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1. Introduction

In spite of the fact that the work of R. Carles on rigid Lie algebras presents a clear pic-
ture concerning their generic structural properties [1–4], unifying previous approaches [5,6]
and establishing a subdivision of rigid algebras into six principal types [2], the problem of
classifying and characterizing rigid Lie algebras is far from being solved in a satisfactory
manner. Although the cohomological tools have been shown to be an effective alterna-
tive [7], the existence of a purely geometrical notion of rigidity shows that other procedures,
such as the Jacobi schemes [8], must be further developed and refined in order to obtain
reliable classifications, even in comparatively low dimensions. Solvable Lie algebras are
of special relevance among the rigid ones, as they correspond to a class of algebras that
cannot be fully classified beyond low dimensions. In this context, the study of the weight
systems of maximal tori of derivations [9–11] is a powerful technique for analyzing the
rigidity independently of cohomological tools, and several algorithmic procedures for
determining rigid Lie algebras and constructing them systematically from the eigenvalue
spectra of maximal tori have been developed [12,13], eventually leading to a classification
of low dimensional solvable rigid algebras [14–17] as well as the discovery of various rigid
hierarchies in an arbitrary dimension in both the cohomological and geometrically rigid
cases [18–20]. With the application of symbolic computer packages, further generalizations
of some of the previous results have been made possible, as well as the determination of
new series of geometrically rigid Lie algebras or the explicit computation of the integrability
obstructions that appear in the cohomological approach [21–23]. In this context, recently,
various works have been devoted to the systematic analysis and classification of solvable
rigid first-rank Lie algebras associated in various types of eigenvalue spectra (see [24,25]
and the references therein), showing the possibility of a unified description of ample classes
of spectra in dependence of one or more parameters by means of generating functions.

In this work, we proceed with the study of eigenvalue spectra of one-dimensional tori
while focusing on the construction of rank-one solvable, cohomologically rigid Lie algebras
such that the nilradical n has a nilpotence index dim n− k for k ≥ 2, hence enlarging for
lower nilpotent indices some of the constructions and results already known for the filiform
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case. In particular, we show that for the arbitrary integers k ≥ 2, q ≥ 2k and N ≥ k + q + 2,
there exists a real, solvable rank-one Lie algebra with a maximal torus of derivations t

possessing the eigenvalue spectrum spec(t) = (1, 2, . . . , k, q, q + 1 . . . , N + q− k− 1) such
that the nilradical has a nilpotence index N − k and a characteristic sequence (N − k, 1k).
Some possible generalizations of this spectrum analysis are outlined, as well as some
comments on the possibility of obtaining geometrically rigid Lie algebras based on them.

Unless otherwise stated, any Lie algebra in this work is finite dimensional and defined
over the field of real numbers R.

1.1. General Properties of Nilpotent Lie Algebras

Let n be a nilpotent Lie algebra. For any X ∈ n \ [n, n], we consider the decreasing
sequence of dimensions of the Jordan blocks of the adjoint operator ad(X):

c(X) = (c1(X), c2(X), · · · , ck(X), 1), ci(X) ≥ ci+1(X) ≥ 1. (1)

As c(X) constitutes a similarity invariant, it determines an invariant c(n) defined as

c(n) = sup {c(X) | X ∈ n \ [n, n]}. (2)

and called the characteristic sequence of n (see, for example, [18] and the references therein).
A vector X is such that c(X) = c(n) will be called a characteristic vector of n. Another in-
variant is given by the dimensions of the central descending sequence, given recursively by

C0(n) = n, Ck(n) =
[
n, Ck−1(n)

]
, k ≥ 1. (3)

This sequence further determines the so-called associated graded Lie algebra
gr(n) = g1(n)⊕ · · · ⊕ gr(n) with

gk(n) = Ck−1(n)/Ck(n), k ≥ 1. (4)

The Lie algebra n is called naturally graded if the isomorphism of the Lie algebras
n ' gr(n) holds.

We denote with Der(n) the Lie algebra of the derivations of n (i.e., the space of the
linear maps D : n→ n satisfying the following condition):

D([X, Y]) = [D(X), Y] + [X, D(Y)], X, Y ∈ n. (5)

Definition 1. Let g be a Lie algebra of a dimension n. An external torus of derivations is any
Abelian subalgebra of Der(g), the generators of which are semisimple.

The elements in a (maximal) torus are simultaneously diagonalizable in the complex
extension of the base field (i.e., f ⊗R Id ∈ End(n⊗R C) admit a diagonal matrix over C for
some basis). As shown in [26], the maximal tori of the complexified Lie algebra n⊗R C
are conjugated by an inner automorphism, which implies that their dimension is a scalar
invariant of the Lie algebra, commonly referred to as the rank of n and denoted by r(n).

According to the general structure theory, a real or complex solvable Lie algebra r

admits the decomposition as semidirect sum

r = t
−→⊕n, (6)

satisfying the relations
[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n, (7)
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where n is the maximal nilpotent ideal of r (the nilradical) and −→⊕ denotes the action of t on
n by linearly nil-independent outer derivations. The dimension of t has a further upper
bound expressed by the following inequality:

dim n− dim[n, n] ≥ dim t. (8)

1.2. Solvable Rigid Lie Algebras

Let Ln denote the variety of n-dimensional Lie algebras g =
(
Kn, [ , ]g

)
over K = R,C.

The general linear group GL(n,K) acts naturally on Ln under the following changes of
basis:

( f ? g)(X, Y) = f−1
(
[ f (X), f (Y)]g

)
, f ∈ GL(n,K), X, Y ∈ g. (9)

The orbit O(g) of g is therefore identified with the Lie algebras that are isomorphic
to g.

Definition 2. A Lie algebra g is rigid if the orbit O(g) is an open set of Ln with respect to the
Euclidean topology.

This definition of rigidity, although mainly topological, admits various equivalent
reformulations in analytical or algebraic terms (see, for example, [1,5,16]). In this context,
using the adjoint cohomology of Lie algebras [7,27,28], several criteria to ensure rigidity
have been proposed [15,29,30]:

Proposition 1. Let g be a Lie algebra. If the condition dim H2(g, g) = 0 holds, then g is rigid.

According to this result, we say that a Lie algebra g is cohomologically rigid if
H2(g, g) = 0. This criterion, albeit not necessary for rigidity, has been extremely use-
ful in the analysis of large classes of rigid Lie algebras and has further allowed a detailed
comparison with rigid algebras whose cohomology is not zero. Using the quadratic Rim
map Sq : H2(g, g)→ H3(g, g) defined by

Sq(ψ)(Xi, Xj, Xk) := ψ
(
ψ(Xi, Xj), Xk

)
+ ψ

(
ψ(Xj, Xk), Xi

)
+ ψ

(
ψ(Xk, Xi), Xj

)
, (10)

another sufficiency criterion for rigidity was proven in [31,32]. This criterion states that if
Sq is an injective map, then g is a rigid Lie algebra.

We also recall briefly the Hochschild–Serre factorization theorem [27,33], which pro-
vides a practical procedure for explicitly computing the cohomology spaces of the semidi-
rect sums of Lie algebras. Let r = t

−→⊕n denote a solvable Lie algebra such that t is Abelian
and the operators adrT (T ∈ t) are diagonal. Then, the adjoint cohomology Hp(r, r) satisfies
the following isomorphism:

Hp(r, r) ' ∑
a+b=p

Ha(t,R)⊗ Hb(n, r)t, (11)

where
Hb(n, r)t =

{
[ϕ] ∈ Hb(n, r) | (T.ϕ) = 0, T ∈ t

}
(12)

is the space of t-invariant cocycle classes of n with values in r. The invariance of the cocycles
is determined by the condition

(T.ϕ)(Z1, · · · , Zb) = [T, ϕ(Z1, · · · , Zb)]−
b

∑
s=1

ϕ(Z1, · · · , [T, Zs], · · · , Zb). (13)

Observing that Hp(t,R) =
∧p t, it can easily be justified that Hp(r, r) = 0 is equivalent

to the identities Hb(n, r) = 0 for 0 ≤ b ≤ p. If, in addition, r is a complex, solvable rigid
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Lie algebra, then the decomposition theorem of Carles implies that the torus t is indeed a
maximal external torus of derivations of the nilradical n [2].

2. Structural Properties of the Nilpotent Lie Algebra n0
N,k

For any k ≥ 1 and N ≥ 2k+ 1, let n0
N,k be the Lie algebra with nonvanishing commutators

[
X1, Xj

]
= Xj+1, k + 1 ≤ j ≤ N − 1,[

X2, Xj
]
= Xj+2, k + 1 ≤ j ≤ N − 2,

. . .[
Xk, Xj

]
= Xj+k, k + 1 ≤ j ≤ N − k,

(14)

over the basis B = {X1, . . . , XN}. The central descending sequence is given by

Cs(n0
N,k) = 〈Xk+s, . . . , XN〉, 2 ≤ s ≤ N − k; CN+1−k(n0

N,k) = 0,

showing that n0
N,k is nilpotent with a nilpotence index N − k. It is straightforward to

verify that the characteristic sequence of the Lie algebra is given by c(n0
N,k) = (N − k, 1k).

We further observe that n0
N,k is naturally graded only for k = 1, in which case n0

N,k is
isomorphic to the model filiform Lie algebra LN [14]. In a certain sense, the algebras
defined by Equation (14) constitute an extension of the models of the Bratzlavsky type
(see [10,23]) to lower characteristic sequences.

For later use, it is convenient to consider the Maurer–Cartan equations of n0
N,k. If{

ω1, . . . , ωN} denotes the dual basis of B, then these are given by

dωp = 0, 1 ≤ p ≤ k + 1,

dωr =
r−k−1

∑
a=1

ωa ∧ωr−a, k + 2 ≤ r ≤ 2k

dωs =
k

∑
a=1

ωa ∧ωs−a, 2k + 1 ≤ s ≤ N.

(15)

If θ =
N

∑
`=1

a`dω` ∈ L(n0
N,k) = R{dωi}1≤i≤N is now a generic linear combination of

the 2-forms in Equation (15), then it is straightforward to verify that

k∧
θ ≡ 0,

k−1∧
θ 6= 0.

The quantity
j0
(
n0

N,k

)
= max

{
j0(ω) | ω ∈ L(n0

N,k)
}
= k (16)

depends only on the structure of n0
N,k and constitutes a numerical invariant of the Lie alge-

bra. (This actually means that n0
N,k possesses N − 2k functionally independent invariants

for the coadjoint representation.)

Lemma 1. For any k ≥ 1 and N ≥ 2k + 1, the rank of n0
N,k is two.
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Let f (X`) = ∑N
s=1 f s

` Xs be the expression of a derivation of n0
N,k. As the center is

generated by XN , it follows immediately that f (XN) = f N
N XN . Evaluation of the derivation

condition in Equation (5) for X = X1, Y = XN−1 shows in particular that

f (XN−1) =
k

∑
s=1

f s
N−1Xs + f N−1

N−1 XN−1 + f N
N−1XN .

Now, computation for the pair X = Xk+1, Y = XN−1 implies that

f s
N−1 = 0, 1 ≤ s ≤ k; f 1

k+1 = 0.

Iterating the computation for the pair X = X1, Y = XN−p (for N − p ≥ k + 1) first
shows that f (XN−p) = ∑k

s=1 f s
N−pXs + ∑N

q=N−p f q
N−pXq, while evaluation of Equation (5)

for X = Xk+1, Y = XN−p successively leads to the conditions

f s
N−p = 0, 1 ≤ s ≤ k; f p

k+1 = 0.

From these identities, we conclude that f (Xq) = ∑N
s=q f s

q Xs for q ≥ k + 1. Now,
considering the pair X = Xm and Y = Xk+1 for m ≤ k, we obtain

N−m

∑
s=k+1

f s
k+1Xs −

m

∑
s=1

f s
mXs =

N

∑
s=m+k+1

f s
m+k+1Xs,

from which it follows by iteration on the value of m that f (Xm) = ∑N
s=m f s

mXs, showing that
the matrix of f is triangular. In order to compute the semisimple derivations, it therefore
suffices to consider a generic diagonal derivation Φ(Xi) = λiXi. From the commutators in
Equation (14), the following relations are easily obtained:

λi + λj = λi+j, 1 ≤ i ≤ k, k + 1 ≤ j ≤ N − i. (17)

Considering i = 1, it follows for s ≥ 2 that

λk+s = λ1 + λk+s−1 = 2λ1 + λk+s−2 · · · = (s− 1)λ1 + λk+1.

On the other hand, for 1 < i ≤ k, the relation

λi + λk+1 = λi+k+1 = iλ1 + λk+1 (18)

implies that λi = iλ1. It follows that there exist two diagonalizable derivations F1 and F2
with eigenvalues

spec(F1) =(1, 2, . . . , k, 0, 1, 2, . . . , (N − k− 1)),

spec(F2) =(0, 0, . . . , 0, 1, 1, 1, . . . , 1),
(19)

from which we conclude that the rank of n0
N,k is two. We denote a maximal torus of n0

N,k
with t0.

Let r0 = t0
−→⊕n be a solvable Lie algebra such that the torus t0 is generated by two

diagonalizable derivations T1, T2 with the eigenvalues given in Equation (19). Although it
is not essential for the following, using the properties of the root system associated with
solvable Lie algebras [13], the rigidity of r0 can be shown directly without applying coho-
mological methods. Thus, r0 defines a series of rank-two solvable rigid Lie algebras for
any k ≥ 2 and q ≥ 2k. In particular, for k = 1, we recover the rigid Lie algebra associated
with the model filiform Lie algebra Ln [34]. For higher values of k, the algebra can be seen
as the counterpart of the model algebra for characteristic sequences c(n0

N,k) = (N − k, 1k).
(Incidentally, the algebras r0 are actually cohomologically rigid.)
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Generation of Rank-One Solvable Lie Algebras

In this section, we analyze how to derive nilpotent Lie algebras of rank one using
the Lie algebra n0

N,k such that the eigenvalues of a maximal torus are given in terms of
Equation (19). Considering a linear combination F1 + qF2, we obtain a diagonal derivation
with eigenvalues

spec(F1 + qF2) = (1, 2, . . . , k, q, q + 1, q + 2, . . . , (N + q− k− 1)), q 6= 0. (20)

In this context, it can be asked whether, when starting from the nilpotent Lie algebra
n0

N,k, we can obtain another nilpotent Lie algebra that is isomorphic to a nontrivial defor-
mation of n0

N,k and such that it is of the first rank, with a torus t whose eigenvalues are
given by Equation (20). A first example in this direction was already given in [18] for a
fixed dimension, where the cohomological rigidity of the solvable Lie algebra rq+4,q with
commutators [

T, Xj
]
= µjXj,[

X1, Xj
]
= Xj+1, 3 ≤ j ≤ q + 3,[

X2, Xj
]
= Xj+2, 3 ≤ j ≤ q + 2,

[X3, X4] = Xq+4,

(21)

where q ≥ 4, µ1 = 1, µ2 = 2 and µs = q + s− 3 for 3 ≤ s ≤ q + 4 was proven. In this case,
the spectrum of the torus generated by T is given by

spec(T) = (1, 2, q, q + 1, q + 2, . . . , 2q + 1), q ≥ 4, (22)

thus belonging to the type in Equation (20), with k = 2 and N = q + 4. We further observe
that the nilradical is isomorphic to the deformation n0

q+4,2 + ϕ, where ϕ(X3, X4) = Xq+4

defines a nontrivial cocycle. The addition of this cocycle particularly implies that F2 cannot
be a derivation of the deformed algebra, from which the rank reduction follows.

The Lie algebra in Equation (21) can actually be seen as the first element in a series of
solvable Lie algebras of the first rank with vanishing cohomology. To this extent, consider
N ≥ q + 4 and the skew-symmetric 2-form ϕ on n0

N,2 defined by

ϕ
(
X3, Xj

)
= Xq+j, 4 ≤ j ≤ N − q. (23)

It can immediately be verified that ϕ is a 2-cocycle of n0
N,2. In order to prove that

the cohomology class of ϕ is nonzero, we consider the following 2-form on the (linearly)
deformed Lie algebra n0

N,2 + εϕ:

θ = dωN = ω1 ∧ωN−1 + ω2 ∧ωN−2 + ε ω3 ∧ωN−3.

For any ε 6= 0, we have θ ∧ θ ∧ θ 6= 0, while for ε = 0, the index of a generic 2-form
over n0

N,2 is 2 (see Equation (16)), showing that both algebras are not isomorphic and hence
implying that [ϕ] 6= 0.

Let n2,q,N = n0
N,2 + ϕ. Repeating the argumentation of Lemma 1, it follows at once

that any derivation f of n2,q,N is triangular. Assuming that f is a diagonal derivation, it
particularly satisfies the conditions in Equations (17) and (18) for k = 2 such that

f (X1) =λ1X1, f (X2) = 2λ1X2, f (X3) = λ3X3,

f (Xj) =((j− 3)λ1 + λ3)Xj, 4 ≤ j ≤ N.

In addition to these constraints, the condition f
(
[X3, Xj

]
) =

[
f (X3), Xj

]
+
[
X3, f (Xj)

]
must be fulfilled, leading to the eigenvalue identities

λ3 + (j− 3)λ1 + λ3 = (q + j− 3)λ1 + λ3, j ≥ 4, (24)



Axioms 2023, 12, 754 7 of 13

from which λ3 = q follows at once. We conclude that n2,q,N has the first rank with a
maximal torus t having eigenvalues as given in Equation (20) for k = 2.

Proposition 2. For any q ≥ 4 and N ≥ q + 4, the solvable Lie algebra r2,q,N = t
−→⊕n2,q,N is rigid

with a vanishing cohomology H2(r2,q,N , r2,q,N
)
.

The proof follows by application of the Hochschild–Serre factorization theorem [27]. It
is straightforward to verify that any invariant 1-cochain ϕ ∈ C1(r2,q,N , r2,q,N

)
has the form

ϕ(Xi) = ai
iXi, 1 ≤ i ≤ N.

For the coboundary operator, we have the nonvanishing entries

dϕ(X1, Xj) = (a1
1 + aj

j − aj+1
1+j)X1+j, j ≥ 3,

dϕ(X2, Xj) = (a2
2 + aj

j − aj+1
2+j)X2+j, j ≥ 3,

dϕ(X3, Xj) = (a3
3 + aj

j − aq+j
q+j)Xq+j, j ≥ 4,

from which it follows at once that dϕ = 0 only if

a2 = 2a1, aj = (q + j− 3)a1, j ≥ 3,

further showing that dim B2(n2,q,N , r2,q,N
)t

= N − 1. On the other hand, a t-invariant
2-form has the shape

dϕ(X1, Xj) =bj+1
1,j X1+j, j ≥ 3,

dϕ(X2, Xj) =b2+j
2,j X2+j, j ≥ 3,

dϕ(Xi, Xj) =bi+j+q−3
i,j Xi+j+q−3, j ≥ 4,

Imposing the condition dϕ = 0 leads to the system of coefficients

bj+2
2,j − b1+j

1,j − bj+3
2,j+1 + bj+3

1,j+2 = 0, j ≥ 4

bj+q
3,j − bj+2

2,j − bj+2+q
3,j+2 + bj+q+2

2,j+q = 0, j ≥ 4

bj+q
3,j − bj+1

1,j = 0, j ≥ 5.

The system can be solved recursively. A routine computation shows that, as a basis of
independent coefficients, we can choose

b4+q
3,4 , b5

2,3, bj+1
1,j for 3 ≤ j ≤ N − 1,

implying that dim Z2(n2,q,N , r2,q,N
)t

= N − 1. It follows at once from this identity that
dim H2(n2,q,N , r2,q,N

)t
= 0, showing that the algebra is cohomologically rigid.

3. The Solvable Lie Algebras rk,q,N

As the preceding proof does not essentially depend on the value of k, it is naturally
suggested that the result can be easily generalized to nilradicals with a characteristic
sequence c(n0

N,k) = (N − k, 1k) for arbitrary values k ≥ 3 by considering the 2-cocycle class
of n0

N,k, defined by
ϕ
(
Xk+1, Xj

)
= Xk+q, k + 1 ≤ j ≤ N − q. (25)
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Consider the Maurer–Cartan equations of n0
N,k + εϕ. It is immediate to verify that the

2-form

θ = dωN =
k

∑
p=1

ωp ∧ωN−p + ε ωk+1 ∧ωN−k−1

satisfies the identity
∧k+1 θ 6= 0 for any ε 6= 0, showing that the deformation n0

N,k + εϕ

is not isomorphic to n0
N,k. Furthermore, using Lemma 1, the same reasoning as that used

in Equation (24) shows that nk,q,N = n0
N,k + ϕ has the first rank with a maximal torus t

possessing the eigenvalues

spec(t) = (1, 2, . . . , k, q, q + 1, q + 2, . . . , q + N − k− 1), q ≥ 2k. (26)

In analogy with the previous case, we define the solvable real Lie algebra of the first
rank rk,q,N = t

−→⊕nk,q,N . Over a basis {T, X1, . . . , XN} with N ≥ 2q + 2− k, the precise
brackets are given by

[T, Xi] = i Xi, 1 ≤ i ≤ k[
T, Xj

]
= (q + j− k− 1)Xj, k + 1 ≤ j ≤ N[

Xa, Xj
]
= Xj+a, 1 ≤ a ≤ k, k + 1 ≤ j ≤ N − a,[

Xk+1, Xj
]
= Xq+j, k + 2 ≤ j ≤ N − q.

(27)

Proposition 3. For any k ≥ 2, q ≥ 2k and N ≥ 2q + 2− k, the solvable Lie algebra rk,q,N is
cohomologically rigid.

The proof is completely analogous to that of Proposition 1, for which reason we
omitted the detailed computations. The results above show that for any k ≥ 2 and any
dimension N ≥ 3k + 2, such Lie algebras exist, with N = 8 (for k = 2) being the lowest
dimension for which an eigenvalue spectrum as given in Equation (26) appears. The series
rk,q,N hence gives a partial answer to a question formulated in [19], namely finding the
conditions for the existence of rank-one rigid Lie algebras such that the nilradical has a
given characteristic sequence.

The results above can be slightly refined. While still considering the eigenvalue spec-
trum in Equation (20), the requirement q ≥ 2k can be relaxed under certain circumstances.
Indeed, for the values k + 2 < q < 2k and dimension N = k + q + 2, the nilpotent Lie
algebra given by the commutators[

Xi, Xj
]
= Xi+j, 1 ≤ i ≤ k, k + 1 ≤ j ≤ N − i,

[Xk+1, Xk+2] = XN
(28)

with k ≥ 3 also leads to rank-one solvable Lie algebras with a vanishing cohomology and
hence to a rigid Lie algebra. It is straightforward to verify that this case also arises as a
deformation of the nilpotent algebras nk,q,k+q+2. Observe that for k = 2, it coincides with
the case where q = 2k and hence does not provides any additional solution for this value.

In Table 1, we enumerated the spectra of the type in Equation (20) and with k ≥ 3
and the range of values k + 2 ≤ q ≤ 2k, which give rise to a rank-one solvable rigid Lie
algebra for dimensions 10 ≤ N ≤ 20. A comparison of the dimensions shows that for
any dimension N ≥ 10, there exists at least one solvable rigid Lie algebra satisfying the
above constraints. When adding those solutions for which q ≥ 2k holds, we conclude
that for any fixed dimension N ≥ 10, there are several nonisomorphic solvable rigid Lie
algebras of the first rank and an eigenvalue spectrum of the type in Equation (20). In this
context, a question that is still unanswered is whether any cohomologically rigid solvable
Lie algebra of the first rank with the eigenvalue spectrum in Equation (20) is characterized
by the fact that its nilradical is isomorphic to a deformation of the nilpotent Lie algebra n0

N,k.
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Table 1. Cohomologically rigid Lie algebras with spectrum in Equation (26) and k + 2 ≤ q ≤ 2k.

spec (t) k q N

(1, 2, 3, 5, 6, 7, 8, 9, 10, 11) 3 5 10
(1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13) 3 6 11
(1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13) 4 6 12
(1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15) 4 7 13
(1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) 4 8 14
(1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15) 5 7 14
(1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) 5 8 15
(1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) 5 9 16
(1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) 6 8 16
(1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) 5 10 17
(1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) 6 9 17
(1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) 6 10 18
(1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) 7 9 18
(1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23) 6 11 19
(1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) 7 10 19
(1, 2, 3, 4, 5, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25) 6 12 20
(1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23) 7 11 20
(1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21) 8 10 20

4. Conclusions

In this work, certain results from [10,18] concerning rank-one solvable rigid Lie algebras
were extended to the case of nilradicals having a characteristic sequence c(n) = (n− k, 1k)
for an arbitrary k ≥ 2, a one-dimensional torus of derivations with eigenvalues from
Equation (26) and dimensions N ≥ k + q + 2. This also solves a subsidiary question
formulated in [19], providing the minimal dimensions for which a rank-one rigid Lie
algebra with a certain characteristic sequence can appear. The guiding principle has been
to consider certain deformations of the nilpotent Lie algebra n0

N,k that imply the existence
of a unique diagonal derivation, hence guaranteeing that the rank is one. However, this
approach merely constitutes one of the multiple possibilities that are conceivable. Rigid
algebras structurally analogous but not related to n0

N,k can also be constructed along similar
lines. We started by considering the eigenvalue sequence Λ = (1, 2, 4, . . . , 9, 18, 19, . . . 37).
A routine computation shows that the 28-dimensional nilpotent algebra defined by[

Xa, Xj
]
= Xj+a, 1 ≤ a ≤ 2; 9 ≤ j ≤ 28− a,[

Xa, Xj
]
= Xj+a+1, 3 ≤ a ≤ 8; 9 ≤ j ≤ 27− a,

[X9, X10] = X28

has a rank of one, with a maximal torus having the eigenvalues Λ. The corresponding
extension of the nilradical by the torus determines a rank-one solvable rigid Lie algebra
with a vanishing cohomology. In contrast to the series derived from n0

N,k, the eigenvalues
of Λ are not obtainable as a linear combination of the elements in Equation (19), as there
are two jumps (i.e., discontinuities) in the eigenvalue sequence.

The preceding example can be generalized to arbitrary dimensions considering the
eigenvalue sequence

spec(t) = (1, 2, . . . , k, q, q + 1, . . . , 2q + 1, p, p + 1, . . . , 2p + 1) (29)
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with N = k + q + p + 4, k ≥ 2, q ≥ 2k and p ≥ 2q. The nilpotent Lie algebra defined by the
brackets[

Xi, Xj
]
= Xi+j, 1 ≤ i ≤ k, q + k + 3 ≤ j ≤ N − i,[

Xi, Xj
]
= Xi+j+q−k−1, k + 1 ≤ i ≤ q + k + 2, q + k + 3 ≤ j ≤ N − i− j + q− k,[

Xq+k+3, Xq+k+4

]
= XN

can be easily verified to be of a rank of one and to admit the eigenvalues in Equation (29).
The corresponding solvable extension again leads to solvable rigid Lie algebras.

A larger number of jumps in the eigenvalue sequence can be introduced along the
same lines. For an example with three jumps, the lowest possible spectrum is given by

spec(t) = (1, 2, 4, 5, . . . , 9, 11, 12, . . . , 23, 25, 26, . . . , 51). (30)

This corresponds to the eigenvalues of a maximal torus of derivations of the 48-
dimensional nilpotent Lie algebra[

Xi, Xj
]
=Xi+j, 1 ≤ i ≤ 2, 22 ≤ j ≤ 48− i,[

Xi, Xj
]
=Xi+j+1, 3 ≤ i ≤ 8, 22 ≤ j ≤ 47− i[

Xi, Xj
]
=Xi+j+1, 9 ≤ i ≤ 21, 22 ≤ j ≤ 46− i

[X22, X23] =X48,

and the solvable extension is again cohomologically rigid. Clearly, this case can also be
generalized to an arbitrary dimension, leading to another family of rank-one solvable rigid
Lie algebras.

A direct extrapolation to a sequence with s ≥ 2 jumps would lead to eigenvalue
spectra of the type

spec(t) = (1, . . . , k1, k2, . . . , 2k2 + 1, k3, . . . , 2k3 + 1, . . . , ks+1, . . . , 2ks+1 + 1) (31)

with km+1 ≥ 2km for m ≥ 1 and k1 ≥ 2. A nilpotent algebra admitting the preceding
spectrum would have a dimension N = ∑s+1

i=1 ki + 2s, although it is not entirely obvious
that the rank is still one or that the corresponding extension does indeed have a vanishing
cohomology. The problem, which is certainly worthy of being inspected in detail, would
require finding a generic nilpotent Lie algebra N of a rank s that plays the analog role of
n0

N,k such that the spectrum in Equation (31) could be obtained as a linear combination
(in analogy to Equation (20)) of the corresponding eigenvalues of the torus generators
and nilpotent algebras admitting these eigenvalues as a deformation of N. Appropriate
algorithmic methods are currently being developed to tackle this problem computationally.

On the other hand, from the Jacobi scheme associated with the eigenvalue spectrum in
Equation (26), it follows that a decreasing nilpotence index allows the existence of different
characteristic sequences, with the rigidity type (cohomological or geometrical) being deeply
related to the particular structure of the characteristic sequence. (This phenomenon cannot
occur for filiform algebras, as these correspond to the maximal possible nilpotence index.)
In other words, the eigenvalue spectrum in Equation (26) does not uniquely determine the
nilradical. Consider for instance the spectrum

spec(t) = (1, 2, 4, 5, 6, 7, 8, 9, 10, 11)
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in a dimension N = 10. From the Jacobi equations, we deduce that there exist two nilpotent
Lie algebras admitting these eigenvalues. One leads to the rigid solvable algebra r2,4,11,
while the second is given by

[X1, Xi] = Xi+1, 4 ≤ i ≤ 9,

[X3, Xi] = C8
3,4Xi+4, 4 ≤ i ≤ 5,

[X3, X6] = C10
3,6X10,

[X4, X5] = (C8
3,4 − C10

3,6)X10,

(32)

where C8
3,4 and C10

3,6 are free. Moreover, for any values of the parameters, the latter nilpotent
Lie algebra admits a second diagonal derivation, implying that the rank-one solvable
extension cannot be rigid.

This shows that, aside from considering deformations of a given nilpotent algebra
of an appropriate rank, there is another more systematic approach, namely studying all
nilpotent algebras that admit a certain one-dimensional torus. This is essentially the same
as studying the Jacobi scheme, and a systematic analysis of the Jacobi equations would
lead to a classification of all algebras admitting a diagonal derivation of a specific type.
The drawback of this ansatz is that for each of the obtained solutions, it must be analyzed
separately whether the rank is one or higher, and in the former case, the potential rigidity
(either cohomological or geometrical) must also be considered case by case. This problem
is of interest, but it demands the implementation of adequate algorithms to appropriately
separate the solutions.

We already mentioned that the spectrum may lead to Lie algebras that, while rigid,
are not cohomologically rigid. As an example that illustrates how geometrically rigid Lie
algebras arise in this context, consider k = 3, q = 8, N = 13 and the torus t with the
eigenvalue spectrum (1, 2, 3, 8, 9, . . . , 17). The nilpotent Lie algebra m given by

[X1, X2] = X3,[
X1, Xj

]
= Xj+1, 4 ≤ j ≤ 12,[

X2, Xj
]
= Xj+2, 4 ≤ j ≤ 11,

[X4, X5] = X13

(33)

admits t as a maximal torus of derivations. The corresponding solvable extension R = t
−→⊕m

has a one-dimensional adjoint cohomology space generated by the cocycle class ψ, which is
defined by

ψ
(
X2, Xj

)
= (j− 4)Xj+2, 5 ≤ j ≤ 11,

ψ
(
X3, Xj

)
= −Xj+3, 4 ≤ j ≤ 10.

(34)

Although this cocycle is not integrable, using the Rim map in Equation (10), it can be
easily verified that

Sq(ψ)(X2, X3, X5) = 3X10 6= 0,

from which we deduce that Sq : H2(R,R)→ H3(R,R) is injective. Following the criterion
in [32], R is rigid with a nonvanishing cohomology. It is worth observing that, as happened
for the filiform case, the same eigenvalue spectrum can lead to either cohomologically
or geometrically rigid Lie algebras, depending on the dimension of the nilradical (see,
for example, [4,12,23,25]). The interesting fact that distinguishes this type of eigenvalue
spectrum from those associated with filiform algebras is that m has a characteristic sequence
c(m) = (10, 2, 1), and the natural question that arises is whether it is the lowest dimensional
hierarchy of a series that generalizes recent constructions of geometrically rigid algebras
(such as that proposed in [23]) to characteristic sequences of the type c(m) = (c1, c2, 1c1+c+2).
In a wider context, it can be asked what conditions must be satisfied by the elements of
a sequence of integers {c1, . . . , cs} in order to imply the existence of a nilradical with a
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characteristic sequence (c1, . . . , cs, 1s+1) associated with a rigid Lie algebra of the first rank.
A complete answer to this question will probably require the use of symbolic computer
packages, due to the relatively high dimensions and the number of solutions of the Jacobi
equations involved.

To summarize, there are various potential ways to generalize the results of this work
to wider classes of spectra, leading to solvable Lie algebras with nilradicals of varying
characteristic sequences either by searching for appropriate nilpotent algebras that serve as
a “model” and studying their derivations or through a direct approach using the Jacobi
equations, given an eigenvalue spectrum. Although computationally cumbersome, a com-
plete classification of rank-one solvable Lie algebras of this type, up to a given dimension,
is conceivable and may lead to a further understanding of the rigidity for rank-one Lie
algebras. Work in these various directions is currently in progress.
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