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Abstract: In the short time to maturity limit, it is proved that for the conditionally lognormal SABR
model the zero vanna implied volatility is a lower bound for the volatility swap strike. The result is
valid for all values of the correlation parameter and is a sharper lower bound than the at-the-money
implied volatility for correlation less than or equal to zero.
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1. Introduction

In their seminal work Carr and Lee [1] prove that for stochastic volatility models, with
zero correlation between the spot price and its instantaneous volatility, general volatility
derivatives can be priced in a model-free manner. This is a surprising and important
result as prior to Carr and Lee’s result it was believed that volatility derivatives other
than the log-contract are highly model-dependent. Indeed, precisely because of its model
independence one of the first volatility derivatives to be traded in the market was the
variance swap, which is equivalent to the log-contract.

When correlation is non-zero prices of general volatility derivatives do become model-
dependent. Nevertheless, Carr and Lee proved that the model-dependence is of the
order O(ρ2). Theoretically, their result paves the way for pricing and replicating all
European type volatility derivatives with an error of O(ρ2). However, as shown by Friz and
Gatheral [2] even in the zero correlation case, pricing volatility options using the Carr and
Lee immunisation method leads to highly oscillatory integrals which need regularisation
techniques to evaluate. Furthermore, even for the relatively simple but important volatility
swap, the Carr-Lee’s pricing method requires a continuum of vanilla options (strikes from
0 to∞) .

A more recent and straightforward approximation for the volatility swap is given by
Rolloos and Arslan [3]. In the aforementioned paper, it is shown that the so-called zero
vanna implied volatility (ZVIV) approximates the volatility swap price. In contrast to the
Carr-Lee method, the ZVIV approximation does not require a continuum of options, but
only one option. It therefore simplifies the approximate pricing of volatility swaps and is
not prone to extrapolation error.

The error between the exact volatility swap price and the ZVIV in the short time to
maturity limit was made precise by Alòs et al. [4] for a class of models that include in
particular the lognormal SABR, by making use of techniques from the Malliavin calculus.
In their paper Alòs et al. quantify the error for general stochastic volatility models driven
by fractional noise. Recent studies [5,6] have argued for the relevance of fractional noise in
explaining the shape of the implied volatility skew.

In Alòs et al. numerical simulations also indicate that, in addition to approximating
volatility swaps, the ZVIV is also a lower bound for the volatility swap. In this paper it
is proved that for the lognormal SABR model (henceforth SABR model), this is indeed
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the case for all values of correlation in the short time to maturity limit. To the best of our
knowledge this has not been proved yet in the literature on derivatives pricing. A proof for
general SV models is a subject of future research.

The structure of the papaer is as follows. In Section 2, the working assumptions
are stated and relevant notation introduced. Section 3 treats the zero correlation case. It
is proved that both the at-the-money implied volatility (ATMI) and the ZVIV are lower
bounds for the volatility swap in the short maturity limit in the SABR model. By making
use of the result that the ZVIV is a better approximation than the ATMI, it follows that the
ZVIV is a sharper lower bound. The nonzero correlation case is discussed in Section 4,
wherein it is proved that in the SABR model the ZVIV is a lower bound for the volatility
swap price for any value of correlation. Furthermore, it is shown that for non-positive
correlation it is a sharper lower bound than the ATMI in the short time to maturity limit. To
illustrate the different behaviours of the ATMI and the ZVIV, numerical results in Section 5
are presented for various values of correlation, volatility of volatility and time to maturity.
Section 6 concludes.

2. Assumptions and Notation

We consider the log normal stochastic volatility model for the log-price of a stock
under a risk-neutral probability measure P:

Xt = X0 −
1
2

∫ t

0
σ2

s ds +
∫ t

0
σs

(
ρdWs +

√
1− ρ2dBs

)
, (1)

σt = σ0 +

∫ t

0
ασs dWs, (2)

where X0 is the current log-price, and W and B are independent standard Brownian motions
defined on a complete probability space (Ω,G, P). The initial volatility σ0 and the volatility
of volatility α are positive constants. We denote by FW and F B the filtrations generated by
W and B and F := FW

∨F
B. We assume the risk-free interest rate r is zero for simplicity.

The same arguments of the results in this paper hold for r , 0.
Under this model, the value of the European call option with strike price ek is

Vt = Et[(eXT − ek)+],

where Et denotes the Ft−conditional expectation with respect to P (that is, Et[Z] = E[Z|Ft]).
Also, we use the following notations:

• vt =
√

Yt
T−t , where Yt =

∫ T
t σ2

udu.
v is the future average volatility and is not an adapted process. Et[vt] is the fair strike
of a volatility swap with the time to maturity time T − t.

• BS(t, T, x, k, σ) is the European call option price under the Black-Scholes model with
the constant volatility σ, the stock price ex, the time to maturity T − t, and the strike ek.
In this setting,

BS(t, T, x, k, σ) = exN(d1(k, σ)) − ekN(d2(k, σ)),

where N is the cumulative distribution function of the standard normal distribution,
and

d1(k, σ) :=
x− k

σ
√

T − t
+
σ
2

√

T − t, d2(k, σ) :=
x− k

σ
√

T − t
−
σ
2

√

T − t.

We use the notation BS(k, σ) := BS(t, T, Xt, k, σ) for simplicity.
• The inverse function BS−1(t, T, x, k, ·) of the Black-Scholes European call option pricing

formula with respect to the volatility is defined as

BS(t, T, x, k, BS−1(t, T, x, k,λ)) = λ,

for all λ > 0. We use the notation BS−1(k,λ) := BS−1(t, T, Xt, k,λ) for simplicity.
• For any fixed t, T, Xt, k, we define the implied volatility function I(t, T, Xt, k) as
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BS(t, T, Xt, k, I(t, T, Xt, k)) = Vt.

Then, I(t, T, Xt, k) = BS−1(t, T, Xt, k, Vt).
• k∗t denotes the ATM strike at time t, and I(t, T, Xt, k∗t) is the corresponding ATMI
• k̂t is the zero vanna strike at time t and satisfies

d2(k̂t, I(t, T, Xt, k̂t)) = 0.

I(t, T, Xt, k̂t) is called zero vanna implied volatility. The Black-Scholes vanna is propor-
tional to d2, and that of plain vanilla options is zero at the zero vanna strike.

D1,2
W denotes the domain of the Malliavin derivative operator DW with respect to W.

For n > 1, the domains of the iterated derivatives Dn,W are denoted by Dn,2
W . Also, we define

Ln,2
W = L2([0, T];Dn,2

W ). Notice that the SABR variance σ2 given by (2) is a process in L2,2
W , and

Drσ
2
u = 2ασ2

u1[0,u)(r) (3)

DsDrσ
2
u = 2DsσuDrσu + 2σuDsDrσu

= 2α2σ2
u1[0,u)(r∨ s) + 2α2σ2

u1[0,u)(r∨ s)

= 4α2σ2
u1[0,u)(r∨ s). (4)

3. The Uncorrelated Case
3.1. ATM Implied Volatility

Theorem 1. Consider the SABR model defined as in (1) and (2). Then, for zero correlation, the
ATMI is a lower bound for the volatility swap in the short time to maturity limit.

lim
T→t

I(t, T, Xt, k∗t) ≤ lim
T→t

Et[vt] (5)

Proof. This follows immediately from Theorem 3.2 of Alòs and Shiraya [7],

lim
T→t

I
(
t, T, Xt, k∗t

)
− Et[vt]

(T − t)2 = −
1

32σt
lim
T→t

1
(T − t)3 Et

∫ T

t

(
Er

[∫ T

r
DW

r σ
2
s ds

])2

dr

 ≤ 0. (6)

�

3.2. Zero-Vanna Implied Volatility

Theorem 2. Consider the SABR model defined as in (1) and (2). Then, for zero correlation, the
ZVIV is a lower bound for the volatility swap in the short time to maturity limit.

lim
T→t

I(t, T, Xt, k̂t) ≤ lim
T→t

Et[vt] (7)

Proof. In the uncorrelated case, since (B.3) of Alòs, Rolloos and Shiraya,

I
(
t, T, Xt, k̂t

)
= Et[vt] − Et

 ∫ T

t

(
BS−1

(
k̂t, Λr

))′′′
(D−A)rUrdr


−

1
2

Et

 ∫ T

t

(
BS−1

(
k̂t, Λr

))(iv)
ArU2

r dr

.
= Et[vt] −

(
BS−1

(
k̂t, Λt

))′′′
Et

 ∫ T

t
(D−A)rUrdr


+

1
2

(
BS−1

(
k̂t, Λt

))(iv)
Et

 ∫ T

t
ArU2

r dr


+o((T − t)4H+1)

= Et[vt] + T1 + T2 + o((T − t)4H+1) (8)
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where

Λr := Er
[
BS

(
t, T, Xt, k̂t, vt

)]
, (9)

Ar :=
1
2

∫ T

r
U2

s ds, (10)

(D−A)r :=
1
2

∫ T

r
DW

r U2
s ds, (11)

Ur := Er
[
DW

r

(
BS(t, T, Xt, k̂t, vt)

)]
= Er

[
∂BS
∂σ

(t, T, Xt, k̂t, vt)
1

2vt(T − t)

∫ T

r
DW

r σ
2
s ds

]
, (12)

Here,(
BS−1

(
k̂t, Λt

))′′′
= (2π)

3
2 exp

(
−3Xt +

3
2
(Θt(k̂t))

2(T − t)
)
(T − t)−

1
2 + o

(
(T − t)−

1
2

)
(13)(

BS−1
(
k̂t, Λt

))(iv)
= −

3(2π)2

Θt(k̂t)
exp

(
−4Xt + 2(Θt(k̂t))

2(T − t)
)
(T − t)−1 + o

(
(T − t)−1

)
. (14)

where Θr(k) := BS−1(k, Λr). Thus, (BS−1)′′′ > 0 and (BS−1)(iv) < 0 in the short time limit.
On the other hand,

Et

 ∫ T

t
ArU2

r dr


=

1
2

Et

 ∫ T

t

(∫ T

r
U2

s ds
)
U2

r dr


=

1
4

Et

(∫ T

t
U2

r dr
)2

=
1
4

Et


∫ T

t

(
Er

[
∂BS
∂σ

(t, T, Xt, k̂t, vt)
1

2vt(T − t)

∫ T

r
DW

r σ
2
s dr

])2

ds


2

> 0 (15)

Therefore, T2 ≤ 0.
Next,

Us = Es

[
∂BS
∂σ

(t, T, Xt, k̂t, vt)
1

2vt(T − t)

∫ T

s
DW

s σ
2
udu

]
=

1
2

Es

[
G(t, T, Xt, k̂t, vt)

∫ T

s
DW

s σ
2
udu

]
, (16)

where G(t, T, x, k, σ) := ( ∂
2

∂x2 −
∂
∂x )BS(t, T, x, k, σ), and

DW
r Us = Es

1
2

G(t, T, Xt, k̂t, vt)

d1(k̂t, vt)d2(k̂t, vt)

2v2
t (T − t)

−
1

2v2
t (T − t)

(∫ T

s
DW

s σ
2
udu

)(∫ T

r
DW

r σ
2
udu

)

+
1
2

G(t, T, Xt, k̂t, vt)

(∫ T

s
DW

r DW
s σ

2
udu

). (17)
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(D−A)r =
1
4

∫ T

r
Es

 ek̂t N′(d2(k̂t, vt))

vt
√

T − t

∫ T

s
DW

s σ
2
udu


×Es

 ek̂t N′(d2(k̂t, vt))

vt
√

T − t

 −1
2v2

t (T − t)

(∫ T

s
DW

s σ
2
udu

)(∫ T

r
DW

r σ
2
udu

)
+

(∫ T

r∨s
DW

r DW
s σ

2
udu

)
ds

+O(ν3(T − t)3H+ 1
2 ), (18)

Thus, we need to check

−1
2v2

t (T − t)

∫ T

s
DW

s σ
2
udu

∫ T

r
DW

r σ
2
udu +

∫ T

s
DW

r DW
s σ

2
udu ≥ 0, (19)

Since
∫ T

t σ2
udu ≥

∫ T
r σ2

udu, (19) is

−1

2
∫ T

t σ2
udu

∫ T

s
2ασ2

udu
∫ T

r
2ασ2

udu +

∫ T

r∨s
4α2σ2

udu

≥ −

∫ T

r∨s
2α2σ2

udu +

∫ T

r∨s
4α2σ2

udu

≥ 0 (20)

Therefore, T1 ≤ 0 and the zero-vanna iv is a lower bound for the volatility swap. �

4. The Correlated Case
4.1. ATM Implied Volatility

Theorem 3. Consider the SABR model defined as in (1) and (2). Then, for ρ < 0, the ATMI is a
lower bound for the volatility swap strike in the short time to maturity limit.

lim
T→t

I(t, T, Xt, k∗t) ≤ lim
T→t

Et[vt] (21)

Proof. From Theorem 4.2 in [7],

lim
T→t

I(t, T, Xt, k∗t) − Et[vt]

(T − t)

= lim
T→t

3ρ2

8σ3
t (T − t)4

Et

(∫ T

t

∫ T

s
DW

s σ
2
r drds

)2
− lim

T→t

ρ2

2σ2
t (T − t)3

Et

[∫ T

t

∫ T

s
DW

s σr

∫ T

r
DW

r σ
2
ududrds

]
− lim

T→t

ρ2

2σt(T − t)3 Et

[∫ T

t

∫ T

s

∫ T

r
DW

s DW
r σ

2
ududrds

]
+ lim

T→t

ρ

4(T − t)2 Et

[∫ T

t

∫ T

s
DW

s σ
2
r drds

]
= lim

T→t

3ρ2

8σ3
t (T − t)4

T1 − lim
T→t

ρ2

2σ2
t (T − t)3

T2 − lim
T→t

ρ2

2σt(T − t)3 T3 + lim
T→t

ρ

4(T − t)2 T4. (22)

Here, in the log normal stochastic volatility model, since Schwartz’s inequality,
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T1 ≤ (T − t)
∫ T

t
(T − s)

∫ T

s
Et

[(
DW

s σ
2
r

)2
]
drds

= (T − t)
∫ T

t
(T − s)

∫ T

s
4α2Et

[
σ4

0e4αWr−2α2r
]
drds

= (T − t)
∫ T

t
(T − s)

∫ T

s
4α2σ4

0e6α2rdrds

= 4α2σ4
0(T − t)

∫ T

t
(T − s)

e6α2T
− e6α2s

6α2 ds

= 4α2σ4
0

 e6α2T(T − t)3

12α2 +
e6α2t

36α4
(T − t)2

− (T − t)
∫ T

t

e6α2s

36α4
ds


= 4α2σ4

0

 e6α2T(T − t)3

12α2 +
e6α2t

36α4
(T − t)2

−
e6α2T

− e6α2t

216α6 (T − t)

 (23)

Here, we assume t = 0 and apply the Taylor expansion,

(23) = 4α2σ4
0

1 + 6α2T
12α2 T3 +

T2

36α4
−

6α2T + 1
2 36α4T2 + 1

6 216α6T3

216α6 T

+ O(T5)

= 4α2σ4
0

(1
2

T4
−

1
6

T4
)
+ O(T5)

=
4α2σ4

0

3
T4 + O(T5) (24)

T2 =

∫ T

t

∫ T

s

∫ T

r
Et

[
DW

s σrDW
r σ

2
u

]
dudrds

=

∫ T

t

∫ T

s

∫ T

r
2α2σ3

0Et
[
e2α(Wu−Wr)−2α2(u−r)

]
Et

[
e3αWr−

1
2 9α2r

]
eα

2u+2α2rdudrds

= 2α2σ3
0

∫ T

t

∫ T

s

∫ T

r
eα

2u+2α2rdudrds

= 2α2σ3
0

∫ T

t

∫ T

s

eα
2T+2α2r

− e3α2r

α2 drds

= 2α2σ3
0

∫ T

t

e3α2T
− eα

2T+2α2s

2α4
−

e3α2T
− e3α2s

3α4
drds

= 2α2σ3
0

 e3α2T(T − t)
2α4

−
e3α2T

− eα
2T+2α2t

4α6 −
e3α2T(T − t)

3α4
+

e3α2T
− e3α2t

9α6

 (25)

Here, we assume t = 0 and apply the Taylor expansion,

(25) = 2α2σ3
0

 (1 + 3α2T + 1
2 9α4T2)T

6α4
−
(2α2T + 1

2 4α4T2 + 1
6 8α6T3)(1 + α2T + 1

2α
4T2)

4α6

+
3α2T + 1

2 9α4T2 + 1
6 27α6T3

9α6

+ O(T4)

=
α2σ3

0

3
T3 + O(T4) (26)
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T3 =

∫ T

t

∫ T

s

∫ T

r
Et

[
4α2σ0e2αW−α2u1[0,u)(r∨ s)

]
dudrds

=

∫ T

t

∫ T

s

∫ T

r
4α2 σ2

0eα
2u1[0,u)(r∨ s)dudrds

= 4α2 σ2
0

∫ T

t

∫ T

s

eα
2T
− eα

2r

α2 drds

= 4α2 σ2
0

∫ T

t

eα
2T(T − s)
α2 −

eα
2T
− eα

2s

α4
ds

= 4α2 σ2
0

 eα
2T(T − t)2

2α2 −
eα

2T(T − t)
α4

+
eα

2T
− eα

2t

α6

 (27)

Here, we assume t = 0 and apply the Taylor expansion,

(27) = 4α2σ2
0

1 + α2T
2α2 T2

−
1 + α2T + 1

2α
4T2

α4
T +

α2T + 1
2α

4T2 + 1
6α

6T3

α6

+ O(T4)

=
2α2σ2

0

3
T3 + O(T4) (28)

T4 =

∫ T

t

∫ T

s
Et

[
DW

s σ
2
r

]
drds

=

∫ T

t

∫ T

s
2αEt

[
σ2

0e2αWr−α2r
]
drds

=

∫ T

t

∫ T

s
2ασ2

0eα
2rdrds

= 2ασ2
0

∫ T

t

eα
2T
− eα

2s

α2 ds

= 2ασ2
0

 eα
2T(T − t)
α2 −

eα
2T
− eα

2t

α4

 (29)

Here, we assume t = 0 and apply the Taylor expansion,

(29) = 2ασ2
0

1 + α2T
α2 T −

α2T + 1
2α

4T2

α4

+ O(T3)

= ασ2
0

(
T2
−

1
2

T2
)
+ O(T3)

=
ασ2

0

2
T2 + O(T3) (30)

Thus,

lim
T→0

I(0, T, X0, k∗0) − E0[v0]

T

≤ lim
T→0

3ρ2

8σ3
0T4

4α2σ4
0

3
T4
− lim

T→0

ρ2

2σ2
0T3

α2σ3
0

3
T3
− lim

T→0

ρ2

2σ0T3

2α2σ2
0

3
T3 + lim

T→0

ρ

4T2

ασ2
0

2
T2 + lim

T→0
o(T)

=
ρασ2

0

8
(31)

Thus, ATMI is a lower bound of the volatility swap if ρ < 0. �
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4.2. Zero-Vanna Implied Volatility

Theorem 4. Consider the SABR model defined as in (1) and (2). Then, for all values of correlation
ρ, the ZVIV is a lower bound for the volatility swap strike in the short time to maturity limit.

lim
T→t

I(t, T, Xt, k̂t) ≤ lim
T→t

Et[vt] (32)

Proof. From Theorem 4 in [4],

lim
T→t

I(t, T, Xt, k̂t) − Et[vt]

(T − t)

= lim
T→t

3ρ2

8σ3
t (T − t)4

Et

(∫ T

t

∫ T

s
DW

s σ
2
r drds

)2
− lim

T→t

ρ2

2σ2
t (T − t)3

Et

[∫ T

t

∫ T

s
DW

s σr

∫ T

r
DW

r σ
2
ududrds

]
− lim

T→t

ρ2

2σt(T − t)3 Et

[∫ T

t

∫ T

s

∫ T

r
DW

s DW
r σ

2
ududrds

]
= lim

T→t

3ρ2

8σ3
t (T − t)4

T1 − lim
T→t

ρ2

2σ2
t (T − t)3

T2 − lim
T→t

ρ2

2σt(T − t)3 T3. (33)

Since T1, T2, T3 are the same as those in the proof of Theorem 3, we obtain

lim
T→0

I(0, T, X0, k̂0) − E0[v0]

T

≤ lim
T→0

3ρ2

8σ3
0T4

4α2σ4
0

3
T4
− lim

T→0

ρ2

2σ2
0T3

α2σ3
0

3
T3
− lim

T→0

ρ2

2σ0T3

2α2σ2
0

3
T3 + lim

T→0
o(T)

= 0. (34)

�

5. Numerical Results

In the previous sections it has been proved that in the short time to maturity limit
the ZVIV bounds the volatility swap price from below. For longer time to maturities the
numerical experiments in this section suggests that the ZVIV remains a lower bound. A
proof of this conjecture, however, is currently not known. For the numerical experiments
the volatility swap strike, the ZVIV and the ATMI are calculated for various values of
volatility of volatility and time to maturity:

α ∈ {0.5, 1}, T ∈ {0.5, 1}.

The values of correlation are set in 0.1 increments from −1 to 1, and the initial value
of the volatility is σ0 = 0.3. In order to calculate the volatility swap strike, the ZVIV and
ATMI, 107 simulations are carried out for each value of ρ,α and T. The results are depicted
in Figures 1–4.

As can be deduced from the figures, and in line with the results of the previous
sections and in [4], the ZVIV is indeed a more accurate approximation for the volatility
swap price than the ATMI. Furthermore the impact of correlation on ZVIV is almost of
second order. The term ’almost’ is used since the ZVIV approximation is obtained by Taylor
approximations in [3]. Thus there are still residual terms of O(ρ) that remain in the ZVIV.
The impact of these terms is apparent for longer time to maturities, significant nonzero
values for correlation, and high volatility of volatility as in Figure 4. We can also clearly see
in Figure 4 that for ρ = 0 the ZVIV is not exactly equal to the volatility swap strike. This
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is another manifestation of the fact that there are small residual terms of O(ρ) present in
the ZVIV.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0.28

0.29

0.3

0.31

0.32

ρ

Exact
ZVIV
ATMI

Figure 1. σ0 = 0.3, ν = 0.5, T = 0.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

ρ

Exact
ZVIV
ATMI

Figure 2. σ0 = 0.3, ν = 0.5, T = 1.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.26

0.28

0.3

0.32

0.34

ρ

Exact
ZVIV
ATMI

Figure 3. σ0 = 0.3, ν = 1, T = 0.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.26

0.28

0.3

0.32

0.34

ρ

Exact
ZVIV
ATMI

Figure 4. σ0 = 0.3, ν = 1, T = 1.

6. Conclusions

It has been shown that in the conditionally lognormal SABR model, the ZVIV is a
lower bound for the volatility swap strike for all values of correlation in the short time to
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maturity limit. This property, in addition to the results in [4], further cements the ZVIV as a
more accurate model-free approximation for the volatility swap strike than the ATMI.

The results in this paper is a first step in analyzing the question for which models
the ZVIV is a lower bound for the volatility swap strike. Further research into the ZVIV
as a lower bound for the volatility swap strike will have to includes analyses along the
dimensions of the Hurst parameter, correlation parameter and time to maturity.
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