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Abstract: When using the Laplace transform to solve a one-dimensional heat conduction model with
Dirichlet boundary conditions, the integration and transformation processes become complex and
cumbersome due to the varying properties of the boundary function f (t). Meanwhile, if f (t) has a
complex functional form, e.g., an exponential decay function, the product of the image function of
the Laplace transform and the general solution to the model cannot be obtained directly due to the
difficulty in solving the inverse. To address this issue, operators are introduced to replace f (t) in
the transformation process. Based on the properties of the Laplace transform and the convolution
theorem, without the direct involvement of f (t) in the transformation, a general theoretical solution
incorporating f (t) is derived, which consists of the product of erfc(t) and f (0), as well as the convolution
of erfc(t) and the derivative of f (t). Then, by substituting f (t) into the general theoretical solution, the
corresponding analytical solution is formulated. Based on the general theoretical solution, analytical
solutions are given for f (t) as a commonly used function. Finally, combined with an exemplifying
application demonstration based on the test data of temperature T(x, t) at point x away from the
boundary and the characteristics of curve T(x, t) − t and curve
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1. Introduction 
The one-dimensional heat conduction model in a half-infinite domain with Dirichlet 

boundary conditions is a classical heat conduction model [1]. In this model, the boundary 
function f(t) is assumed to be a known constant ΔT0 (representing an instantaneous change 
ΔT0 in the initial temperature and remaining constant). An analytical solution for the 
model can be directly obtained using Laplace and Fourier transforms [1–3]. 

In practical problems, the expression of f(t) is often complex and variable. As the 
boundary function type of f(t) changes or the same function type has different expressions, 
complex and tedious integral transform operations are needed to obtain the solution to 
the problem [3]. For some complex boundary functions, specific solution methods have 
been proposed, such as the thermal equilibrium integral method [4–7] and the boundary 
value method [8,9]. To effectively deal with complex and varied boundary functions, 
some of the literature has extensively investigated the impact of boundary conditions on 
model solutions [10], as well as methods for handling boundaries in specific problems 
[10–14]. Among the studies of similar problems based on the one-dimensional heat 

Citation: Wu, D.; Tao, Y.; Ren, H. 

The Laplace Transform Shortcut  

Solution to a One-Dimensional Heat  

Conduction Model with Dirichlet 

Boundary Conditions. Axioms 2023, 

12, x. https://doi.org/10.3390/xxxxx 

Academic Editors: Tao Liu, Qiang 

Ma, Songshu Liu and Florin Felix 

Nichita 

Received: 20 June 2023 

Revised: 18 July 2023 

Accepted: 7 August 2023 

Published: 9 August 2023 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

T(x, t)/

 
 

 
 

 
Axioms 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/axioms 

Article 

The Laplace Transform Shortcut Solution to a  
One-Dimensional Heat Conduction Model with Dirichlet 
Boundary Conditions 
Dan Wu 1, Yuezan Tao 2,* and Honglei Ren 2 

1 School of Urban Construction and Transportation, Hefei University, Hefei 230601, China;  
wudan@hfuu.edu.cn 

2 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; renhonglei2021@163.com 
* Correspondence: 2005800093@hfut.edu.cn 

Abstract: When using the Laplace transform to solve a one-dimensional heat conduction model with 
Dirichlet boundary conditions, the integration and transformation processes become complex and 
cumbersome due to the varying properties of the boundary function f(t). Meanwhile, if f(t) has a 
complex functional form, e.g., an exponential decay function, the product of the image function of 
the Laplace transform and the general solution to the model cannot be obtained directly due to the 
difficulty in solving the inverse. To address this issue, operators are introduced to replace f(t) in the 
transformation process. Based on the properties of the Laplace transform and the convolution the-
orem, without the direct involvement of f(t) in the transformation, a general theoretical solution 
incorporating f(t) is derived, which consists of the product of erfc(t) and f(0), as well as the convolu-
tion of erfc(t) and the derivative of f(t). Then, by substituting f(t) into the general theoretical solution, 
the corresponding analytical solution is formulated. Based on the general theoretical solution, ana-
lytical solutions are given for f(t) as a commonly used function. Finally, combined with an exempli-
fying application demonstration based on the test data of temperature T(x, t) at point x away from 
the boundary and the characteristics of curve T(x, t) − t and curve 𝜕T(x, t)/𝜕t − t, the inflection point 
and curve fitting methods are established for the inversion of model parameters. 

Keywords: one-dimensional heat conduction; Laplace transform; general theoretical solution;  
common function; inflection point method; curve fitting method 

MSC: 35A22; 35F15; 35K05   
 

1. Introduction 
The one-dimensional heat conduction model in a half-infinite domain with Dirichlet 

boundary conditions is a classical heat conduction model [1]. In this model, the boundary 
function f(t) is assumed to be a known constant ΔT0 (representing an instantaneous change 
ΔT0 in the initial temperature and remaining constant). An analytical solution for the 
model can be directly obtained using Laplace and Fourier transforms [1–3]. 

In practical problems, the expression of f(t) is often complex and variable. As the 
boundary function type of f(t) changes or the same function type has different expressions, 
complex and tedious integral transform operations are needed to obtain the solution to 
the problem [3]. For some complex boundary functions, specific solution methods have 
been proposed, such as the thermal equilibrium integral method [4–7] and the boundary 
value method [8,9]. To effectively deal with complex and varied boundary functions, 
some of the literature has extensively investigated the impact of boundary conditions on 
model solutions [10], as well as methods for handling boundaries in specific problems 
[10–14]. Among the studies of similar problems based on the one-dimensional heat 

Citation: Wu, D.; Tao, Y.; Ren, H. 

The Laplace Transform Shortcut  

Solution to a One-Dimensional Heat  

Conduction Model with Dirichlet 

Boundary Conditions. Axioms 2023, 

12, x. https://doi.org/10.3390/xxxxx 

Academic Editors: Tao Liu, Qiang 

Ma, Songshu Liu and Florin Felix 

Nichita 

Received: 20 June 2023 

Revised: 18 July 2023 

Accepted: 7 August 2023 

Published: 9 August 2023 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

t − t, the inflection point
and curve fitting methods are established for the inversion of model parameters.

Keywords: one-dimensional heat conduction; Laplace transform; general theoretical solution;
common function; inflection point method; curve fitting method

MSC: 35A22; 35F15; 35K05

1. Introduction

The one-dimensional heat conduction model in a half-infinite domain with Dirichlet
boundary conditions is a classical heat conduction model [1]. In this model, the boundary
function f (t) is assumed to be a known constant ∆T0 (representing an instantaneous change
∆T0 in the initial temperature and remaining constant). An analytical solution for the
model can be directly obtained using Laplace and Fourier transforms [1–3].

In practical problems, the expression of f (t) is often complex and variable. As the
boundary function type of f (t) changes or the same function type has different expressions,
complex and tedious integral transform operations are needed to obtain the solution to the
problem [3]. For some complex boundary functions, specific solution methods have been
proposed, such as the thermal equilibrium integral method [4–7] and the boundary value
method [8,9]. To effectively deal with complex and varied boundary functions, some of
the literature has extensively investigated the impact of boundary conditions on model
solutions [10], as well as methods for handling boundaries in specific problems [10–14].
Among the studies of similar problems based on the one-dimensional heat conduction
model, such as groundwater seepage in a semi-infinite aquifer under the control of river
and channel boundaries, the literature [15–22] provides a detailed investigation of a seepage
model under changing river and channel water level characteristics. The solution methods
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in these studies are too complex, making their application difficult, or the treatment of
boundary conditions is difficult to generalize in practical applications. However, there
are still cases where the model is difficult to solve directly when common function types
are used as boundary functions in one-dimensional heat conduction models. For instance,
when f (t) is an exponentially decaying function ∆T0 e−λt after the Laplace transform,
the inverse problem of the combined product of the model’s general solution and the
function-like f (t) becomes difficult to solve directly.

In practical problems, the function type of f (t) is complex and variable [20,21]. To avoid
the complex and tedious process of integral transform operations mentioned above, the
literature [21] proposed a shortcut Fourier transform method for f (t) as the Lagrange linear
interpolation equation when solving unsteady-flow models near river and canal bound-
aries. This method exploits the properties of the Fourier transform and the convolution
theorem, enabling f (t) to participate in the transformation process indirectly. When f (t) is
an exponentially decaying function, the one-dimensional heat conduction model is difficult
to solve directly using Laplace and Fourier transforms. To address this problem, research
on the fast solution method based on the feature that f (t) does not directly participate in
the transformation process is carried out in the literature [22,23].

The shortcut solution for the Laplace and Fourier transforms provides a general the-
oretical solution approach for models of this type by replacing f (t) with operators and
performing calculations in the transformation process without directly computing the trans-
formation of f (t). This approach is based on the differential properties of the transform and
the convolution theorem. Given the conditions for determining f (t) in practical problems,
the general theoretical solution is applied by substituting f (t) to obtain the actual solution
to the problem [19–21]. This solving approach does not need complex and cumbersome
integral transformation processes, making it a fast, concise, and convenient alternative to
traditional solving methods.

This paper systematically describes the process of establishing the Laplace trans-
form shortcut solution method and provides the analytical solutions of several common
function types using the general theoretical solution. Combined with the exemplifying
research, the establishment and application of the inflection point and curve fitting meth-
ods for calculating model parameters using temperature-based dynamic monitoring data
are demonstrated.

2. Basic Model

As illustrated in Figures 1 and 2, the one-dimensional heat conduction problem in the
semi-infinite domain under Dirichlet boundary control assumes:

(1) A homogeneous thin plate extending infinitely in the x-direction, with a heat source at
the boundary (x = 0) that varies with time as f (t). f (t) must meet the basic requirements
of the Laplace transform.

(2) The temperature at any point within the thin plate can be represented as T(x, t), and
the initial temperature is uniformly zero: T(x, 0) = 0.

(3) The outer surface of the thin plate is insulated, indicating that there is no heat exchange
between the thin plate and the external environment, and the one-dimensional heat
conduction only occurs within the thin plate due to the boundary heat source.

The above problem can be represented as a mathematical model (I):

∂T
∂t

= a
∂2T
∂x2 (0 < x < +∞, t > 0), (1)

T(x, t)|t=0 = T(x, 0) (x > 0), (2)

T(x, t)|x=0 = T(0, 0) + f (t) (t ≥ 0), (3)

where a (m2/s) represents the thermal diffusivity or thermal conductivity of the solid material.
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3. General Theoretical Solution

By defining u(x, t) = T(x, t) − T(x, 0), the mathematical model (I) can be rewritten
as (II):

∂u
∂t

= a
∂2u
∂x2 (0 < x < +∞, t > 0), (4)

u(x, t)|t=0 = 0 (x > 0), (5)

u(x, t)|x=0 = f (t) (t ≥ 0), (6)

The right end of Formula (5) is 0, which is convenient for the later formula derivation
and expression simplification.

Taking the Laplace transform of model (II) with respect to t yields model (III):

d2u
dx2 −

s
D

u = 0, (7)

u|x=0 = L[ f (t)], (8)

where u represents the Laplace transform of u with respect to t, s is the Laplace oper-
ator, and L and L−1 denote the Laplace transform operator and the inverse transform
operator, respectively.

In the aforementioned process, during the transformation of boundary condition (6)
to boundary condition (8), f (t) does not directly participate in the transformation process.
That is, the transformation operation does not involve calculating the image function of
f (t). Instead, f (t) is treated as an operator in the direct transformation process.

The general solution to Equation (7) in Part (III) is

u(x, s) = c1 exp
(√

s
a

x
)
+ c2 exp

(
−
√

s
a

x
)

, (9)
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where c1 and c2 are undetermined constants. With the boundary conditions (8), considering
the mathematical meaning of the solution as x approaches infinity (u(x, t)|x→∞ = 0,
U|x→∞ = 0), the specific solution for model (III) is

u(x, s) = L[ f (t)] exp
(
−
√

s
a

x
)

, (10)

Applying the inverse Laplace transform to Equation (10) yields the solution to the
problem. When the Laplace transform is used to solve the one-dimensional heat conduction
model, the image function of L[f (t)] is usually obtained and substituted into Equation (10).
Then, the inverse Laplace transform is applied to Equation (10), and the solution to the
problem can be obtained.

When the form of f (t) is complicated or f (t) is of a special function type, it is difficult to
find the solution to the problem using the above method. If f (t) is an exponentially decaying
function ∆T0 e−λt, where λ > 0, and the image function of L[f (t)] is ∆T0/(s + λ), the right-
hand side of the above Equation becomes ∆T0 exp(−

√
s/ax)/(s + λ). The convolution of

this product combination during the inverse transformation makes it challenging to obtain
the solution directly [3]. Therefore, it is difficult to obtain the solution to the problem by
directly using the Laplace transform.

To avoid the above tedious or even solution-free inverse process, under the condition
that the image function of f (t) is not sought and the inverse of the product of the image
function and the general solution is not sought, L[f (t)] is used as an operator on the Laplace
inverse transform process to establish the Laplace transform general theoretical solution,
provided that f (t) satisfies the basic requirements of the Laplace transform.

According to the “convolution theorem for Laplace inversions” [3], we have

u(x, t) = L−1[u(x, s)] = L−1
[

L( f (t)) exp
(
−
√

s
a x
)]

,

= L−1[L( f (t))] ∗ L−1
[
exp

(
−
√

s
a x
)]

= f (t) ∗ L−1
[
exp

(
−
√

s
a x
)]

,

(11)

where ∗ represents the convolution operator.
The inverse Laplace transform function of the complementary error function

“erfc(u)” [3] is

L−1
[

1
s

exp
(
−
√

s
a

x
)]

=
2√
π

∫ +∞

x
2
√

at

e−ζ2
dζ = er f c

(
x

2
√

at

)
, (12)

The left-hand side L−1
[

1
s exp

(
−
√

s
a x
)]

of Equation (12) and the right-hand side

L−1
[
exp

(
−
√

s
a x
)]

of Equation (11) have a differential relationship in the context of the
inverse Laplace transform. For Equation (11), according to the “differential property” of
the inverse Laplace transform [3], we have

L−1
[
exp

(
−
√

s
a x
)]

= L−1
{

s
[

1
s exp

(
−
√

s
a x
)]}

= d
dt

{
L−1

[
1
s exp

(
−
√

s
a x
)]}

,
(13)

Substituting Equation (12) into (13) yields

L−1
[

exp
(
−
√

s
a

x
)]

=
d
dt

[
er f c

(
x

2
√

at

)]
(14)
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Substituting Equation (14) into (11) yields

u(x, t) = L−1[u(x, s)]

= L−1[L( f (t))] ∗ L−1[exp(−
√

s
a · x)]

= f (t) ∗ d
dt [er f c( x

2
√

at
)],

(15)

The “convolution differentiation” [3] property of the Laplace transform implies that

f (t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
+ f (t)

[
er f c( x

2
√

at
)
∣∣∣
t=0

]
= er f c

(
x

2
√

at

)
∗ d[ f (t)]

dt + f (t)|t=0er f c
(

x
2
√

at

)
,

(16)

Because er f c
(

x
2
√

at

)∣∣∣
t=0

= 0, through Equations (15) and (16), after rearrangement,
we have

u(x, t) = f (t) ∗ d
dt

[
er f c

(
x

2
√

at

)]
,

= f (t)|t=0er f c
(

x
2
√

at

)
+ er f c

(
x

2
√

at

)
∗ d[ f (t)]

dt ,
(17)

Note that u(x, t) = T(x, t) − T(x, 0) and T(x, 0) = 0. According to the commutative
property of convolution, the above Equation can be written in the following integral form:

T(x, t) = f (t)|t=0er f c
(

x
2
√

at

)
+
∫ t

0

d[ f (t)]
dt

er f c

(
x

2
√

a(t− τ)

)
dτ. (18)

Equation (18) represents a model solution obtained under the condition that f (t) is
not directly involved in the transformation process. The solution contains f (t). It is worth
noting that T(x, 0) = 0, but f (0) is not necessarily equal to 0. In practical applications, it
is necessary to substitute the known f (t) and further expand the Equation to obtain the
solution to the actual problem. Therefore, for any given f (t), Equation (18) represents the
general theoretical solution of the model.

4. Solution for Boundary Functions of Commonly Used Function Types

Based on the general theoretical solution, this paper provides solutions for boundary
functions of commonly used function types for ease of reference in practical applications.

In engineering and technology, commonly used function types include constant func-
tions, polynomial functions, and elementary functions.

4.1. Constant Function

A constant function indicates that f (t) is a constant, and f (t) = ∆T0. The physical signif-
icance of this condition is that as t approaches 0+, the boundary temperature undergoes an
instantaneous change of ∆T0 and remains constant after that. This constitutes the classical
one-dimensional heat conduction model.

In this case, based on Equation (18), we have d[f (t)]/dt = d[∆T0]/dt = 0 and f (0) = ∆T0,
which leads to

T(x, t) = ∆T0er f c
(

x
2
√

at

)
. (19)

Equation (19) is the solution to the classical model [1–3].

4.2. Linear Interpolation Function

For the one-dimensional heat conduction problem with Dirichlet boundary conditions,
although many variables vary continuously with time, actual observation processes are
often discrete. For example, boundary temperature measurement data, even self-recorded
test data, are mostly collected at a certain time interval from the previous test, so it is
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necessary to make extractions. Therefore, to express the variations in variables over time
based on discrete measured data, piecewise function types are commonly used [24].

When a variable has a complex variation process, it is common to discretize f (t) based
on the measured data using methods such as linear interpolation, including the Lagrange
linear interpolation equation.

f (t) = ∆T0 +
n

∑
i=2

[ f (ti)− f (ti−1)]
t− ti−1

ti − ti−1
· δ(t− ti−1). (20)

where δ(t − ti−1) is the Heaviside function and has the following properties [25]: when
t < ti−1, δ(t − ti−1) = 0, and when t ≥ ti−1, δ(t − ti−1) = 1.

Substituting Equation (20) into (18), considering the properties of the δ(t − ti−1)
function, we have

T(x, t) = ∆T0er f c
(

x
2
√

at

)
+

n

∑
i=2

f (ti)− f (ti−1)

ti − ti−1
·
∫ t

ti−1

er f c
(

x
2
√

at

)
dt. (21)

Note that ∆T0 represents the interval during which the temperature remains constant
starting from t→0+, and this constant period is from t1 to t0 (Figure 3). Therefore, the
summation part in Equation (20) is for i = 2 − n. When establishing an interpolation
equation for f (t) based on the definition of ∆T0, it is important to consider the expression of
each time interval in the function [26].
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4.3. Step Function

For the boundary temperature f (ti, ti+1) in the segment between ti − ti+1(i ≥ 2), the
average value of the temperature [f (ti) + f (ti+1)]/2 in the time period is used, or the increase
f (ti+1) − f (ti) in the time period after t1 is used. The step function of f (t) can be written as

f (t) = ∆T0 +
n

∑
i=2

[( f (ti)− f (ti−1)] · δ(t− ti−1) (t > ti−1, i ∈ N∗), (22)

Substituting Equation (22) into (18), considering the properties of δ(t − ti−1) and
f (0)= ∆T0, we have

T(x, t) = ∆T0er f c
(

x
2
√

at

)
+

n

∑
i=2

[ f (ti)− f (ti−1)]er f c

(
x

2
√

a(t− ti−1)

)
. (23)

4.4. Exponential Function

When there is a Newtonian cooling boundary [27,28], i.e., f (t) is an exponential func-
tion (λ > 0, and eλt does not satisfy the requirements of the Laplace transform existence
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theorem, which will not be discussed here), substituting f (t) = ∆T0 e−λt into Equation (18)
yields [20–22]

T(x, t) = ∆T0er f c
(

x
2
√

at

)
− λ∆T0

∫ t

0
e−λτer f c

(
x

2
√

a(t− τ)

)
dτ. (24)

4.5. Trigonometric Function

When the boundary function f (t) is a trigonometric function (take the sine function as
an example), substituting f (t) = ∆T0sin(t) into Equation (18) yields

T(x, t) = ∆T0

∫ t

0
cos(τ)er f c

(
x

2
√

a(t− τ)

)
dτ. (25)

When the boundary function f (t) is a cosine function, substituting f (t) = ∆T0cos(t) into
Equation (18) yields

T(x, t) = ∆T0er f c
(

x
2
√

at

)
− ∆T0

∫ t

0
sin(τ)er f c

(
x

2
√

a(t− τ)

)
dτ. (26)

Based on the above descriptions, once the boundary function f (t) is determined, it is
convenient and efficient to substitute f (t) into the general solution of the theory to obtain
the corresponding solution to the specific problem. The provided solutions for different
function types and their corresponding interpretations facilitate practical references and
applications. Of course, after the specific f (t) is determined, stepwise integration can be
employed to expand the aforementioned solution further. Additionally, it is possible to
establish numerical algorithms for analytical solutions based on the obtained solutions [23],
which will be beneficial for frequent applications in practical scenarios.

5. Application of the Solution
5.1. Specific Solutions and Their Mathematical Significance

Discussing the model’s specific solution and its mathematical significance helps to not
only further understand the rationality of its assumptions but also verify the correctness of
its solution.

In the following, based on Formula (21) of the model solution whose boundary func-
tion is Lagrange linear interpolation, taking the application of i = 2 as an example, the
specific solution and its mathematical and physical significance are discussed.

When i = 2, Equation (21) is transformed into

T(x, t) = ∆T0er f c
(

x
2
√

at

)
+ λ

∫ t

t1

er f c
(

x
2
√

at

)
dt. (27)

where λ = (f 2 − f 1)/(t2 − t1), corresponding to the slope of the boundary temperature
change during the period of t2 − t1.

5.1.1. When λ = 0

When λ = 0, Equation (27) is transformed into

T(x, t) = ∆T0er f c
(

x
2
√

at

)
. (28)

Equation (28) shows the solution of the classical model. Therefore, the classical model
is a special solution of Equation (27).
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5.1.2. When ∆T0 = 0

When ∆T0 = 0, Equation (27) is transformed into

T(x, t) = λ
∫ t

t1

er f c
(

x
2
√

at

)
dt. (29)

The physical meaning of Equation (29) is that if the initial temperature of the tempera-
ture field is consistent with the boundary temperature, the boundary temperature remains
unchanged. If the temperature of the temperature field changes at a rate of λ because of
other factors (such as noninsulating surface materials with vertical heat exchange), the
thermal motion within the material is still affected by the boundary even if the boundary
temperature remains constant.

5.1.3. When x→∞

Because er f c(z)|z→∞ = 0, then T(x, t)|x→∞ = 0.
The boundary temperature has no effect on ∞, which is consistent with the general

law of heat conduction problems.

5.2. Methods for Calculating Model Parameters

According to the model’s interpretation, one of the most important objectives of
studying such problems is to exploit the temperature-based dynamic monitoring data of
the temperature field to calculate the model parameters. Because the solution contains
an integral term, to facilitate the application of the solution, it is convenient to establish
a method for the inversion of model parameters by using temperature-field dynamic
monitoring data based on the variation in temperature T(x, t) with time T(x, t) − t, or the
variation in the temperature change rate at a point with time
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t − t [27–35].
Then, based on the model solution (21) with the boundary function as Lagrange linear

interpolation, taking the instance of i = 2 as an example, the method for establishing and
applying the finite-difference approximation ∂T(x, t)/∂t − t is demonstrated to estimate
the model parameter “a”.

The main methods for calculating the model parameter a with the measured curves of
the variables over time are the inflection point and the curve fitting methods.

5.2.1. The Inflection Point Method

The inflection point method solves parameter a by plotting the inflection points on the
curve based on actual measured data.

From Equation (24), taking the derivative with respect to t, the temperature variation
rate at a distance x from the boundary, denoted as ϕ(x, t) = ∂T(x, t)/∂t, is represented as

ϕ(x, t) = ∆T0 ·
2−3/2

2
√

πa
exp

(
x2

4at

)
+

n

∑
i=2

fi − fi−1

ti − ti−1
er f c

(
x

2
√

a(t− ti−1)

)
, (30)

When n = 2, Equation (30) can be written as

ϕ(x, t) = ∆T0
t−3/2

2
√

πa
exp

(
x2

4at

)
+ λer f c

(
x

2
√

at

)
. (31)

In the Equation, λ = (f 2 − f 1)/(t2 − t1), where λ represents the slope of the boundary
temperature change in the time interval of t2 − t1.

To further differentiate Equation (31) with respect to t, we have

∂ϕ(x, t)
∂t

=
1

2
√

πat5
e−

x2
4at

[
∆T0

(
−3

2
+

x2

4at

)
+ λt

]
(32)



Axioms 2023, 12, 770 9 of 14

At the inflection point of the curve ∂ϕ(x, t)/∂t − t, the right side of Equation (32) is
equal to zero. Let tg be the time at the inflection point. By solving the Equation inside the
square brackets on the right side, two roots can be obtained, among which the one with
reasonable mathematical and physical significance is [20]:

tg =
∆T0

2λ

3
2
−

√(
3
2

)2
− λx2

a∆T0


.

(33)

Based on Equation (33), the model parameter a can be directly obtained from the
inflection point on the measured curve of x with respect to t (at this point, ∆T0, λ, and x are
all known):

a = x2/[2tg(3− 2λtg/∆T0)] (34)

When λ = 0, according to Equation (34), we have

tg = x2/6a λ = 0. (35)

Equation (32) is also the calculation formula for finding the model parameter a for the
classical heat conduction model by using the inflection point of the curve ϕ(x, t) − t when
the boundary temperature changes instantaneously by ∆T0 from the initial temperature
and remains constant [1–3].

5.2.2. The Curve Fitting Method

When ∆T0 can be maintained long enough, the temperature field formed by ∆T0 at
point x changes as indicated by Equation (19).

For the measurement point at a distance x from the boundary (x is a definite value),
T(x, t) at moment t is calculated according to Equation (19), from which a family of
T(x, t) − t theoretical curves corresponding to different values of a is produced; from
the measured temperature T(x, t) at the measurement point, the real curve of T(x, t) − t can
be drawn.

When the value of a for the actual material is equal to that for one of the curves in the
family of theoretical curves T(x, t) − t, the measured curve T(x, t) − t and the same a-value
of the theoretical curve should have the same form and completely overlap; according to
this principle, through the above-measured curve and the theoretical curve family of the
appropriate line, the a-value of the aquifer can be determined.

Similarly, the line fitting method to calculate the a-value based on the temperature
change rate curve can also be given, i.e., ϕ(x, t) − t. The line fitting method to calculate the
a-value based on the T(x, t) − t curve, which is relatively more direct and convenient.

Under different boundary conditions, the calculation method differs. Specifically,
under a constant boundary temperature, λ = 0, the a-value can be calculated based on the
T(x, t) − t curve by matching; under the variable boundary temperature condition, λ 6=0,
the ϕ(x, t) − t curve inflection point can be used to calculate the a-value. Of course, under
the constant temperature boundary condition with λ = 0, the ϕ(x, t) − t curve inflection
point can also be used to calculate the a-value based on Equation (29).

5.3. The Case Study

In the case study, a silty mudstone core drilled by a ground source heat pump in Hefei,
Anhui Province, was processed into a test piece with d = 3.0 m/b = 1.5 m/c = 0.3 m (see
Figure 1) and conduct protective and thermal insulation treatment on the test piece referring
to the standard “Thermal insulation-determination of steady-state thermal resistance and
related properties-guarded hot plate apparatus (GB10294)”. For the test, the “steady-
state method” was adopted, and the temperature measurement point was set 0.2~0.5 m
away from the steel pipe in the middle of the test piece to test the temperature of the test
piece continuously.
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5.3.1. Calculation Example of the Variable-Temperature-Boundary Inflection Point Method

In a continuous 2D experiment, the initial temperature of the specimen was 18.06 ◦C.
In the initial stage of the experiment, hot water at 36 ◦C was rapidly injected into the steel
pipe, and then the water temperature was slowly decreased at an approximately constant
rate using a resistance heater. At the end of the experiment, the water temperature reached
35.5 ◦C. Thus, in the experiment, ∆T0 was 17.94 ◦C and λ was −0.25 ◦C/d.

In the test, considering the influence of size, in the material with a length of 3.0 m,
temperature measurements were recorded 0.5 m away from the heating device. The results
are presented in Table 1. Note that the first two hours of the experiment have been excluded
because the temperature readings in this period were not sensitive enough.

Table 1. Temperature measurements at x = 0.5 m with variable temperature boundary.

t/h 3 4 5 6 8 10 12 16 20 24 36 48

T(x,t)/◦C 17.96 17.97 18.03 18.14 18.35 18.53 18.7 18.98 19.24 19.49 20.17 20.81
ϕ(x,t)/(◦C/h) 0.007 0.010 0.060 0.110 0.105 0.090 0.085 0.070 0.065 0.063 0.057 0.053

As shown in Figure 4, at the inflection point on the curve of ϕ(x, t) − t, tg = 6.3 h.
According to Equation (28), the value of a is determined to be 1.85 × 10−6 m2/s. In the
process of determining the inflection point from the measured temperature, this paper
uses the forward-interpolation method based on the measured temperature to find the
temperature change velocity ϕ(x, t), as listed in Table 1. According to the excerpting process
of 1 h, the inflection point appears at around 6.3 h; if the calculation accuracy is not high
enough, the encryption excerpt can be made near the inflection point. Additionally, using
forward or backward interpolation to find the temperature change velocity ϕ(x, t) also has
some influence on the determination of the inflection point time; however, this influence
can be effectively avoided by employing multiple encryptions [36].
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5.3.2. Calculation Example of Constant Temperature Boundary

In another continuous 2D test, the initial temperature of the specimen was 18.00 ◦C.
At the initial stage of the test, hot water at 36 ◦C was rapidly injected into the steel pipe,
and then the water temperature was kept approximately constant through the resistance
heater until the end of the test when the water temperature reached 36.0 ◦C. The test data
under this condition are presented in Table 2.
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Table 2. Temperature measurements at x = 0.5 m with constant temperature boundary.

t/h 2 3 4 6 8 10 12 16 20 24 36 48

T(x,t)/◦C 22.1 23.85 25.09 26.83 27.94 28.69 29.23 30.16 30.75 31.16 32 32.58

In the experiment, ∆T0 was 18 ◦C and λ was 0 ◦C/d.
Figure 5 shows that the actual measured T(x, t) point is located between the curve of

a = 0.16 − 0.18 m2/d, and the value of a for the test material is approximately 0.17 m2/d,
which is 1.98 × 10−6 m2/s.
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The results obtained by the inflection point method and the wiring method are in
general agreement with those of [22], which found a result of 1.94 × 10−6 m2/s.

In the case study, in the calculation using the inflection point method, when drawing
the graph, determining the time tg at which the inflection point appears has a greater
impact on the calculation of the a-value, and if the measurement time density interval of
the temperature in the experiment is large, it may lead to a large error in the calculation of
the a-value due to the inaccuracy of the determined tg. It is worth noting that in the existing
literature, the ϕ(x, t) − t inflection point method is mostly used to find the a-value, and the
curve fitting method is rarely studied. The curve fitting method, which can apply all the
test data to the curve fitting process, requires the prior establishment of a theoretical curve
family, and the workload is relatively large. Additionally, the influence of manual human
judgment in the curve-fitting process is obvious; the self-applicable curve-fitting method
can be adopted to avoid this influence effectively [36]. Alternatively, it is also possible to
draw on some computational methods [37,38] or numerical algorithms [39] for building
the solution to facilitate application.

5.3.3. Application in Engineering

For this work to have meaning, the solution must allow its application in engineering.
The experimental method we proposed can be used to determine the thermal diffusivity.
For example, in the design of a ground-source heat pump, due to the difficulty and high cost
of testing the thermal physical parameters of the formation in the field, rock samples can
be selected at the engineering site, and the steady-state method is used. Then the inflection
point method and the curve fitting method are used to calculate thermal diffusivity or
thermal conductivity of the actual drill core samples.

The steady-state method is to establish a stable temperature distribution inside the
material, measure the temperature gradient and heat flux density inside the material, and
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then obtain the thermal conductivity of the measured material. The thermal diffusivity or
thermal conductivity coefficient a is calculated according to the “steady-state method test”;
generally, the boundary temperature f (t) needs to remain stable during the test. However,
in the actual test process, it is difficult to keep f (t) unchanged due to the long test time of the
“steady-state method”. The calculation method established in this paper can be effectively
applied to the actual situation where f (t) has a certain range of slow change in the test.

6. Conclusions

The following conclusions were obtained in this paper by proposing a Laplace trans-
form shortcut solution method for a one-dimensional heat conduction model with Dirichlet
boundary conditions:

(1) For the one-dimensional heat conduction model with the Dirichlet boundary function
f (t), according to the differential properties of the Laplace transform and the convolu-
tion theorem, a general theoretical solution can be obtained as a product of erfc(t) and
f (0), as well as erfc(t) and f (t). The general theoretical solution is derived for this type
of model.

(2) By substituting the boundary function f (t) into the general theoretical solution, the
solution to practical problems can be obtained quickly. This shortcut solution method
does not directly involve the transformation of f (t) and does not require a complex
and cumbersome Laplace transform process.

(3) With the temperature-based dynamic monitoring data and the time variation curve of
the temperature change rate ϕ(x, t) − t, the model parameter “a” can be determined
based on the fitting between the measured curve and the theoretical curve.

(4) When calculating the temperature change rate ϕ(x, t) based on the measured tempera-
ture, using forward or backward interpolation has a certain influence on the results;
when determining the time of the inflection point based on the self-recorded data, it is
advisable to appropriately encrypt the data extraction time near the inflection point
to avoid this influence.

Note that although the image function of f (t) with respect to the Laplace transform and
the inverse function of the specific solution L[f (t)]exp(−

√
s/a · x) are not directly obtained

in the solving process, they are essentially involved in the Laplace transform process [40].
Therefore, f (t) must satisfy the basic requirements of the Laplace transform; it should be
piecewise continuous on any interval for t ≥ 0 and have finite growth as t→∞ [3,41]. Most
functions in engineering and technology satisfy this requirement.

In this paper, the Laplace transform shortcut solution to a one-dimensional heat
transfer conduction model is presented. In engineering applications, the calculation of
thermophysical parameters (i.e., thermal diffusivities or thermal conductivity coefficients
in the model) of the test materials based on the methodology of this paper by using data
from dynamic monitoring of the temperature field is one of the important purposes of
the study of such problems. Thermal diffusivity is crucial to determine the dimension
of the systems in civil engineering and initial investment. Considering the assumptions
and the parameters that are used in deriving the analytical solution, and in order to use
the analytical solution in this paper to determine all model parameters accurately, it is
necessary to propose a more detailed field and indoor experimental approach to determine
and measure all the physical parameters with precision. This is for further research.
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Nomenclature

a thermal diffusivity, m2/s
f boundary temperature, ◦C
L Laplace transform operator
L−1 inverse Laplace transform operator
u image function for Laplace transform
s Laplace operator
erfc(u) the complementary error function
δ(t − ti−1) Heaviside function
t time, d
ϕ temperature variation rate of the calculation point, ◦C/h
λ boundary temperature variation rate, ◦C/d
tg appearance of inflection point, h
T temperature of calculation point, ◦C
∆T0 instantaneous change in boundary temperature, ◦C
x distance of the calculation point from the boundary, m
∗ convolution operator
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