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Abstract: Omega rings (Ω-rings) (and other related structures) are lattice-valued structures (with Ω
being the codomain lattice) defined on crisp algebras of the same type, with lattice-valued equality
replacing the classical one. In this paper, Ω-ideals are introduced, and natural connections with
Ω-congruences and homomorphisms are established. As an application, a framework of approximate
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1. Introduction

An algebraic structure of a ring in the framework of Ω-structures, where Ω is a com-
plete lattice, is introduced in [1]. Therein some basic properties of Ω-rings are investigated
and some related structures are introduced and investigated as well.

In the present paper, we develop this study further, introducing Ω-ideals, connect-
ing them with Ω-congruences and Ω-homomorphisms and continuing our investigation
towards the theory of solving systems of equations on Ω-rings, in particular on Ω-fields.

Ω-algebras are classical algebras characterized by a particular lattice-valued relation,
so-called Ω-equality, which replaces the ordinary one; according to this generalized equality,
Ω-algebras fulfill identities as lattice formulas.

Since Ω-equality is a lattice-valued function, Ω-algebras are objects in the lattice-
valued fuzzy framework. Fuzzy algebraic structures are one of the most established topics
in the theoretical research of fuzziness. Almost all aspects of classical algebraic structures
are “fuzzified”. Besides fuzzy groups, which were studied by hundreds of investigators
(e.g., [2–6]), various aspects of fuzzy rings are also investigated (e.g., [7–11]).

The classical framework of fuzzy algebraic structures is based on classical algebras
of the corresponding types (e.g., fuzzy groups are constructed by groups, similarly fuzzy
rings, etc).

Our framework is different in several aspects. First, we use a lattice as a codomain
of functions representing fuzzy sets; therefore, we say that they are lattice-valued [12,13].
Further, Ω-algebras by definition can use wider classes of classical algebras of the cor-
responding type. Moreover, in the present research, we use Ω-valued equality which
does not necessarily fulfill the separability property [1,14]. This enables us to extend our
framework more, using full classes of underlying algebras of the given type, as proved in
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our previous study [1]. However, in general, our study follows the others with various
types of Ω-algebras with separability [15,16].

Historically, we have to mention that this type of lattice-valued equality was first
introduced by Fourman and Scott [17] for investigations in logic and set theory and later by
Höhle [17–20] in the theoretical development of fuzziness; this framework also contained a
separability condition and it was based on a complete Heyting algebra. Demirci, Bělohlávek
and Vychodil also conducted research on algebraic structures that were equipped with a
concept of similar fuzzy equality (see e.g., [21–29]). In this approach, traditional algebras
are utilized, but instead of employing strict equality, fuzzy equality compatible with the
algebra’s fundamental operations is employed.

To sum up, let us clearly underline the motivating reasons for dealing with Ω-algebraic
structures. The first is the usage of generalized, Ω-valued equality instead of the classical
“being equal” relation.. Indeed, in many real-life situations, data are corrupted, or they
are missing, or simply there is noise in the communication. Then, being equal is often
replaced by equal to some extent, and an appropriate many-valued equality can establish a
connection among similar objects. In addition, the level of equality of an object to itself is
understood as the belonging of this object to a domain with non-sharp boundaries. Finally,
in reality, a set of equality levels for different objects need not be linearly ordered, which
leads to a complete lattice as a codomain. This points to the second reason for introducing
Ω-algebras. They are constructed on classical basic algebras, which are equipped with an
Ω-equality. Depending on the identities that they satisfy with respect to this generalized
equality, they may be, e.g., Ω-groups, Ω-quasigroups, Ω-rings, etc. Still, the mentioned
basic algebras need not be groups, quasigroups, rings, etc. However, an essential property
of Ω-algebras is that particular quotient structures of level subalgebras over the levels
of Ω-equality are classical algebras fulfilling the mentioned equalities! In other words,
classical groups, quasigroups, rings, etc., are hidden as quotient algebras of Ω-groups,
Ω-quasigroups, Ω-rings, etc., respectively. Therefore, when dealing with a generalized
Ω-structure obtained from a real situation, we can use many suitable features of the
corresponding classical structure, which is present in the form of quotients.

2. Preliminaries
2.1. Some Basic Notions from Ordered and Algebraic Structures

In our approach, we mostly deal with functions whose codomain is a complete lattice,
which is a partially ordered set (Ω,6) in which there are infima (the greatest lower bounds
meet) and suprema (the lowest upper bounds join) for all subsets (denoted by ∧ and ∨,
respectively) ([30]). The greatest (top) element is denoted by 1 and the lowest (bottom)
element by 0.

In the following, we recall some well-known algebraic notions.
We consider a ring to be an algebraic structure of the type (R,+, · ,−, o), where R is a

nonempty set, + and · are binary operations, − is a unary operation and o is a constant
(nullary operation), such that (R,+,−, o) is a commutative group and (R, ·) is a semigroup
and the second binary operation, · , is distributive with respect to the first, + .

We also consider algebras (R,+, · ,−, o) where (+, · ,−, o) are operations of the same
type (as for rings) without special properties.

A homomorphism of two algebras of the same type (R,+, · ,−, o) and (T,+ , · ,−, o)
is a mapping f : S→ T, such that for all x, y ∈ R,

f (x + y) = f (x) + f (y), f (x · y) = f (x) · f (y), f (−x) = − f (x) and f (o) = o.
(Although the operations on S and T are different, for simplicity we use the same

symbol for the corresponding operations.)
A kernel of the homomorphism is a relation ker f on R, such that (x, y) ∈ ker f if and

only if f (x) = f (y).
A congruence on R is an equivalence relation, ρ on R, which is compatible with all

operations:
For x, y, z, t ∈ R, if xρy and zρt, then (x + z)ρ(y + t), (x · z)ρ(y · t) and (−x)ρ(−y).
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The congruence class of a is defined by [a]ρ := {x ∈ R | (a, x) ∈ ρ} as usual. The
quotient ringR/ρ is the ring on the set of all congruence classes, where the operations are
naturally defined by representatives.

A kernel of a homomorphism is a congruence relation on the domain algebra.
We formulate here the Second Isomorphism Theorem for rings [31]. Since we require

it for certain proofs, it is necessary to mention it.

Theorem 1. If φ and θ are congruences on a ringR and θ ⊆ φ, then φ/θ is a congruence onR/θ.

2.2. Ω-Valued Sets and Relations

As mentioned, the main objects of this research are functions from various sets in a
lattice, named in several ways throughout the literature: fuzzy sets and fuzzy relations
(if the domain is a square of a set); also lattice-valued sets and relations; finally, Ω-valued
sets and Ω-valued relations, if the codomain lattice is denoted by Ω. In order to unify
the notation, throughout the text we use the last version of these, sometimes replacing
Ω-valued with lattice valued, for the most general notions. Moreover, for several notions,
we use only the prefix Ω (without the word “valued”).

An Ω-valued set µ on a nonempty set A is a function µ : A → Ω, where (Ω,6) is a
complete lattice.

If µ and ν are Ω-valued sets, then µ is an Ω-valued subset of ν (denoted by µ ⊆ ν),
if for every x ∈ A, µ(x) 6 ν(x).

For p ∈ Ω, a cut set (p-cut) of µ : A→ Ω is defined by

µp = {x ∈ A | µ(x) > p}.

Example 1. Let Ω be a lattice in Figure 1, and let A = {a, b, c, d} be a set. Then, µ : A → Ω
defined by

x a b c d
µ(x) p 1 r r

is an Ω-valued set on A.
The cut sets of µ are µ1 = {b}, µp = µq = {a, b} and µr = µ0 = {a, b, c, d}.
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An Ω-valued relation ρ on A is an Ω-valued set on A2.
As usual, ρ is symmetric if ρ(x, y) = ρ(y, x) and ρ is transitive if (x, z) ∧ ρ(z, y) 6

ρ(x, y) for all x, y, z ∈ A.
A symmetric and transitive Ω-valued relation ρ on A is called an Ω-valued equality
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Let µ : A→ Ω be an Ω-valued set and ρ : A2 → Ω an Ω-valued relation on A. If for

x, y ∈ A, ρ and µ satisfy
ρ(x, y) 6 µ(x) ∧ µ(y), (1)

Figure 1. Lattice Ω.
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An Ω-valued relation ρ on A is an Ω-valued set on A2.
As usual, ρ is symmetric if ρ(x, y) = ρ(y, x) and ρ is transitive if (x, z) ∧ ρ(z, y) 6

ρ(x, y) for all x, y, z ∈ A.
A symmetric and transitive Ω-valued relation ρ on A is called an Ω-valued equality

on A.
Let µ : A→ Ω be an Ω-valued set and ρ : A2 → Ω an Ω-valued relation on A. If for

x, y ∈ A, ρ and µ satisfy
ρ(x, y) 6 µ(x) ∧ µ(y), (1)

then we say that ρ is an Ω-valued relation on µ (see, e.g., [32]).
The Ω-valued relation ρ is reflexive on µ if

ρ(x, x) = µ(x) for every x ∈ A. (2)

Example 2. Let Ω be a lattice in Figure 1, and let A = {a, b, c, d} as in Example 1. Let E : A2 →
Ω be an Ω-valued relation defined in Table 1.

Table 1. Ω-valued equality on A.

E a b c d

a p q 0 0
b q 1 0 0
c 0 0 r r
d 0 0 r r

One can easily check that E is an Ω-valued equality on A. It is also a reflexive Ω-valued
relation on the Ω-valued set µ from Example 1.

Let ν : A → Ω be a nonempty Ω-valued subset of an Ω-valued set µ : A → Ω, R an
Ω-valued relation on µ and S : A2 → Ω an Ω-valued relation on A. Then, S is a restriction
of R to ν if

S(x, y) = R(x, y) ∧ ν(x) ∧ ν(y). (3)

In the following, we introduce the (known) concept of lattice-valued compatibility.
If Ω is a complete lattice andR = (R, F) is an algebra, then the function µ : R→ Ω is

said to be compatible with the operations in F if for any f ∈ F, f : Rn → R, n ∈ N, for all
a1, . . . , an ∈ R and for a nullary operation o ∈ F,

n∧
i=1

µ(ai) 6 µ( f (a1, . . . , an)), µ(o) = 1. (4)

Analogously, an Ω-valued relation E : R2 → Ω onR is compatible with the operations
in F if the following holds: for every n-ary operation f ∈ F, for all a1, . . . , an, b1, . . . , bn ∈ R,
and for constant o ∈ F,

n∧
i=1

E(ai, bi) 6 E( f (a1, . . . , an), f (b1, . . . , bn)); E(o, o) = 1. (5)

Throughout the text, we relate some algebraic properties of lattice-valued objects with
their cuts, as follows: a property P of an Ω-valued structure A is said to be cutworthy if
the analog crisp property holds for every cut-structure Ap, p ∈ Ω.
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2.3. Ω-Rings

An Ω-set is an ordered pair (R, E), where R is a nonempty set and E an Ω-valued
equality on A [17].

Remark 1. There is a difference between an Ω-valued set defined in the previous section and an
Ω-set as defined here. The former is only a function from a set on a lattice Ω and the latter is a pair
consisting of a set and a particular lattice-valued relation on this set.

If (R, E) is an Ω-set, the related Ω-valued set on R, denoted by µ, is defined by

µ(x) := E(x, x). (6)

E is an Ω-valued reflexive relation on µ, as defined by (1) (to be more precise, E is an
Ω-valued equality on µ.

IfR = (R, F) is an algebra and E : R2 → Ω an Ω-valued equality on R compatible with
the operations in F, thenR = (R, E) is an Ω-algebra. AlgebraR is called the underlying,
basic algebra ofR.

Let (R, E) be an Ω-algebra and t1(x1, . . . , xn) ≈ t2(x1, . . . , xn), and briefly let t1 ≈ t2
be an identity in the type ofR. Then, we can state that (R, E) satisfies identity t1 ≈ t2 if

n∧
i=1

µ(bi) 6 E(t1(b1, . . . , bn), t2(b1, . . . , bn)), (7)

for all b1, . . . , bn ∈ A and the term operations on R corresponding to terms t1 and t2,
respectively.

We continue with the main structure of the present research. An Ω-ring is an Ω-algebra
R = (R, E), where R = (R,+, · ,−, o) is an algebra with two binary operations ( · ,+),
a unary operation (−) and a constant (o), so that the following identities hold in the sense
of (7):

u + (v + w) ≈ (u + v) + w

u + o ≈ u, o + u ≈ u

u + (−u) ≈ o, (−u) + u ≈ o

u + v ≈ v + u

u · (v · w) ≈ (u · v) · w

u · (v + w) ≈ (u · v) + (u · w)

(v + w) · u ≈ (v · u) + (w · u).
We have E(o, o) = µ(o) = 1.
Next, we present some cut properties of Ω-rings. These also hold for Ω-groups and

generally for all Ω-algebras as well [14].

Theorem 2. Let R = (R, E) be an Ω-algebra of the type (+, · ,−, o). Then, R is an Ω-ring if
and only if for every p ∈ Ω the quotient structure µp/Ep is a ring.
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Example 3. Let A = {a, b, c, d}, operations + and · be as presented in Table 2 and the unary
operation − defined by −x := x, and let b be a constant (nullary operation). Let E : A2 → Ω be
the Ω-relation defined in Example 2 (Table 1), where Ω is a lattice in Figure 1. µ is Ω-set from
Example 2 and E is symmetric, transitive and reflexive on µ.

Table 2. (a) Binary operation + on A. (b) Binary operation · on A.

(a)

+ a b c d

a b a d c
b a b d d
c c d b b
d d c a a

(b)

· a b c d

a a b a b
b b b b a
c a a d c
d b b c d

The Ω-relation E is compatible since all the cuts are congruence relations on cuts of µ.
All the factor cuts are rings. Indeed, µ1/E1 is a one-element ring, isomorphic to {b}, µp/Ep

is a two-element ring isomorphic to subring {a, b}. µq/Eq is also a one-element ring. µr/Er is
a two-element ring {{a, b}, {c, d}}. Finally, µ0/E0 is also a one-element ring with one element
being the class {a, b, c, d}.

Hence, the structure (A, E) is an Ω-ring by Theorem 2.

We mention some basic properties of Ω-rings (proved in [1]) that we shall need in
some proofs.

Proposition 1 ([1]). LetR = (R, E) be an Ω-ring whereR = (R,+, · ,−, o).
Then, the following hold in the sense of (7):

(i) u · o ≈ o, o · u ≈ o;
(ii) u · (−v) ≈ −(v · u);
(iii) (−u) · v ≈ −(v · u).

An Ω-ring is commutative if u · v ≈ v · u.
If Rι = (R,+, · ,−, o, ι) is an algebra with two binary, one unary and two nullary

operations o and ι, then (Rι, E) is an Ω-ring with identity if ((R,+, · ,−, o), E) is an
Ω-ring and if u · ι ≈ u, ι · u ≈ u. An Ω-ring with identity is called an Ω-field if
Ro = (R \ {o}, · ,−1 , ι) (where −1 is a unary operation) is an Ω-group, where Eo is the
restriction of E to R \ {o}.

The following proposition is proved in [1].

Proposition 2 ([1]). An Ω-ring with identityRι = ((R,+, · ,−, o, ι), E) is an Ω-field if and only
if for every p ∈ Ω, the factor µp/Ep is a field.

IfR = (R, E) andR1 = (R, Eµ1) are Ω-rings, we say thatR1 is an Ω-subring of the
Ω-ringR if Eµ1 is a restriction of E to the Ω-valued function µ1 ofR, determined by Eµ1 .

Hence, Eµ1(x, y) = E(x, y) ∧ µ1(x) ∧ µ1(y) for all x, y ∈ R.

Theorem 3 ([1]). Let R = (R, E) be an Ω-ring and S = (R, Eν) an Ω-subring of R. Then,
for every p ∈ Ω, the ring νp/Eν

p is, up to an isomorphism, a subring of the ring µp/Ep.
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3. Results
3.1. Ω-Congruences and Ω-Ideals

LetR = (R, Eµ) be an Ω-ring. Knowing the well-known connection between congru-
ences and ideals in crisp algebras, first we define Ω-congruences and then Ω-ideals using
this notion.

An Ω-valued congruence on R is an Ω-valued relation Θ : R2 → Ω on R, which is
µ-reflexive (for every x ∈ R, Θ(x, x) = Eµ(x, x)), symmetric, transitive and compatible
with the operations inR, and for all x, y ∈ R fulfills Θ(x, y) > Eµ(x, y).

The following proposition yields directly from the definition.

Proposition 3. Let Θ be an Ω-valued congruence on an Ω-ringR. Then, for every p ∈ Ω, such
that µp 6= ∅, Θp is a congruence relation on µp, and the algebra µp/Θp is a ring.

If Θ is a congruence on an Ω-ringR = (R, Eµ), we define ν : R→ Ω by

ν(x) := Θ(o, x), (8)

where o is a nullary operation inR. Next, we define Eν : R2 → Ω by

Eν(x, y) := Eµ(x, y) ∧ ν(x) ∧ ν(y). (9)

Analyzing the Ω-valued set ν, we can see that it "measures" the grade to which an
element is equal to the constant o. Taking into account the definition of crisp two-sided
ideals in the ring, it corresponds to a congruence on the ring and it consists of all elements
which are congruent with o. Hence, we introduce a notion of the Ω-two-sided ideal in
Ω-ring, as follows.

If Θ : R2 → Ω on R is an Ω-valued congruence on an Ω-ring R, then P = (R, Eν),
where ν(x) := Θ(o, x) is an Ω-valued two-sided ideal on an Ω-ring (or Ω-valued ideal).

There is the smallest and the greatest congruence on every Ω-ring, and the related
Ω-ideals P = (R, Eν) are described in the sequel.

The smallest congruence on an Ω-ring is Θ(x, y) = Eµ(x, y). Then, ν(x) := Eµ(o, x)
and Eν(x, y) := Eµ(x, y) ∧ Eµ(o, x) ∧ Eµ(o, y).

The greatest congruence is Θ(x, y) = 1, for all x, y ∈ R. Then, ν(x) = 1 for all x ∈ R
and Eν(x, y) := Eµ(x, y).

In the following part, we prove that the Ω-valued ideal is an Ω-subring ofR.

Proposition 4. If R = (R, Eµ) is an Ω-ring, then the Ω-valued ideal P = (R, Eν) is an
Ω-subring ofR.

Proof. First, we have to prove that ν : R→ Ω is compatible with the nullary, unary and two
binary operations.

That is, ν(x + y) > ν(x) ∧ ν(y), ν(x · y) > ν(x) ∧ ν(y), ν(−x) > ν(x) and ν(o) = 1.

ν(o) = Θ(o, o) = µ(o) = 1.

By Θ being an Ω-congruence, we have that Θ(x, o) 6 Θ(−x,−o).
By Proposition 1, we have that µ(x) ∧ µ(o) 6 Eµ(−(x · o), (−x) · o), µ(x) ∧ µ(o) 6

Eµ(−(x · o), x · (−o)) and µ(x) 6 Eµ(x · o, o).
Hence, we have the following:

µ(x) 6 E(x · o, o) 6 E(−(x · o),−o)

µ(x) 6 µ(−x) 6 E((−x) · o, o)
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µ(x) 6 µ(−x) 6 E(−(x · o), (−x) · o).
Using transitivity from the previous three formulas, we have
µ(x) 6 E(o,−o). Since it is valid for every x, it is also valid for o, so we have that

E(o,−o) = 1.

Since

E 6 Θ,

we have that

Θ(o,−o) = 1

Now,

Θ(x, o) 6 Θ(−x,−o) ∧Θ(−o, o) 6 Θ(−x, o).

Hence,

ν(x) 6 ν(−x).

Further, by Proposition 1, we have that E(o · o, o) = 1 and hence Θ(o · o, o) = 1.
Therefore,

ν(x) ∧ ν(y) = Θ(x, o) ∧Θ(y, o) 6 Θ(x · y, o · o) ∧ 1 = Θ(x · y, o · o) ∧Θ(o · o, o) 6 Θ(x · y, o) = ν(x · y).

Finally, by 1 = E(o + o, o) 6 Θ(o + o, o), we have that

ν(x) ∧ ν(y) = Θ(x, o) ∧Θ(y, o) 6 Θ(x + y, o + o) ∧Θ(o + o, o) 6 Θ(x + y, o) = ν(x + y).

Finally, the condition that Eν(x, y) is a restriction to Eµ(x, y) is fulfilled:

Eν(x, y) = Eµ(x, y) ∧ Eν(x, x) ∧ Eν(y, y),

by the definition of Eν, since Eν(x, x) = Eµ(x, x) ∧ Θ(o, x) = Θ(o, x), and similarly for
Eν(y, y).

Therefore, P is an Ω-subring ofR.

Remark 2. Note that in the case of classical (crisp) rings, an Ω-ideal gives a characteristic function
of an ideal. Indeed, since in a crisp case Ω is the chain {0, 1}, Θ is a weak-congruence relation
(weakly reflexive, symmetric, transitive and compatible with operations). In this case, an ideal is
a characteristic function with values 1 in case an element is in relation with o under Θ, which
characterizes an ideal.

Since we first defined Ω-ideals independently of the notion of Ω-subrings and later
proved that every Ω-ideal is an Ω-subring, in the following we give a necessary and
sufficient condition for an Ω-subring to be an Ω-ideal.

Proposition 5. LetR = (R, Eµ) be an Ω-ring and I = (R, Eν) an Ω-subring ofR. Then, the
necessary and sufficient condition that I is an Ω-ideal ofR is that there is an Ω-valued congruence
Θ onR, such that for all x, y ∈ R,

Eν(x, y) = Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y). (10)

Proof. The proof is obvious by the definition of an Ω-ideal.
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In the following, we prove that the notion of the Ω-ideal introduced above is cutworthy,
in the sense that Ω-ring is an Ω-ideal if and only if all cut sets over related cut equalities
are ideals of the corresponding cut-factor ring.

Theorem 4. An Ω-subring I = (R, Eν) of an Ω-ring R = (R, Eµ) is an Ω-ideal of R if and
only if for every p ∈ Ω, νp/Eν

p is an ideal of the ring µp/Eµ
p .

Proof. If I = (R, Eν) is an Ω-ideal of an Ω-ringR = (R, Eµ), then by the definition there
is an Ω-valued congruence Θ onR, such that for all x, y ∈ R, Eµ(x, y) 6 Θ(x, y) and

Eν(x, y) = Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).

By the cutworthy properties of Ω-congruences, the cut Θp for p ∈ Ω is a congruence
on the subalgebra µp ofR, by µ-reflexivity and the fact that Eµ

p ⊆ Θp.
The relation Θp/Eµ

p , naturally defined on classes by

([x]Eµ
p
, [y]Eµ

p
) ∈ Θp/Eµ

p if and only if (x, y) ∈ Θp, (11)

is a congruence on µp/Eµ
p .

By Theorem 1,
µp/Eµ

p /Θp/Eµ
p ∼= µp/Θp,

where µp/Eµ
p is a ring and Θp/Eµ

p is a congruence on it; hence, µp/Θp is a ring as well.
By the definition of ν, ν(x) = Θ(o, x) for all x ∈ R, and looking at the cuts, for p ∈ Ω,

x ∈ νp if and only if Θ(o, x) > p.
It is already proved in Theorem 3 that νp/Eν

p is a subring of µp/Eµ
p .

Now we show that νp/Eν
p is an ideal of µp/Eµ

p . By the definition, we should prove
that νp/Eν

p is a class of a congruence on µp/Eµ
p , containing o.

We have that Θp/Eµ
p is a congruence on µp/Eµ

p and the class of this congruence
containing o is exactly νp/Eν

p (since o ∈ νp for every p).
To prove the converse, let P = (P , Eν) be an Ω-subring of an Ω-ring R = (R, Eµ).

Now, we have the assumption on cuts, and we have to prove that P is an ideal onR.
Since for every p ∈ Ω, νp/Eν

p is an ideal of µp/Eµ
p , elements in νp/Eν

p are exactly some
classes of µp/Eµ

p . Now we can look at the related congruences. For every p ∈ Ω, Θp on
µp/Eµ

p is defined by

[x]Eµ
p
Θp[y]Eµ

p
if and only if [x]Eµ

p
+ (−[y]Eµ

p
) ∈ νp/Eν

p.

Since νp/Eν
p is an ideal, Θp is a congruence on µp/Eµ

p .

[x]Eµ
p
+ (−[y]Eµ

p
) ∈ νp/Eν

p

if and only if

[x + (−y)]Eµ
p
∈ νp/Eν

p,

if and only if

x + (−y) ∈ νp,

if and only if

ν(x + (−y)) > p.

Starting from a family of congruences {Θi | i ∈ I ⊆ Ω},
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[x]Eµ
i
Θi[y]Eµ

i

if and only if
ν(x + (−y)) > i.

Further,
[x]Eµ

i
Θi[y]Eµ

i

if and only if

ν(x + (−y)) >
∨
i∈I

i,

for every i ∈ I if and only if

[x]Eµ
i
Θ∨

i∈I i[y]Eµ
i
.

The family {Θi | i ∈ Ω} is closed under intersections, since⋂
i∈I

Θi = Θ∨
i∈I i.

Next, by the synthesis of this family, we define a relation Θ : R2 → Ω by

Θ(x, y) :=
∨
{p | ([x]Eµ

p
, [y]Eµ

p
) ∈ Θp}.

The supremum of ∅ in the complete lattice Ω is 0; hence, in the case that (x, y) does
not belong to any Θp for p ∈ Ω, we have that Θ(x, y) = 0

Now, Θ is a symmetric, transitive and compatible Ω-valued relation on R (being a
synthesis of the family of the relations of analogous crisp properties). It is also µ-reflexive:
for x ∈ R,

Θ(x, x) =
∨
{p | ([x]Eµ

p
, [x]Eµ

p
) ∈ Θp} =

∨
{p | x ∈ µp} = µ(x) = Eµ(x, x),

since µ(x) is one of the values over which the supremum runs.
Finally, we prove the condition that Eµ(x, y) 6 Θ(x, y) for all x, y ∈ R, as follows.

If Eµ(x, y) = p, then (x, y) ∈ Ep and hence [x]eµ
p
= [y]eµ

p
. Since Θp is a congruence on

µp/Eµ
p , we have that ([x]eµ

p
, [y]eµ

p
) ∈ Θp and Θ(x, y) > p.

Hence, Θ is an Ω-valued congruence onR, and by the construction Θ(x, o) = ν(x) =
Eν(x, x). Therefore, I is an Ω-ideal ofR.

Remark 3. If I = (R, Eν) is an Ω-ideal of an Ω-ring R = (R, Eµ), then the congruence Θ
related to the ideal I is unique. This follows from the proof of the previous theorem. Indeed, if θ
is an Ω-congruence, then the unique Ω-ideal is obtained by the definition. On the other hand,
if I = (R, Eν) is an Ω-ideal, then the congruences obtained on all cuts p ∈ Ω, Θp on µp/Eµ

p ,
defined by

[x]Eµ
p
Θp[y]Eµ

p
if and only if [x]Eµ

p
+ (−[y]Eµ

p
) ∈ νp/Eν

p

are unique (due to the fact that ideals and congruences are in 1-1 correspondence in rings). Now the
Ω-congruence θ is uniquely obtained from the family of cuts on µp/Eµ

p , as in the proof of Theorem 4.

By the previous remark, the Ω-ideals and Ω-congruences are in 1-1 correspondence in
Ω-rings.

Now, adapting the definition of Ω-homomorphisms in algebras from [33], we for-
mulate the definition of Ω-homomorphisms and introduce the relationship among the
Ω-ideals, Ω-congruences and Ω-homomorphisms in Ω-rings.
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LetR = (R,+, · ,−, o) and S = (S,+, · ,−, o) be two algebras, andR = (R, Eµ) and
S = (S , Eν) two Ω-rings.

A function ϕ : R → S is an Ω-homomorphism from R to S if for all a, b ∈ R, and
the following conditions hold:

Eµ(a, b) 6 Eν(ϕ(a), ϕ(b)),

Eµ(a, a) = Eν(ϕ(a), ϕ(a));

µ(a) ∧ µ(b) 6 Eν(ϕ(a + b), ϕ(a) + ϕ(b));

µ(a) ∧ µ(b) 6 Eν(ϕ(a · b), ϕ(a) · ϕ(b))
µ(a) 6 Eν(ϕ(−a),−ϕ(a));

µ(o) 6 Eν(ϕ(o), o)

ϕ(a) + ϕ(b) ∈ ϕ(R); ϕ(a) · ϕ(b) ∈ ϕ(R) and− ϕ(a) ∈ ϕ(R).

By the general result about Ω-algebras (Theorem 8 in [33]), we have the following
cutworthy property of Ω-homomorphisms.

Proposition 6. If the function ϕ : R → S from an Ω-ring (R, Eµ) to an Ω-ring (S , Eν) is an
Ω-homomorphism, then the mapping ϕ : µE

p /Ep → µG
p /Gp, such that ϕ([x]Ep) := [ϕ(x)]Gp is a

classical homomorphism.

Let ϕ be an Ω-homomorphism from (R, Eµ) to (S, Eν). Then, an Ω-valued relation
kerΩ ϕ : R2 → Ω defined by

kerΩ ϕ(a, b) = Eν(ϕ(a), ϕ(b)) ∧ µ(a) ∧ µ(b), for all a, b ∈ R, (12)

is called an Ω-valued kernel of ϕ.
The following proposition are here formulated for rings and follow directly from the

analogous result in general algebras that are proved in [33].

Proposition 7. Let ϕ be an Ω-homomorphism from Ω-ring (R, Eµ) to Ω-ring (S, Eν). Then, the
Ω-valued kernel kerΩ ϕ : R2 → Ω of ϕ is an Ω-valued congruence on the Ω-ring (R, Eµ).

3.2. Structure of Ω-Ideals

Now we look at the family of all Ω-ideals on an Ω-ring and we prove that it is a
complete lattice.

We define a natural ordering 6 on the family of all Ω-ideals:
Given two Ω-ideals ν1 and ν2,
ν1 6 ν2 if and only if for every x ∈ R, ν1(x) 6 ν2(x).

Proposition 8. The family of all idealsF on an Ω-ringR = (R, Eµ) is a complete lattice under 6.

Proof. Let R = (R, Eµ) be an Ω-ring. We can note that that the relation Θ : R2 7→ Ω,
defined by Θ(x, y) = 1 for all x, y ∈ R, is an Ω-congruence. Hence, the mapping ν(x) =
Θ(x, o) = 1 for all x ∈ R is an Ω-ideal, and the family of all ideals on any Ω-ring is
nonempty. Moreover, it is obvious that ν(x) = 1 is the greatest of all ideals under the
ordering 6.
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Now we have to prove that the infimum of every family of Ω-ideals on the Ω-ring is
again an ideal.

Let {νi | i ∈ I} be a family of Ω-ideals on the Ω-ring. Now, we prove that the
intersection of fuzzy sets ∩i∈Iνi is an Ω-ideal and it is the infimum of the family {νi | i ∈ I}.
Indeed, it is easy to check that ∩i∈Iνi(x) = ∩i∈IΘi(x, o) for every x ∈ R where for every
i ∈ I, Θi is the corresponding congruence to νi. Since ∩i∈IΘi is also an Ω-congruence on
(R, Eµ), we have that ∩i∈Iνi is an Ω-ideal.

Hence, the family of all Ω-ideals on (R, Eµ) is a complete lattice.

It is easy to check that for two congruences Θ1 and Θ2, such that Θ1 > Eµ and Θ2 > Eµ,
and Θ1 6 Θ2, and for two corresponding functions ν1 and ν2 and relations determining
Ω-ideals Eν1 6 Eν2 , respectively,

Θ1 6 Θ2 if and only if ν1 6 ν2 if and only if Eν1 6 Eν2 .
Keeping this in mind, and the fact that Eµ(o, x) ∧ Eµ(o, y) 6 Eµ(x, y), we have the

following corollary.

Corollary 1. The smallest element of the family of all ideals F on an Ω-ringR = (R, Eµ) is the
ideal E0 : R2 → Ω defined by

E0(x, y) = Eµ(o, x) ∧ Eµ(o, y) (13)

In the following, we prove that an Ω-valued congruence Θ on an Ω-ring (R, Eµ), such
that Θ > Eµ, can be regarded as an Ω-valued equality, and can generate another Ω-ring.

Theorem 5. Let Θ : R2 → Ω be an Ω-valued congruence on an Ω-ring (R, Eµ), such that
Θ ≥ Eµ. Then, (R, Θ) is an Ω-ring as well. Moreover, for every p ∈ Ω, the mapping f :
µp/Eµ

p → µp/Θp, defined by f ([x]Eµ
p
) = [x]Θp , is a surjective ring homomorphism.

Proof. We prove that the ring identities in the sense of the Ω-ring are fulfilled. For instance,
to prove the distributivity on R, using µ(x) = Θ(x, x) and Eµ ≤ Θ, we have

µ(x) ∧ µ(y) ∧ µ(z) 6 Eµ(x · (y + z), (x · y) + (x · z)) 6 Θ(x · (y + z), (x · y) + (x · z)).

Analogously, we check all other Ω-ring identities.
To prove that for p ∈ Ω, f : µp/Eµ

p → µp/Θp, defined by f ([x]Eµ
p
) = [x]Θp , is a

homomorphism, let x, y ∈ µp. Then,

f ([x + y]Eµ
p
) = [x + y]Θp = [x]Θp + [y]Θp = f ([x]Eµ

p
) + f ([y]Eµ

p
).

Analogously, we check that f is compatible with all other operations. The homomorphism
is surjective, since every class [x]Θp is the image of [x]Eµ

p
under f .

Example 4. Let (R, Eµ) be a commutative Ω-ring from [1], with lattice Ω given in Figure 2,
where R = (R,+, ·,−, o) is an algebra with R = {o, a, b, c}, operations + and · presented in
Table 3 and a unary operation − defined by −x := x. The Ω-valued equality Eµ is given in Table 4.
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Table 3. (a) Binary operation + on R. (b) Binary operation · on R.

(a)

+ o a b c

o o a c c
a a o b c
b c b o a
c c c a o

(b)

· o a b c

o o o a o
a o o o a
b a a c b
c o o b c
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Figure 2: Lattice Ω

Table 4. Ω-valued equality on R.

Eµ o a b c

o 1 r 0 s
a r p 0 0
b 0 0 u u
c s 0 u q

The function µ : R→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x o a b c
µ(x) 1 p u q

We give a construction of an Ω-ideal starting from an Ω-valued congruence Θ on R in
Table 5.

Table 5. Ω-valued congruence on R.

Θ o a b c

o 1 p 0 s
a p p 0 0
b 0 0 u u
c s 0 u q

One could easily check that θ is an Ω-valued congruence on R satisfying Θ(x, y) >
Eµ(x, y) for all x, y ∈ R.

Now we define an Ω-ideal on R, by Eν(x, y) := Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).
In the following, we give the table for Eν:

Table 6. The equality relation determining Ω-valued ideal.

Eν o a b c

o 1 r 0 s
a r p 0 0
b 0 0 0 0
c s 0 0 s

Figure 2. Lattice Ω.

Table 4. Ω-valued equality on R.

Eµ o a b c

o 1 r 0 s
a r p 0 0
b 0 0 u u
c s 0 u q

The function µ : R→ Ω is determined by Eµ: µ(x) = Eµ(x, x).

x o a b c
µ(x) 1 p u q

We give a construction of an Ω-ideal starting from an Ω-valued congruence Θ on R in Table 5.
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Table 5. Ω-valued congruence on R.

Θ o a b c

o 1 p 0 s
a p p 0 0
b 0 0 u u
c s 0 u q

One could easily check that θ is an Ω-valued congruence on R satisfying Θ(x, y) > Eµ(x, y)
for all x, y ∈ R.

Now, we define an Ω-ideal on R, by Eν(x, y) := Eµ(x, y) ∧Θ(o, x) ∧Θ(o, y).
In the following, we give the table for Eν (Table 6).

Table 6. The equality relation determining Ω-valued ideal.

Eν o a b c

o 1 r 0 s
a r p 0 0
b 0 0 0 0
c s 0 0 s

Now, (R, Eν) is an Ω-valued ideal.
The cuts of ν and Eν are as follows:

ν0 = {o, a, b, c}; Eν
0 = {(o, o), (o, a), (o, b), (o, c), (a, o), (a, a), (a, b), (a, c), (b, o), (b, a), (b, b), (b, c), (c, o), (c, a), (c, b), (c, c)}.

νu = νt = νr = {o, a};

Eν
u = Eν

t = Eν
r = {(o, o), (o, a), (a, o), (a, a)}.

νs = {o, c}; Eν
s = {(o, o), (o, c), (c, o), (c, c)}.

νp = {o, a}; Eν
p = {(o, o), (a, a)}.

ν1 = νq = {o}; Eν
1 = Eν

q = {(o, o)}.
Now we can check the results of Theorem 4, and we obtain that for every p ∈ Ω, νp/Eν

p is an
ideal of the ring µp/Eµ

p .

4. Systems of Linear Equations over Ω-Fields

Systems of linear equations with several unknowns are usually considered and solved
over fields. Here, we show that Ω-fields can be used to deal with solutions of such systems
over algebraic structures which are not necessarily fields. The technique we present in
this section has the potential to expand the application of systems of linear equations to
situations where specific data are organized in structures sharing the same type as a field.
For this purpose, we use the following proposition, as a straightforward and obvious
consequence of Proposition 2.
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Proposition 9. An Ω-algebra with identityRi = ((R,+, · ,−, o, ι), E) is an Ω-field if and only
if for every p ∈ Ω the factor µp/Ep is a field.

Let Rι = (Rι, E) be an Ω-field, where Rι = (R,+, · ,−, o, ι) is the basic algebra as
defined in Section 2.3. Also let

a1x1 + a2x2 + . . . + anxn = b, a1, . . . , an, b ∈ R (14)

be a linear equation with n unknowns overRι. We say that an n-tuple (c1, . . . , cn) ∈ Rn is
a solution of Equation (14) overRι if

n∧
i=1

µ(ai) ∧ µ(b) 6
n∧

i=1

µ(ci) ∧ E(a1c1 + . . . + ancn, b). (15)

Theorem 6. Let Rι be an Ω-field. Then, (c1, . . . , cn) is a solution of a linear equation a1x1 +
a2x2 + . . . + anxn = b overRι with p =

∧n
i=1 µ(ai) ∧ µ(b), if and only if ([c1]Ep , . . . , [cn]Ep) is

a classical solution of the linear equation [a1]Ep x1 + [a2]Ep x2 + . . . + [an]Ep xn = [b]Ep over the
cut-quotient field µp/Ep, where ci, i = 1, . . . , n is an arbitrary representative of the class replacing
the unknown xi.

Proof. Suppose that (c1, . . . , cn) is a solution of a linear equation a1x1 + a2x2 + . . .+ anxn =
b over the Ω-field Rι. Then, the formula (15) holds, i.e., for

∧n
i=1 µ(ai) ∧ µ(b) = p,∧n

i=1 µ(c1) ∧ E(a1c1 + . . . + ancn, b) > p. Hence, a1, . . . , an, b, c1, . . . , cn ∈ µp. The cut
µp is a subalgebra of Rι and Ep is a congruence on µp. By Proposition 9, µp/Ep is an
Ω-field. Since E(a1c1 + . . . + ancn, b) > p, we have (a1c1 + . . . + ancn, b) ∈ Ep. Hence,
[a1c1 + . . . + ancn]Ep = [b]Ep , i.e., [a1]Ep [c1]Ep + . . . + [an]Ep [cn]Ep = [b]Ep , which proves that
([c1]Ep , . . . , [cn]Ep) is a solution of the corresponding linear equation [a1]Ep x1 + [a2]Ep x2 +
. . . + [an]Ep xn = [b]Ep over the cut-quotient field µp/Ep.

Conversely, assume that for a linear equation a1x1 + a2x2 + . . . + anxn = b, the n-tuple
([c1]Ep , . . . , [cn]Ep) of classes is a solution of the corresponding equation [a1]Ep x1 + [a2]Ep x2 +
. . . + [an]Ep xn = [b]Ep over the cut-quotient field µp/Ep, where p =

∧n
i=1 µ(ai) ∧ µ(b); ci,

i = 1, . . . , n is an arbitrary representative of the class replacing the unknown xi. This
means that [a1]Ep [c1]Ep + . . . + [an]Ep [cn]Ep = [b]Ep , i.e., [a1c1 + . . . + ancn]Ep = [b]Ep . Then,
(a1c1 + . . . + ancn, b) ∈ Ep, i.e., E(a1c1 + . . . + ancn, b) > p. Since ci ∈ [ci]Ep , we have that
µ(ci) > p, and hence the formula (15) holds. This proves that every n-tuple (c1, . . . , cn)
of elements from the corresponding classes forming a solution over the field µp/Ep is a
solution in the sense of (15).

Analogously, as for the single equation, we can deal with solutions of the system of
linear equations over an Ω-fieldRι. The system is given by

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

. . . . . . . . . . . . . . .
am1x1 + am2x2 + . . . + amnxn = bm

, (16)

where aij, bk ∈ R. We say that an n-tuple (c1, . . . , cn) ∈ Rn is a solution of the system (16) if
for every i = 1, . . . , m,

n∧
j=1

µ(aij) ∧ µ(bi) 6
n∧

j=1

µ(cj) ∧ E(ai1c1 + . . . + aincn, bi). (17)

Dealing with systems of linear equations over an Ω-field, we formulate the result
analogously to the one presented in Theorem 6 (for one linear equation). We omit the proof,
since it is very similar to the one of the mentioned theorem.
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Theorem 7. Let Rι be an Ω-field. The n-tuple (c1, . . . , cn) is a solution of a system of linear
equations (16) over Rι, where for i = 1, . . . , m, pi =

∧n
j=1 µ(aij) ∧ µ(bi) if and only if for

i ∈ {1, . . . , m}, ([c1]Epi
, . . . , [cn]Epi

) is a classical solution of the linear equation

[ai1]Epi
x1 + [ai2]Epi

x2 + · · ·+ [ain]Epi
xn = [bi]Epi

over the cut-quotient field µpi /Epi .

Remark 4. Observe that the procedure presented in this section is a particular way of obtaining
approximate solutions for systems of linear equations. Indeed, in real situations, data (numbers)
often do not belong to the field of real or complex numbers, nor to some finite field. Such a structure
may be a ring, or more generally, another algebraic structure of the same type. In these situations,
a lattice Ω and the corresponding Ω-equality obtained from the properties of these data allow the
construction of an Ω-field, as presented here. Then, we can obtain solutions of (systems of) linear
equations. These solutions are approximate since the classical equality is replaced with an Ω-valued
one. And this equality respects similarities in a collection of data.

Example 5. Let (Z,+, ·,−, 0, 1) be the ring of integers considered as an algebra with two binary,
one unary and two nullary operations, and let Ω be a lattice in Figure 3. Let E : Z× Z → Ω be
defined as follows:

E(x, y) =


1 if x = y = 0
p if 10|x & 10|y & x ≡ y(mod3)
q if 2|x & 2|y & 5 6 |x & 5 6 |y & x ≡ y(mod3)
r if 5|x & 5|y &2 6 |x & 2 6 |y & x ≡ y(mod3)
0 otherwise

One can easily check that E is an Ω-valued equality on Z.
The related Ω-set µ is defined as follows

µ(x) =


1 if x = 0
p if 10|x
q if 2|x & 5 6 |x
r if 5|x &2 6 |x
0 otherwise
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Figure 3: A lattice Ω

Now, we look at the cuts:
µ1/E1 is a trivial, one-element algebra. µp/Ep, µq/Eq, µr/Er consists of three classes

and it is isomorphic with a three-element field. µ0/E0 is also a trivial one-element algebra.
Now, lets look at a system of equations on (Z,+.·,−, 0, 1):

4x +10y = 22
10x +12y = 26

.

It does not have solutions in (Z,+.·,−, 0, 1). However, we can find approximate
solutions, by solving it in the cut structure.

We see that value of function µ of all coefficients is either p, or q, so we can look at the
solution in p ∧ q-cut ( the q-cut), which is a three-element field.

In this field, considering the congruence relation modulo 3, the system is transformed
to:

[1][x] +[1][y] = [1] .
[1][x] +[0][y] = [2] .

This system of equations has the following solution in the three-element field:
[x] = [2], [y] = [2].
So, in this way, we obtain an approximate solution and we can take any element from

these classes, so the solution can be e.g. approximately x = 2 and y = 2.

5. Conclusions

Continuing our research of Ω-rings, we have here presented Ω-ideals and their con-
nection to homomorphisms. We have also shown that systems of linear equations could be
solved with data (numbers) which do not necessarily form a field, constructing an Ω-field
over a basic structure which may be a ring, or some other structure of the same type.

Ω-structures turn out to be suitable for applications of known algebraic structures
(groups, rings, fields,...) in real problems, when not all properties of these structures are
fulfilled. As shown in our research, particular quotient structures of Ω-algebras remain
classical structures. Therefore, these quotients can be used as a tool for solving problems
with corrupted or missing data. We shall continue our investigations in this direction,
dealing particularly with real problems which could be solved in the framework of special
Ω-rings and polynomials over finite Ω-fields.

Figure 3. A lattice Ω.
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Now, we look at the cuts:
µ1/E1 is a trivial, one-element algebra. µp/Ep, µq/Eq, µr/Er consists of three classes and it

is isomorphic with a three-element field. µ0/E0 is also a trivial one-element algebra.
Now, lets look at a system of equations on (Z,+, ·,−, 0, 1):

4x +10y = 22
10x +12y = 26.

It does not have solutions in (Z,+, ·,−, 0, 1). However, we can find approximate solutions
by solving it in the cut structure.

We see that the value of a function µ of all coefficients is either p or q, so we can look at the
solution in p ∧ q-cut (the q-cut), which is a three-element field.

In this field, considering the congruence relation module 3, the system is transformed to

[1][x] + [1][y] = [1].

[1][x] + [0][y] = [2].

This system of equations has the following solution in the three-element field:

[x] = [2], [y] = [2].

So, in this way, we obtain an approximate solution and we can take any element from these
classes, so the solution can be, e.g., approximately x = 2 and y = 2.

5. Conclusions

Continuing our research of Ω-rings, here we have presented Ω-ideals and their con-
nection to homomorphisms. We have also shown that systems of linear equations could be
solved with data (numbers) which do not necessarily form a field, constructing an Ω-field
over a basic structure which may be a ring, or some other structure of the same type.

Ω-structures turn out to be suitable for applications of known algebraic structures
(groups, rings, fields. . .) in real problems, when not all properties of these structures are
fulfilled. As shown in our research, particular quotient structures of Ω-algebras remain
classical structures. Therefore, these quotients can be used as a tool for solving problems
with corrupted or missing data. We shall continue our investigations in this direction,
dealing particularly with real problems which could be solved in the framework of special
Ω-rings and polynomials over finite Ω-fields.
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21. Bělohlávek, R. Fuzzy equational logic. Arch. Math. Log. 2002, 41, 83–90. [CrossRef]
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24. Bělohlávek, R.; Vychodil, V. Fuzzy Equational Logic. In Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg,

Germany, 2005; Volume 186.
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