (x3)

And hence f is affinelike on D.
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(b) Assume f is a preaffinelike function.
∀y1, y2 ∈ ∪t∈R\{0}t f (D), ∀α ∈ R, ∃x1, x2 ∈ D, ∃t1, t2 ∈ R\{0} for ∃x3 ∈ D,

∃t ∈ R\{0} such that

αy1 + (1− α)y2
= αt1 f (x1) + (1− α)t2 f (x2)

= (αt1 + (1− α)t2)[
αt1

αt1+(1−α)t2
f (x1) +

(1−α)t2
αt1+(1−α)t2

f (x2)].

Since f is preaffinelike, ∃x3 ∈ D, ∃t ∈ R\{0} such that

αt1

αt1 + (1− α)t2
f (x1) +

(1− α)t2

αt1 + (1− α)t2
f (x2) = t f (x3)

Therefore

αy1 + (1− α)y2
= αt1 f (x1) + (1− α)t2 f (x2)

= (αt1 + (1− α)t2)[
αt1

αt1+(1−α)t2
f (x1) +

(1−α)t2
αt1+(1−α)t2

f (x2)]

= (αt1 + (1− α)t2)t f (x3)
= τ f (x3) ∈ ∪t∈R\{0}t f (D)

where τ = (αt1 + (1− α)t2)t. Consequently, ∪t∈R\{0}t f (D) is an affine set.
On the other hand, suppose that ∪t∈R\{0}t f (D) is an affine set. Then, ∀x1, x2 ∈ D,

∀α ∈ R, since f (x1), f (x2) ∈ ∪t∈R\{0}t f (D),

α f (x1) + (1− α) f (x2)∈ ∪t∈R\{0}t f (D)

Therefore, ∃x3 ∈ D, ∃τ 6= 0 such that

α f (x1) + (1− α) f (x2) = τ f (x3)

Then, f is an affinelike function.
(c) Assume that f is B-subaffinelike.
∀y1, y2 ∈ f (D) + B, ∃x1, x2 ∈ D, ∃b1, b2 ∈ B, such that

y1 = f (x1) + b1 and y2 = f (x2) + b2. The subaffinelikeness of f implies that ∀α ∈ R,
∃x3 ∈ D, and ∃v ∈ B such that

v+α f (x1) + (1− α) f (x2) = f (x3)

i.e.,
α f (x1) + (1− α) f (x2) = f (x3)− v

Therefore
αy1 + (1− α)y2
= α( f (x1) + b1) + (1− α)( f (x2) + b2)
= f (x3)− v + αb1 + (1− α)b2
= f (x3) + u ∈ f (D) + B

where u = −v + αb1 + (1− α)b2 ∈ B
Then, f (D) + B is an affine set.
On the other hand, assume that f (D) + B is an affine set.
∀x1, x2 ∈ D, ∀α ∈ R, ∃b1, b2, b3 ∈ B, ∃x3 ∈ D, such that

α( f (x1) + b1) + (1− α)( f (x2) + b2) = f (x3) + b3

i.e.,
u + α f (x1) + (1− α) f (x2) = f (x3)



Axioms 2023, 12, 783 8 of 17

where αb1 + (1− α)b2 − b3 ∈ B. And hence f is B-subaffinelike.
(d) Suppose f is a B-presubaffinelike function.
∀y1, y2 ∈ ∪t∈R\{0}t f (D) + B, similar to the proof of (b),∀α ∈ R, ∃x1, x2, x3 ∈ D,

∃b1, b2, b3, u ∈ B, ∃t1, t2, t3 ∈ R\{0}, for which y1 = t1 f (x1) + b1, y2 = t2 f (x2) + b2, and

αy1 + (1− α)y2
= αt1 f (x1) + (1− α)t2 f (x2) + αb1 + (1− α)b2
= (αt1 + (1− α)t2)[t3 f (x3) + b3 − u] + αb1 + (1− α)b2
= (αt1 + (1− α)t2)t3 f (x3) + αb1 + (1− α)b2 + (αt1 + (1− α)t2)(b3 − u)
∈ t f (D) + B ⊆ ∪t∈R\{0}t f (D) + B

where t = (αt1 + (1− α)t2)t3. This proves that ∪t∈R\{0}t f (D)+ B is an affine set.
On the other hand, assume that ∪t∈R\{0}t f (D)+ B is an affine set.
∀x1, x2 ∈ D, ∀b1, b2 ∈ B, ∀α ∈ R, since f (x1) + b1, f (x2) + b2 ∈ ∪t∈R\{0}t f (D) + B,

∃x3 ∈ D, ∃b3 ∈ B, ∃t ∈ R\{0} such that

α( f (x1) + b1) + (1− α)( f (x2) + b2) = t f (x3) + b3

Therefore,

αb1 + (1− α)b2 − b3 + α f (x1) + (1− α) f (x2) = t f (x3)

i.e.,
u + α f (x1) + (1− α) f (x2) = t f (x3)

where u = αb1 + (1− α)b2 − b3 ∈ B. And so f is B-presubaffinelike. �
The presubaffineness is the weakest one in the series of the generalized affinenesses

introduced here. The following example shows that our definition of presubaffinelikeness
is not trivial.

Example 8. An example of non-presubaffinelike function.

Consider the function f (x, y, z) = (x2, y2, z2), x, y, z ∈ R.
Take the linear set B = {(x,−x, 0) : x ∈ R}.
Take α = 5, (x1, y1, z1) = (0, 0, 1), (x2, y2, z2) = (1, 1, 0), then

α f (x1, y1, z1) + (1− α) f (x2, y2, z2) = (−4,−4, 5)

Either x− 4 or−x− 4 must be negative, but x2
3 ≥ 0, y2

3 ≥ 0 hold for ∀u = (x,−x, 0) ∈ B;
therefore, for any scalar τ 6= 0

u + α f (x1, y1, z1) + (1− α) f (x2, y2, z2) = (x− 4,−x− 4, 5) 6= τ f (x3, y3, z3) = τ(x2
3, y2

3, z2
3)

(Actually, ∀τ < 0, one has τz2
3 ≤ 0 < 5; and ∀τ > 0, either τ(x − 4) < 0 or

τ(−x− 4) < 0, then, either τ(x− 4) < 0 ≤ τx2
3 or τ(−x− 4) < 0 ≤ τy2

3).
And so, f (x, y) = (x2, y2) is not B-presubaffinelike.

3. Generalized Convexities

In this section, we recall some existing definitions of generalized convexities, which are
very comparable with the definitions of generalized affinenesses introduced in this article.

Let Y be a topological vector space, D ⊆ X be a nonempty set, and Y+ be a convex
cone in Y and intY+ 6= ∅.

It is known that a function f : D → Y is said to be Y+-convex on D if, for all x1, x2 ∈ D,
α ∈ [0, 1], there holds

α f (x1) + (1− α) f (x2) ≺ f (αx1 + (1− α)x2)
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The following Definition 5 was introduced in Fan [2].

Definition 5. A function f : D → Y is said to be Y+-convexlike on D if ∀, ∀α ∈ [0, 1], ∃ x3 ∈ D
such that

α f (x1) + (1− α) f (x2) ≺ f (x3)

We may define Y+-preconvexlike functions as follows.

Definition 6. A function f : D → Y is said to be Y+-preconvexlike on D if ∀x1, x2 ∈ D,
∀ α ∈ [0, 1], ∃ x3 ∈ D, ∃τ > 0 such that

α f (x1) + (1− α) f (x2) ≺ τ f (x3).

Definition 7 was introduced by Jeyakumar [3].

Definition 7. A function f : D → Y is said to be Y+-subconvexlike on D if ∀u ∈ intY+, ∀x1, x2 ∈
D, ∀α ∈ [0, 1], ∃x3 ∈ D such that

u + α f (x1) + (1− α) f (x2) ≺ f (x3)

In fact, in Jeyakumar [3], the definition of subconvexlike was introduced as the follow-
ing form Definition 8.

Definition 8. A function f : D → Y is said to be Y+-subconvexlike on D if ∃u ∈ intY+, ∀ε > 0,
∀x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D such that

εu + α f (x1) + (1− α) f (x2) ≺ f (x3)

Li and Wang ([4]) proved that: A function f : D → Y is Y+-subconvexlike on D by
Definition 8 if and only if ∀u ∈ intY+, ∀x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D such that

u + α f (x1) + (1− α) f (x2) ≺ f (x3)

From the definitions above, one may introduce the following definition of presubcon-
vexlike functions.

Definition 9. A function f : D → Y is said to be Y+-presubconvexlike on D if ∀u ∈ intY+,
∀ x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D, ∃τ > 0 such that

u + α f (x1) + (1− α) f (x2) ≺ τ f (x3)

And, similar to ([4]), one can prove that a function f : D → Y is Y+-presubconvexlike
on D if and only if ∃u ∈ intY+, ∀ε > 0, ∀ x1, x2 ∈ D, ∀α ∈ [0, 1], ∃x3 ∈ D, ∃τ > 0 such that

εu + α f (x1) + (1− α) f (x2) ≺ τ f (x3)

Our Definitions 7 and 9 are more comparable with our definitions of generalized affineness.
Similar to the proof of the above Proposition 1, we present the following Proposition 2.
Some examples of generalized convexities were given in [5,6].

Proposition 2. Let f : X → Y be function, and t > 0 be any positive scalar, then
(a) f is Y+-convexlike on D if and only if f (D) + Y+ is convex;
(b) f is Y+-subconvexlike on D if and only if f (D) + intY+ is convex;
(c) f is Y+-preconvexlike on D if and only if ∪t>0t f (D) + Y+ is convex;
(d) f is Y+-presubconvexlike on D if and only if ∪t>0t f (D) + intY+ is convex.
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4. Constraint Qualifications

Consider the following vector optimization problem:

(VP)

Y+ −min f (x)
gi(x) ≺ 0, i = 1, 2, · · ·, m;
hj(x) = 0, j = 1, 2, · · ·, n;
x ∈ D

where f : X → Y , gi : X → Zi , hj : X →Wj , Y+, Zi+ are closed convex cones in Y and Zi,
respectively, and D is a nonempty subset of X.

Throughout this paper, the following assumptions will be used (τi, tj are real scalars).

(A1)∀x1, x2 ∈ D,∀α ∈ [0, 1],∃u0 ∈ intY+,∃ui ∈ intZi+(i = 1, 2, · · ·, n),∃x3 ∈ D

∃τi > 0(i = 0, 1, 2, · · ·, m), ∃tj 6= 0(j = 1, 2, · · ·, n) such that

u0 + α f (x1) + (1− α) f (x2) ≺ τ0 f (x3)
ui + αgi(x1) + (1− α)gi(x2) ≺ τigi(x3)
αhj(x1) + (1− α)hj(x2) = tjhj(x3)

(A2)inthj(D) 6= ∅(, j = 1, 2, · · ·, n)

(A3)Wj(j = 1, 2, · · ·, n)arefinitedimensionalspaces.

Remark 1. We note that the condition (A1) says that f and gi(i = 1, 2, · · ·, m) are presubconvexlike,
and hj (j = 1, 2, . . ., n) are preaffinelike.

Let F be the feasible set of (VP), i.e.,

F :=
{

x ∈ D : gi(x) ≺ 0, i = 1, 2, · · ·, m; hj(x) = 0, j = 1, 2, · · ·, n
}

The following is the well-known definition of a weakly efficient solution.

Definition 10. A point x ∈ F is said to be a weakly efficient solution of (VP) with a weakly efficient
value y ∈ f (x) if for every x ∈ F there exists no y ∈ f (x) satisfying y �� y.

We first introduce the following constraint qualification which is similar to the con-
straint qualification in the differentiate form from nonlinear programming.

Definition 11. Let x ∈ F. We say that (VP) satisfies the No Nonzero Abnormal Multiplier
Constraint Qualification (NNAMCQ) at x if there is no nonzero vector (η, ς) ∈ Πm

i=1Z∗i ×Πn
j=1W∗j

satisfying the system

min
x∈D∩U(x)

[∑m
i=1 ηigi(x) + ∑n

j=1 ς jhj(x)] = 0

∑m
i=1 ηigi(x) = 0

where U(x) is some neighborhood of x.

It is obvious that NNAMCQ holds at x ∈ F with U(x) being the whole space X if and
only if for all (η, ς) ∈ (Πm

i=1Z∗i ×Πn
j=1W∗j \{0} satisfying min ∑m

i=1 ηigi(x) = 0, there exists
x ∈ D such that

(∑m
i=1 ηigi(x) + ∑n

j=1 ς jhj(x)) ≺≺ 0

Hence, NNAMCQ is weaker than ([7], (CQ1)) (in [7], CQ1 was for set-valued op-
timization problems) in the constraint min ∑m

i=1 ηigi(x) = 0, which means that only the
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binding constraints are considered. Under the NNAMCQ, the following KuhnTucker type
necessary optimality condition holds.

Theorem 1. Assume that the generalized convexity assumption (A1) is satisfied and either (A2)
or (A3) holds. If x ∈ F is a weakly efficient solution of (VP) with y ∈ f (x), then exists a vector
(ξ, η, ς) ∈ Y∗ ×Πm

i=1Z∗i ×Πn
j=1W∗j with ξ 6= 0 such that

ξ(y) = min
x∈D∩U(x)

[ξ( f (x)) + ∑m
i=1 ηi(gi(x)) + ∑n

j=1 ς j(hj(x))]

∑m
i=1 ηi(gi(x)) = 0

(2)

for a neighborhood U(x) of x.

Proof. Since x is a weakly efficient solution of (VP) with y ∈ f (x) there exists a nonzero
vector (ξ, η, ς) ∈ Y∗ ×Πm

i=1Z∗i ×Πn
j=1W∗j such that (2) holds. Since NNAMCQ holds at x,

ξ must be nonzero. Otherwise if ξ = 0 then (η, ς) must be a nonzero solution of

0 = min
x∈D∩U(x)

[∑m
i=1 ηi(gi(x)) + ∑n

j=1 ς j(hj(x))]

∑m
i=1 ηi(gi(x)) = 0

But this is impossible, since the NNAMCQ holds at x. �
Similar to ([7], (CQ2)) which is slightly stronger than ([7], (CQ1)), we define the

following constraint qualification which is stronger than the NNAMCQ.

Definition 12. (SNNAMCQ) Let x ∈ F. We say that (VP) satisfies the No Nonzero Abnormal
Multiplier Constraint Qualification (NNAMCQ) at x provided that

(i) ∀η ∈ Πm
i=1Z∗i \{0}satisfying∑m

i=1 ηi(gi(x)) = 0,

∃x ∈ D, s.t. hj(x) = 0, ηi(gi(x)) ≺≺ 0

(ii) ∀ς ∈ Πn
j=1W∗j \{0}, ∃x ∈ D, s.t. ς j(hj(x)) ≺≺ 0 for all j = 1, 2, · · ·, n.

We now quote the Slater condition introduced in ([7], (CQ3)).

Definition 13 (Slater Condition CQ). Let x ∈ F. We say that (VP) satisfies the Slater condition
at x if the following conditions hold:

(i) ∃x ∈ D, s.t. hj(x) = 0, gi(x) ≺≺ 0;
(ii) 0 ∈ inthj(D) for all j.

Similar to ([7], Proposition 2) (again, in [7], discussions are made for set-valued optimiza-
tion problems), we have the following relationship between the constraint qualifications.

Proposition 3. The following statements are true:
(i) Slater CQ⇒ SNNAMCQ⇒ NNAMCQ with U(x) being the whole space X;
(ii) Assume that (A1) and (A2) (or (A1) and (A3)) hold and the NNAMCQ with U(x) being

the whole space X without the restriction of ∑m
i=1 ηi(gi(x)) = 0 at x. Then, the Slater condition

(CQ) holds.

Proof. The proof of (i) is similar to ([7], Proposition 2). Now we prove (ii). By the
assumption (A1), the following sets C1 and C2 are convex:

C1 =
{
(z, w) ∈ Πm

i=1Z∗i ×Πn
j=1W∗j : ∃x ∈ D, τi, tj > 0, s.t. zi ∈ τigi(x) + intZi+, wj ∈ tjhj(x)

}
C2 = ∪t>0th(D)
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Suppose to the contrary that the Slater condition does not hold. Then, 0 /∈ C1 or 0 /∈ C2.
If the former 0 /∈ C1 holds, then by the separation theorem [1], there exists a nonzero vector
(η, ς) ∈ Πm

i=1Z∗i ×Πn
j=1W∗j such that

∑m
i=1 ηi(τizi + z0

i ) + ∑n
j=1 ς j(tjwj) ≥ 0

for all x ∈ D, τi, tj > 0, zi = gi(x), z0
i ∈ intZi+, wj = hj(x). Since intZi+ are convex cones,

consequently we have

∑m
i=1 ηi(τizi + siz0

i ) + ∑n
j=1 ς j(tjwj) ≥ 0 (3)

for all x ∈ D, τi, tj, si > 0, zi ∈ gi(x), z0
i ∈ intZi+, wj ∈ hj(x)

}
and take si → 0 in (3), we have

∑m
i=1 ηi(zi) + ∑n

j=1 ς j(wj) ≥ 0, x ∈ D, zi ∈ gi(x), wj = hj(x)

which contradicts the NNAMCQ. Similarly if the latter 0 /∈ inthj(D) holds then there exists
ς ∈ Πn

j=1W∗j \{0} such that ς j(hj(x)) ≥ 0, ∀x ∈ D, which contradicts NNAMCQ. �

Definition 14 (Calmness Condition). Let x ∈ F. Let Z := ∑m
i=1 Zi and W := ∑n

j=1 Wj. We say
that (VP) satisfies the calmness condition at x provided that there exist U(x, 0Z, 0W), a neighborhood
of (x, 0Z, 0W), and a map ψ(p, q) : Z×W → Y+ with ψ(0Z, 0W) = 0Y such that for each

(x, p, q) ∈ U(x, 0Z, 0W)\{(x, 0Z, 0W)}

Satisfying
(gi(x) + pi) ≺ 0, qj = hj(x)), x ∈ D

there is no y ∈ f (x)), such that

y ∈ y + ψ(p, q) + intY+

Theorem 2. Assume that (A1) is satisfied and either (A2) or (A3) holds. If x ∈ F is a weakly
efficient solution of (VP) with y = f (x), and the calmness condition holds at x, then there exists
U(x), a neighborhood of x, and a vector (ξ, η, ς) ∈ Y∗+ × Z∗+ ×W∗ with ξ 6= 0 such that

ξ(y) = min
x∈D∩U(x)

[ξ( f (x)) + ∑m
i=1 ηi(gi(x)) + ∑n

j=1 ς j(hj(x))]

∑m
i=1 ηi(gi(x)) = 0

(4)

Proof. It is easy to see that under the calmness condition, x being a weakly efficient solution
of (VP) implies that (x, 0Z, 0W) is a weakly efficient solution of the perturbed problem:
VP(p,q)

VP(p, q)

Y+ −min f (x) + ψ(p, q)
s.t.(gi(x) + pi) ≺ 0,
qj = hj(x), x ∈ D,
(x, p, q) ∈ U(x, 0Z, 0W)

By assumption, the above optimization problem satisfies the generalized convexity
assumption (A1). Now we prove that the NNAMCQ holds naturally at (x, 0Z, 0W). Suppose
that (η, ς) ∈ Z∗+ ×W∗ satisfies the system:

min
x∈D(x,p,q)∈U(x,0Z ,0W )

[∑m
i=1 ηi(gi(x) + pi) + ∑n

j=1 ς j(−qj + hj(x))]

∑m
i=1 ηi(gi(x)) = 0

(5)
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If ς 6= 0, then there exists qj ∈ Wj small enough such that ∑n
j=1 ς j(−qj) < 0. Since

x ∈ F, 0 ∈ hj(x), and there exists zx
i ∈ gi(x)∩ (−Zi+), which implies that η(zx

i ) ≤ 0, hence

∑m
i=1 ηi(zx

i ) + ∑n
j=1 ς j(−qj) < 0

which contradicts (5). Hence, ς = 0 and (5) becomes

min
x∈D,(x,p,q)∈U(x,0Z ,0W )

∑m
i=1 ηi(gi(x) + pi)

∑m
i=1 ηi(gi(x)) = 0

If η 6= 0, then there exists p small enough such that ∑m
i=1 ηi(pi) < 0. Let zx

i = gi(x), then

∑m
i=1 ηi(zx

i ) ≤ 0

and hence
∑m

i=1 ηi(zx
i + pi) =∑m

i=1 ηi(zx
i )+∑m

i=1 ηi(pi) <0

which is impossible. Consequently, η = 0 as well. Hence, there exists (ξ, η, ς) ∈ Y∗ × Z∗+ ×
W∗+ with ξ 6= 0 such that

min
x∈D,(x,p,q)∈U(x,0Z ,0W )

[ξ( f (x) + ψ(p, q)) + ∑m
i=1 ηi(gi(x) + pi) + ∑n

j=1 ς j(−qj + hj(x))]

∑m
i=1 ηi(gi(x)) = 0

(6)

It is obvious that (6) implies (4) and hence the proof of the theorem is complete. �

Definition 15. Let Zi(i = 1, 2, · · ·, m), Wj(j = 1, 2, · · ·, n) be normed spaces. We say that (VP)
satisfies the error bound constraint qualification at a feasible point x if there exist positive constants
λ, δ, and ε such that

d(x, Σ(0Z, 0W)) ≤ λ||(p, q)||, ∀(p, q) ∈ εBX , x ∈ Σ(p, q) ∩Uδ(x)

where BX is the unit ball of X, and

Σ(p, q) :=
{

x ∈ D : (gi(x) + pi) ∩ (−Zi+)) 6= ∅, qj ∈ hj(x)
}

Remark 2. Note that the error bound constraint qualification is satisfied at a feasible point x if
and only if the function Σ(p, q) is pseudo upper-Lipschitz continuous around (0Z, 0W , x) in the
terminology of ([8]) (which is referred to as being calm at x in [9]). Hence, Σ(p, q) being either
pseudo-Lipschitz continuous around (0Z, 0W , x). in the terminology of [10] or upper-Lipschitz
continuous at x in the terminology of [11] implies that the error bound constraint qualification holds
at x. Recall that a function F(x) : Rn → Rm is called a polyhedral multifunction if its graph is a
union of finitely many polyhedral convex sets. This class of function is closed under (finite) addition,
scalar multiplication, and (finite) composition. By ([12], Proposition 1), a polyhedral multifunction
is upper-Lipschitz. Hence, the following result provides a sufficient condition for the error bound
constraint qualification.

Proposition 4. Let X = Rn and W = Rm. Suppose that D is polyhedral and h is a polyhedral
multifunction. Then, the error bound constraint qualification always holds at any feasible point
x ∈ F := {x ∈ D : 0 = h(x)}.

Proof. Since D is polyhedral and h is a polyhedral multifunction, its inverse map
S(q) = {x ∈ Rn : q ∈ h(x)} is a polyhedral multifunction. That is, the graph of S is a
union of polyhedral convex sets. Since

gphΣ(p, q) := {(q, x) ∈ Rm × D : q ∈ h(x)} = gphS ∩ (Rm × D)
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which is also a union of polyhedral convex sets, Σ is also a polyhedral multifunction and
hence upper-Lipschitz at any point of x ∈ Rn by ([12], Proposition 1). Therefore, the error
bound constraint qualification holds at x. �

Definition 16. Let X be a normed space, f (x) : X → Y be a function, and x ∈ X. f is said to be
Lipschitz near x if there exist U(x), a neighborhood of x, and a constant Lf > 0 such that for all
x1, x2 ∈ U(x),

f (x1) ⊆ f (x2) + L f

∣∣∣∣∣∣x1 − x2

∣∣∣∣∣∣BY

where BY is the unit ball of Y.

Definition 17. Let X be a normed space, f (x) : X → Y be a function and x ∈ X. f is said to be
strongly Lipschitz on S ⊆ X if there exist a constant Lf > 0 such that for all x1, x2 ∈ Sy1 = f (x1),
y2 = f (x2) and e ∈ BY ∩Y+,

y1 ≺ y2 + L f

∣∣∣∣∣∣x1 − x2

∣∣∣∣∣∣e
The following result generalizes the exact penalization [13].

Proposition 5. Let X be a normed space, f (x) : X → Y be a function which is strongly Lipschitz
of rank Lf on a set S ⊆ X. Let C ⊆ X and suppose that x is a weakly efficient solution of

Y+ −minx∈S f (x)

with y = f (x). Then, for all K ≥ L f , x is a weakly efficient solution of the exact penalized
optimization problem

Y+ −minx∈S f (x) + KdC(x)BY ∩Y+

where dC(x) := min{|x− c|, c ∈ C}.

Proof. Let us prove the assertion by supposing the contrary. Then, there is a point S ⊆ X,
y = f (x), and e ∈ BY ∩Y+ satisfying y + KdC(x)e ≺ y. Let ε > 0 and c ∈ C be a point such
that ||x− c||≤ dC(x) + ε . Then, for any c∗ ∈ f (c),

c∗ ≺ y + K||x− c||e ≺ y + K(dC(x) + ε)e ≺ y + Kεe

Since ε > 0 is arbitrary, it contradicts the fact that x is a weakly efficient solution of

Y+ −minx∈S f (x)

�

Proposition 6. Suppose X× Z×W is a normed space and f is strongly Lipschitz on D. If x is a
weakly efficient solution of (VP) and the error bound constraint qualification is satisfied at x, then
(VP) satisfies the calmness condition at x.

Proof. By the exact penalization principle in Proposition 5 x is a weakly efficient solution
of the penalized problem

Y+ −minx∈D f (x) + KdΣ(0,0)(x)BY ∩Y+

The results then follow from the definitions of the calmness and the error bound
constraint qualification. �

Theorem 3. Assume that the generalized convexity assumption (A1) is satisfied with f replaced
by f + KdC(x)BY ∩ Y+ and either (A2) or (A3) holds. Suppose X × Z ×W is a normed space
and f is strongly Lipschitz on D. If x is a weakly efficient solution of (VP) and the error bound
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constraint qualification is satisfied at x, then there exist U(x), a neighborhood of x, and a vector
(ξ, η, ς) ∈ Y∗+ × Z∗+ ×W∗ with ξ 6= 0 such that (4) holds.

Using Proposition 4, Theorem 3 has the following easy corollary.

Corollary 1. Suppose Y is a normed space, X = Rn, W = Rm and D is polyhedral, and f is strongly
Lipschitz on D. Assume that the generalized convexity assumption (A1) is satisfied with f replaced
by f + KdC(x)BY ∩ Y+ and either (A2) or (A3) holds. If x is a weakly efficient solution of (VP)
without the inequality constraint g(x) � 0, and h is a polyhedral multifunction, then there exist
U(x), a neighborhood of x a vector (ξ, ς) ∈ Y∗+ ×W∗ with ξ 6= 0 such that

ξ(y) = min
x∈D∩U(x)

[ξ( f (x)) + ς j(hj(x))]

Our last result Theorem 4 is a strong duality theorem, which generalizes a result in
Fang, Li, and Ng [14].

For two topological vector spaces Z and Y, let B(Z; Y) be the set of continuous linear
transformations from Z to Y and

B+(Z, Y) := {S ∈ B(Z, Y) : S(Z+) ⊆ Y+}

The Lagrangian map for (VP) is the function

L : X×Πm
i=1B+(Zi, Y)×Πn

j=1B+(Wj, Y)→ Y

defined by
L(x, S, T) := f (x) + ∑m

i=1 Si(gi(x)) + ∑n
j=1 Tj(hj(x))

Given (S, T) ∈ Πm
i=1B+(Zi, Y) ×Πn

j=1B+(Wj, Y), consider the vector minimization
problem induced by (VP):

(VPST)
Y+ −minL(x, S, T)
s.t.x ∈ D

and denote by Φ(S, T) the set of weakly efficient value of the problem (VPST). The Lagrange
dual problem associated with the primal problem (VP) is

(VD)
Y+ −maxΦ(S, T)
s.t.(S, T) ∈ Πm

(VD) i=1B+(Zi, Y) + Πn
j=1B+(Wj, Y)

The following strong duality result holds which extends the strong duality theorem
in ([7], Theorem 7) (which was for set-valued optimization problems), to allow weaker
convexity assumptions. We omit the proof since it is similar to [7].

Theorem 4. Assume that (A1) is satisfied, either (A2) or (A3) is satisfied, and a constraint
qualification such as NNAMCQ is satisfied. If x is a weakly efficient solution of (VP), then there
exists

(S, T) ∈ Πm
i=1B+(Zi, Y)×Πn

j=1B+(Wj, Y)

such that
Φ(S, T) ∩ f (x) 6= ∅
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5. Conclusions

We introduce the following definitions of generalized affine functions: affinelikeness,
preaffinelikeness, subaffinelikeness, and presubaffinelikeness. Examples 1 to 7 show that
definitions of affine, affinelike, preaffinelike, subaffinelike, and presubaffinelike functions
are all different. Example 8 is an example of non-presubaffinelike function; presubaffineness
is the weakest one in the series. Proposition 1 demonstrates that our generalized affine
functions have some similar properties with generalized convex functions.

And then, we work with vector optimization problems in real linear topological spaces,
and obtain necessary conditions, sufficient conditions, or necessary and sufficient conditions
for weakly efficient solutions, which generalize the corresponding classical results in [13,15]
and some recent results in [7,9,16–18]. We note that the constraint qualifications in [13,17,18]
are in the differentiation form. Compared with the results in [19] and ([20], p. 297) in
discussions of convex constraints, we only required weakened convexities for constraint
qualifications in this article. We note that [17] works with semi-definite programming.
In [17], two groups of functions gi(x) ≥ 0, i∈I and hj(x) = 0, j∈J can be just considered as
two topological spaces (I and J do not have to be finite sets). We also note that f is supposed
to be “proper convex” in [18]; and in [18], functions are required to be “quasiconvex”.

Generalized affine functions and generalized convex functions can be used for other
discussions of optimization problems, e.g., dualities, scalarizations, as well as saddle
points, etc.
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