
Citation: Badoni, R.P.; Sahoo, J.;

Srivastava, S.; Mann, M.; Gupta, D.K.;

Verma, S.; Stanimirović, P.S.;

Kazakovtsev, L.A.; Karabašević, D.

An Exploration and

Exploitation-Based Metaheuristic

Approach for University Course

Timetabling Problems. Axioms 2023,

12, 720. https://doi.org/10.3390/

axioms12080720

Academic Editor: Hsien-Chung Wu

Received: 6 June 2023

Revised: 16 July 2023

Accepted: 22 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

An Exploration and Exploitation-Based Metaheuristic Approach
for University Course Timetabling Problems
Rakesh P. Badoni 1 , Jayakrushna Sahoo 2 , Shwetabh Srivastava 3 , Mukesh Mann 4, D. K. Gupta 5,
Swati Verma 6, Predrag S. Stanimirović 7,8,* , Lev A. Kazakovtsev 8,9 and Darjan Karabašević 10,*

1 Department of Mathematics, École Centrale School of Engineering, Mahindra University,
Hyderabad 500043, India; rakeshbadoni@gmail.com or rakesh.badoni@mahindrauniversity.edu.in

2 Department of Computer Science & Engineering, Indian Institute of Information Technology Kottayam,
Kottayam 686635, India; jsahoo@iiitkottayam.ac.in

3 CMP Degree College, University of Allahabad, Prayagraj 211002, India; shwetabhiit@gmail.com or
shwetabh.math@cmpcollege.ac.in

4 Department of Computer Science & Engineering, Indian Institute of Information Technology,
Sonepat 131029, India; mukesh.maan@iiitsonepat.ac.in

5 Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
dkg@maths.iitkgp.ernet.in

6 CSIR-National Institute of Oceanography, Panaji 403004, India;
swati.geo09@gmail.com or vswati@nio.org

7 Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
8 Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”,

Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia; levk@bk.ru
9 Institute of Informatics and Telecommunications, Reshetnev Siberian State University of

Science and Technology, 31 Krasnoyarskiy Rabochiy Av., 660037 Krasnoyarsk, Russia
10 Faculty of Applied Management, Economics and Finance, University Business Academy in Novi Sad,

Jevrejska 24, 11000 Belgrade, Serbia
* Correspondence: pecko@pmf.ni.ac.rs (P.S.S.); darjan.karabasevic@mef.edu.rs (D.K.)

Abstract: The university course timetable problem (UCTP) is known to be NP-hard, with solution
complexity growing exponentially with the problem size. This paper introduces an algorithm that
effectively tackles UCTPs by employing a combination of exploration and exploitation strategies. The
algorithm comprises two main components. Firstly, it utilizes a genetic algorithm (GA) to explore
the search space and discover a solution within the global optimum region. Secondly, it enhances
the solution by exploiting the region using an iterated local search (ILS) algorithm. The algorithm
is tested on two common variants of UCTP: the post-enrollment-based course timetable problem
(PE-CTP) and the curriculum-based course timetable problem (CB-CTP). The computational results
demonstrate that the proposed algorithm yields competitive outcomes when compared empirically
against other existing algorithms. Furthermore, a t-test comparison with state-of-the-art algorithms is
conducted. The experimental findings also highlight that the hybrid approach effectively overcomes
the limitation of local optima, which is encountered when solely employing GA in conjunction with
local search.

Keywords: timetabling; metaheuristics; genetic algorithm; iterated local search; local search;
perturbation

MSC: 68W50; 90C59

1. Introduction

Timetabling is an important and challenging area of research with diverse applications
in education, enterprises, sports, transportation, human resources planning, and logis-
tics. According to [1], timetabling refers to the allocation of given resources, subject to
constraints, to objects placed in space–time, aiming to maximize the number of satisfied

Axioms 2023, 12, 720. https://doi.org/10.3390/axioms12080720 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12080720
https://doi.org/10.3390/axioms12080720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4383-6652
https://orcid.org/0000-0002-4514-3916
https://orcid.org/0000-0003-0026-4471
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0002-0667-4001
https://orcid.org/0000-0001-5308-2503
https://doi.org/10.3390/axioms12080720
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12080720?type=check_update&version=2

Axioms 2023, 12, 720 2 of 38

desirable objectives. These high-dimensional, multi-objective combinatorial optimization
problems have received significant attention from the scientific community because manu-
ally generating timetables is laborious and time-consuming, often resulting in ineffective
and costly schedules. Therefore, the development of automated timetabling systems is
crucial to reducing errors, accelerating the creation process, and maximizing desirable
objectives. Among the various forms of timetabling problems, the educational timetabling
problem stands out as one of the most extensively studied. Finding a universal and effective
solution for this problem is challenging due to its complexity, varying constraints, and
evolving requirements.

The university course timetabling problem (UCTP) is a multidimensional assignment
problem that involves assigning students and teachers to events (or courses), which are
then allocated to appropriate timeslots and rooms. The UCTP can be categorized into two
categories: post-enrollment-based course timetabling problems (PE-CTPs) and curriculum-
based course timetabling problems (CB-CTPs). PE-CTP, sometimes referred to as “event
timetabling”, focuses on assigning events to timeslots and resources (rooms and students)
to avoid conflicts between events, timeslots, and rooms. The timetable is constructed
after student enrollment to ensure all students can attend the events they are enrolled in.
On the other hand, CB-CTP was first introduced in the Second International Timetabling
Competition (ITC2007) [2] and is a weekly assignment problem that involves scheduling a
specific number of lectures for various university courses within a given number of time
periods and a set of rooms. Each day is divided into a fixed number of timeslots, and a
period refers to a combination of a day and a timeslot. The total number of scheduling
periods per week is determined by multiplying the number of days per week by the number
of timeslots per day. Each course must be scheduled at different periods. Additionally, a
set of curricula consists of groups of courses with shared students, and conflicts between
courses are resolved based on the curricula rather than student enrollment data.

The main difference between these two variants of the UCTP is that in the PE-CTP,
all objectives and constraints are based on the student’s enrollment in various course
events, whereas in the CB-CTP, all objectives and constraints are associated with the
curriculum conception, which is a set of courses that form a complete assignment for a
group of students. An illustration of a student’s preference in the PE-CTP can be seen
in the statement, “A student should have multiple events in a day.” Similarly, for the
CB-CTP, a teacher’s preference can be exemplified by the statement, “A teacher prefers to
have no more than two consecutive lectures.” These timetabling problems involve two
types of constraints: hard and soft. Hard constraints are those that must be satisfied under
any circumstances. A timetable is considered feasible if it successfully satisfies all hard
constraints. On the other hand, soft constraints are more flexible and can be violated if
necessary, but it is desirable to minimize these violations due to associated penalty costs.
The lower the total value of the penalty cost, the higher the quality of the timetable. Thus,
the main objective is to create a high-quality schedule with minimal penalties for violations
of soft constraints.

Educational timetabling has been studied for over 60 years, beginning with Gotlieb [3].
Over the years, many solution approaches have been proposed by researchers. Carter
et al. [4] provided an overview of the primary solution approaches for the UCTP and
roughly divided them into four categories: constraint-based, sequential, clustered, and
metaheuristic methods. In recent years, metaheuristic algorithms have been success-
fully applied for both variants of the UCTP and are classified into local area-based and
population-based approaches. Local area-based algorithms, also called single-point algo-
rithms, focus more on exploitation than exploration [5]. These algorithms work iteratively
on a single solution and may not thoroughly explore the entire solution space. Examples
of local area-based algorithms include tabu search (TS), iterated local search (ILS), very
large neighborhood search (VLNS), and simulated annealing (SA). On the other hand,
population-based algorithms, also known as multiple-point algorithms, are good at explo-
ration rather than exploitation [6]. These algorithms maintain multiple solutions within

Axioms 2023, 12, 720 3 of 38

a population and employ a selection process to update the solutions. They extensively
search the entire solution space to find a globally optimal solution and are sometimes
referred to as global area-based algorithms. Consequently, these algorithms do not focus
solely on individuals with good fitness within a population but instead explore the entire
solution space to identify potential solutions. However, premature convergence is the main
disadvantage of such types of algorithms. Commonly utilized population-based algorithms
for timetabling problems include the genetic algorithm (GA), artificial bee colony (ABC),
particle swarm optimization (PSO), and ant colony optimization (ACO).

Driven by these discoveries and acknowledging that exploration, carried out through
population-based algorithms, and exploitation, executed via local area-based algorithms,
are two significant attributes of an optimization algorithm, which complement each other
and necessitate fine-tuning between them, we propose a hybrid metaheuristic algorithm
named GAILS, for solving PE-CTP and CB-CTP. The algorithm iteratively explores the
search space, finds the global optimum region using GA, and then employs ILS to obtain the
global optimum solution by exploiting this region. The GA generally fails to reach a global
optimum because it repeatedly explores various sub-parts of the search space, leading to a
long execution time. Additionally, the GA incorporates a local search (LS) which tends to
become trapped in a local optimum quickly. Therefore, when dealing with a large search
space, the GA might either fail to converge to a global optimum solution or require a
significant amount of time due to the possibility of getting trapped in a local optimum. At
this juncture, ILS is used to escape from the local optimum by applying perturbations to
the current solution. This allows one to maintain a proper balance between the merits of
these algorithms. Consequently, GA emphasizes exploration and diversification, while ILS
concentrates on the exploitation and intensification of the search space. Various crossover
and mutation operators, as well as neighborhood and perturbation moves, are utilized by
the algorithm to generate new solutions.

The superiority of GAILS can be attributed to its hybridization of two complementary
approaches. It initiates the search by using GA with an LS approach to explore the search
space and identify the global optimum region, which is prone to becoming trapped in a
local optimum. To overcome this challenge, ILS is employed, introducing perturbations to
the current solution and facilitating escape from local optima. Furthermore, we conducted
experimental investigations with varying time limits to demonstrate GAILS’ capability to
evade local optima. The results affirm the effectiveness of our proposal, as the solution
quality improves with increased time. Additionally, we evaluate the algorithm’s perfor-
mance on benchmark problem instances of differing complexity, employing the fitness
function value as a metric and comparing it with other algorithms using a t-test.

The structure of this paper is as follows: In Section 1, an introduction is provided.
Section 2 contains a brief literature review of the related work on PE-CTP and CB-CTP. The
PE-CTP and CB-CTP, along with their mathematical formulation, are explained in Section 3.
Section 4 covers the description of the GAILS algorithm. Implementation and testing of
GAILS on different benchmark problem instances with varying complexity are performed
in Section 5. Finally, conclusions are summarized in Section 6.

2. Related Work

In different subsections of this section, the earlier research on the two UCTP versions,
PE-CTP and CB-CTP, is discussed in detail.

2.1. Related Work on PE-CTP

The history of the educational scheduling problem can be traced back over six decades,
starting with [3]. Over the years, numerous researchers have proposed different solution
approaches and tested them on real-world problem instances. Despite significant progress
in this field, researchers have faced difficulties when comparing their algorithms with
existing state-of-the-art solutions due to differing problem formulations and instances
used by each researcher. To address this issue, the International Metaheuristic Network

Axioms 2023, 12, 720 4 of 38

organized the First International Timetabling Competition (ITC2002) in 2002. The objective
was to simulate a realistic scenario where students have priorities when selecting events,
and the timetable is constructed based on these preferences. Since then, these artificially
generated enrollment-based course timetable problem instances have become the standard
in the research community. Various researchers have utilized these instances to demonstrate
the effectiveness of their novel techniques.

Socha et al. [7] utilized the same data generator to produce eleven instances of
PE-CTP. They proposed the MAX-MIN ant system, which incorporates a local search
routine optimized by creating an appropriate construction graph. The pheromone value
determined the allocation of events to timeslots within specified bounds. The authors
concluded that the MAX-MIN ant system outperformed random restart local search when
applied to a set of typical problem instances. Rossi et al. [8] conducted a fair comparison of
five different metaheuristic algorithms for solving the PE-CTP by using a common solution
representation and standard neighborhood structure. Their empirical investigation revealed
that each metaheuristic has distinct capabilities in satisfying hard and soft constraints, and
an approach suitable for hard constraints may not be appropriate for optimizing soft
constraints. Ref. [9] introduced a TS hyper-heuristic where heuristics compete to be
selected by the hyper-heuristic.

Burke et al. [10] introduced an investigation into a simple, generic hyper-heuristic
method for solving the PE-UCTP. They employed a set of widely used constructive heuris-
tics, specifically graph coloring heuristics. The main characteristic of their method is to
utilize a TS approach to alter the permutations of six graph coloring heuristics before creat-
ing a timetable. The outcomes of the approach improved further when a higher number
of low-level heuristics were applied. In [11], an adaptive randomized descent algorithm
(ARDA), which employs an adaptive criterion to escape from local optimal solutions, is
described. Ref. [12] proposed a basic harmony search algorithm (BHSA) that takes advan-
tage of the benefits of population-based algorithms by identifying the promising region in
the search space using memory consideration and randomness. The proposed approach
also used the benefits of local area-based algorithms by fine-tuning the search space region.
They also introduced two modifications to the BHSA and proposed a modified harmony
search algorithm (MHSA). The first modification involved considering memory, while the
second modification aimed to enhance the functionality of the pitch adjustment operators
by replacing the acceptance rule from a ‘random walk’ to a ‘first improvement’ and ‘side
walk’ approach.

The approach by Cambazard et al. [13] for PE-CTP utilized constraint programming
techniques and LS. They demonstrated the advantages of applying a list-coloring relaxation
to the problem. They achieved the best constraint programming approach through various
investigations and maintained the original problem decomposition. Additionally, they
introduced lower bounds to estimate the costs related to the soft constraints in the problem.
Motivated by the perception of a gravitational emulation local search algorithm, ref. [14]
proposed a new population-based local search (PB-LS) heuristic for their solution. The
authors integrated a multi-neighborhood particle collision algorithm and an adaptive ran-
domized descent algorithm into their proposed approach, aiming to address the constraints
of population-based algorithms. Ref. [15] proposed an integer linear programming-based
heuristic to solve a real-world PE-CTP arising in an institution in Buenos Aires, Argentina.
The algorithm produced high-quality results and provided generalizations to other related
problems in the literature. Ref. [16] proposed a two-stage approach for solving the PE-CTP.
The first phase focused on obtaining a feasible solution by satisfying all the hard constraints.
In the second phase, they aimed to improve the solution quality by minimizing violations of
soft constraints. To execute this two-phased approach, they employed an enhanced version
of the SA with a reheating algorithm called simulated annealing with improved reheat-
ing and learning (SAIRL). Additionally, they introduced a reinforcement learning-based
approach to establish an effective neighborhood structure for search operations.

Axioms 2023, 12, 720 5 of 38

Over the years, many hybrid approaches by hybridizing a local area-based algorithm
within a population-based algorithm have gained much interest [17]. Such hybridization
aims to achieve an equilibrium between exploration and exploitation of the search space
to achieve the benefits of population-based and local area-based approaches. Ref. [18]
proposed GA with a repair function and local search for solving PE-CTP. They presented
a new repair function capable of transforming an unfeasible timetable into a feasible one.
The local search algorithm was employed before the next generation to enhance timetable
quality. A hybrid evolutionary algorithm employing hybridization between a memetic
algorithm and a randomized iterative improvement local search was given by [19]. They
reduced the exploration ability of the search space by excluding the crossover operator
from the memetic algorithm. Ref. [20] suggested a guided search genetic algorithm (GSGA)
consisting of a guided search strategy and a local search technique for their solution. The
guided search strategy introduced offspring into the population based on a data structure
that stores information extracted from previous competent individuals. Subsequently,
the LS technique is employed to enhance the overall quality of individual outcomes.
Ref. [21] further proposed an extended guided search genetic algorithm (EGSGA) by
introducing a new local search strategy in addition to the original local search strategy used
in GSGA.

Ref. [22] proposed a hybrid metaheuristic algorithm that combines an electromagnetic-
like mechanism and the great deluge algorithm for solving both variants of UCTP. The
electromagnetic-like mechanism is a population-based stochastic global optimization ap-
proach that simulates the attraction, physics, and repulsion of sample points in moving
toward optimality. The great deluge algorithm is a local search strategy that allows the
worst solutions to be accepted by an upper boundary. The dynamic force estimated from
the attraction–repulsion mechanism is used as a declining rate to update the search proce-
dure. Ref. [23] presented a hybrid metaheuristic approach that combines the great deluge
and tabu search. They proposed their solution approach for both PE-CTP and CB-CTP.
The algorithm is divided into two parts, construction and improvement, and four different
neighborhood moves are employed. Ref. [24] proposed a new hybrid algorithm that
combines GA with local search and uses events based on groupings of students. Ref. [25]
proposed a solution for the PE-CTP that is motivated by particle swarm optimization and
implemented in the basic artificial bee colony algorithm. The algorithm was hybridized
with the great deluge algorithm to enhance local exploitation capabilities and improve
global exploration quality. This approach achieved equilibrium by using a combination of
these techniques. Ref. [26] developed a new hybrid method that combines genetic-based
discrete particle swarm optimization with local search and tabu search approaches for
solving the PE-CTP.

A hybrid approach based on the improved parallel GA and LS (IPGALS) is proposed
to solve the PE-CTP by [27]. The GA is enhanced by incorporating LS. IPGALS adopts a
timetable representation, guaranteeing the preservation of hard constraints. The proposed
approach is run parallel to enhance the GA searching process due to various problem
constraints. The algorithm was tested on benchmark PE-CTP problem instances, and the
results were compared to other methods previously used to solve PE-CTP, and it was
found to be very effective. Ref. [28] proposed a review paper regarding the most recent
scientific approaches applied to the UCTP. The study demonstrates different methodologies
researchers use to solve the problem based on when they were created and what data
they used. The paper also discusses the challenges and opportunities while solving the
UCTP. They have found that metaheuristic approaches are widely favored, with hybrid and
hyper-heuristic approaches subsequently employed to achieve effective outcomes. They
also observed that the most advanced techniques found in the scientific literature are not
always used in the real world, probably because they are not adaptable enough.

Axioms 2023, 12, 720 6 of 38

2.2. Related Work on CB-CTP

After successfully organizing ITC2002, the research community in the field of
timetabling organized the Second International Timetabling Competition (ITC2007) in
2007 [2]. During this event, they introduced three tracks for educational timetabling prob-
lems, with the third track focusing on curriculum-based course timetabling applied to
Italian universities. For this track, several datasets were derived from real-world exam-
ples provided by the University of Udine. These datasets primarily emphasized lecturers’
preferences rather than students’, as is the case in PE-CTP.

By nature, CB-CTP is a highly constrained and complicated combinatorial optimization
problem extensively studied by a large number of researchers [22,29–33]. They classified
them first, along with their mathematical formulations, and then proposed several solutions
approaches. In general, there is no known efficient deterministic polynomial-time algo-
rithm for their solution, and they are solved by a variety of exact and heuristic approaches.
Ref. [4] discussed their main solution approaches and roughly divided them into four
categories: constraint-based, sequential, clustered, and generalized search (metaheuris-
tics) methods. In constraint-based approaches [29,34], these problems are represented
as constraint satisfaction problems (CSPs) and solved using CSP-solving approaches.
Ref. [29] proposed to formulate the timetabling instance of CB-CTP as CSP instances
and applied a general-purpose CSP solver to find solutions. The solver effectively handled
weighted constraints using a hybrid algorithm combining tabu search and ILS. Ref. [35]
introduced a constraint-based solver approach for CB-CTP that included multiple local
search approaches working in three stages.

Ref. [31] proposed a two-stage integer linear programming (ILP) model for the solu-
tion of CB-CTP. The approach involves decomposing the problem into two stages, each
represented by a distinct ILP model. In the first stage, the objective is to assign lectures to
time periods, whereas the assignment of lectures to rooms is performed in the second stage
by considering room stability. In the first stage, the assignment is performed without con-
sidering rooms, minimum working days, curriculum compactness, or minimizing penalties
for room capacity. The representation of CB-CTPs as graphs is demonstrated in [36], where
vertices and connections correspond to the lectures of courses and the constraints between
them. Subsequently, graph coloring algorithms are employed to solve these CB-CTPs.
Although this kind of approach (sequential heuristics) has demonstrated greater efficiency
in small-sized problem instances, it seems ineffective in large-sized problem instances.
Ref. [37] have proposed a satisfiability (SAT) model to solve a real-world CB-CTP at a
Mexican university. Ref. [38] proposed a harmony search algorithm for the solution of CB-
CTP. In the execution of their algorithm, the process of improvisation consists of memory
consideration, random consideration, and pitch adjustment. A high-level object-oriented
model called QuikFix has been proposed by [39] for the solution of CB-CTP. A repair-
based heuristic is used in their approach, and certain structural constraints and significant
neighborhood moves are applied in the problem domain’s search space.

Other extensively explored areas, such as the adaptive approaches, metaheuristics,
multi-criteria, and case-based reasoning discussed by [40], are also used to solve these
problems. In recent years, metaheuristic approaches and hybrid approaches have been
extensively used to solve CB-CTP. These metaheuristic approaches are motivated by na-
ture and apply nature-like processes to obtain optimal or near-optimal solutions. These
approaches are generally categorized as local area-based (ILS, TS, SA, and VLNS) and
population-based (GA, ACO, ABC, and PSO) algorithms. According to [41], an ABC al-
gorithm has four phases: initialization, the employed bee phase, the onlooker bee phase,
and the scout bee phase. Ref. [42] proposed a new swarm intelligence algorithm based on
ABC to solve the CB-CTP. Their algorithm works in two phases. The first phase is used
to obtain a feasible solution by satisfying all the hard constraints. In contrast, the second
phase is used to satisfy as many soft constraints as possible without violating any hard con-
straints. Ref. [32] proposed an adaptive tabu search (ATS) algorithm for their solution by
the hybridization of TS and ILS. The algorithm uses two neighborhood structures, namely

Axioms 2023, 12, 720 7 of 38

SimpleSwap and KampeSwap, and a standard tabu list to prevent the cycling of previously
visited solutions for both moves.

Ref. [30] proposed a two-phase approach for resolving the CB-CTP problem in their
publication. The first phase involved utilizing a robust single-stage simulated annealing
method for problem-solving, while in the second phase, an extensive and statistically
sound methodology was designed and applied for the parameter tuning process. This
resulted in a methodology that models the relationship between search method parameters
and instance features, allowing for the parameters of unseen instances to be set through a
simple inspection. In [43], the CB-CTP was modeled as a bi-criteria optimization problem
with two objectives: a penalty function and a robustness metric. The problem was resolved
using a hybrid multi-objective genetic algorithm that integrates hill climbing and simulated
annealing algorithms with the standard GA approach to produce an accurate approximation
of the Pareto-optimal front. Ref. [33] explored the use of generational construction hyper-
heuristics for automating the process of low-level construction heuristic generation for CB-
CTP. Two hyper-heuristics, an arithmetic hyper-heuristic for evolving arithmetic heuristics
and a genetic algorithm hyper-heuristic made up of ten problem attributes for generating
hierarchical heuristics, were implemented and applied to solve CB-CTP.

Ref. [44] presented an answer set programming-based approach, termed a teaspoon,
for solving the CB-CTP. In this approach, the system first reads a CB-CTP instance of a
standard input format and converts it into a set of answer set programming facts. These
facts are then combined with the first-order encoding for CB-CTP solving, which any off-the-
shelf ASP system can subsequently solve. Ref. [45] proposed a novel competition-guided
multi-neighborhood local search (CMLS) algorithm for solving the CB-CTP. The proposed
algorithm consists of three main contributions. First, it combines different neighborhoods
uniquely by selecting only one at each iteration. This helps find a balance between finding
many options and being efficient with time. Second, the algorithm uses two rules to
determine the likelihood of selecting a neighborhood. Lastly, CMLS has a restart strategy
where two different local search procedures are used and the best result is used as the
starting point for the next search. An extensive and systematic review of the utilization
of metaheuristic approaches used for UCTPs has been proposed by [46]. They thoroughly
review, summarize, and categorize these approaches while introducing a classification for
hybrid metaheuristic methods. Additionally, their study critically analyzes these methods’
advantages and limitations, highlighting the challenges, gaps, and potential areas for
future research.

3. Problem Formulation

This section outlines the two variants of UCTPs, namely, the PE-CTP and the CB-
CTP, and presents their mathematical formulations. The UCTP is a multi-dimensional
assignment problem where students and teachers are assigned to events (or courses), which
are then allocated to appropriate timeslots and rooms. In the subsequent subsections, we
delve into the PE-CTP and CB-CTP individually.

3.1. Post-Enrollment Based Course Timetabling Problem

This section provides an explanation of the PE-CTP, along with its mathematical
formulation. The PE-CTP is characterized as a multi-dimensional assignment problem
wherein students select events, such as lectures, tutorials, and laboratories. These events
must be allocated to a certain number of timeslots (9 per day for 5 days) and rooms, with
the goal of minimizing constraint violation. Each student selects multiple events, and
each room has a specific capacity and various features. The resolution to this problem
entails assigning the events to suitable timeslots and rooms that fulfill the specified hard
constraints, as described below.

1. Each student can attend only one event at any given timeslot.
2. Each event must be assigned to a room with enough seating capacity and all the

necessary features.

Axioms 2023, 12, 720 8 of 38

3. Each room can host only one event at a time.

When only hard constraints are present, the goal is to find a feasible solution. In addition,
the following soft constraints are considered, the violation of which leads to a certain
penalty for the PE-CTP solution.

1. Scheduling an event at the last timeslot of the day should be avoided.
2. A student should not have more than two events in consecutive timeslots daily.
3. Having only one event a day is not recommended for a student.

Next, the mathematical formulation of the PE-CTP can be described. The PE-CTP
involves a set E consisting of n events assigned to 45 timeslots (with 9 timeslots per day for
5 days). There is also a set R of m rooms with fixed seating capacity where these events
occur. In addition, a set S includes p students who can choose any event from E, and a set F
contains q room features required for events in selected rooms. The following notations are
used in the formulation of the problem.

• The set of events, denoted as E = {e1, e2, . . . , en}, consists of n events.
• The set of rooms, denoted as R = {r1, r2, . . . , rm}, contains m rooms.
• The set of timeslots, denoted as T = {t1, t2, . . . , t45}, includes 45 timeslots.
• The set of students, denoted as S = {s1, s2, . . . , sp}, comprises p students.
• The set of rooming features, denoted as F = { f1, f2, . . . , fq}, represents q

rooming features.
• ri.capacity represents the capacity of room ri.
• A matrix RF = [r fij]m×q, called a room-feature matrix and represents the feature

possessed by the room. Here, r fij = 1, if room ri is having feature f j; otherwise, the
value is zero.

• The decision variable xijkl represents student si attending the event ej in the timeslot
tk and in the room rl . It is defined for i ranging from 1 to p, j ranging from 1 to n, k
ranging from 1 to 45, and l ranging from 1 to m.

xijkl =

{
1 if the combination mentioned above is valid,
0 otherwise.

• The decision variable yijk represents an event ei that takes place in the room rj with
feature fk. It is defined for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ q.

yijk =

{
1 if the combination mentioned above is valid,
0 otherwise.

• The decision variable zij represents an event ei that takes place in timeslot tj and
defined for 1 ≤ i ≤ n, and 1 ≤ j ≤ 45.

zij =

{
1 if the combination mentioned above is valid,
0 otherwise.

Now, the mathematical formulation of hard constraints can be described as follows:

1. Each student can attend only one event at any given timeslot.

n

∑
j=1

m

∑
l=1

xijkl ≤ 1, 1 ≤ i ≤ p; 1 ≤ k ≤ 45.

2. Each event must be assigned to a room with enough seating capacity and all the
necessary features.

Axioms 2023, 12, 720 9 of 38

p

∑
i=1

xijkl ≤ rl .capacity, 1 ≤ j ≤ n; 1 ≤ k ≤ 45; 1 ≤ l ≤ m; and

yijk ≤ r f jk, 1 ≤ i ≤ n; 1 ≤ j ≤ m; 1 ≤ k ≤ q.

3. Each room can host only one event at a time.

n

∑
j=1

xijkl ≤ 1, 1 ≤ i ≤ p; 1 ≤ k ≤ 45; 1 ≤ l ≤ m.

Similarly, the soft constraints can be formulated mathematically as follows:

1. Scheduling an event at the last timeslot of the day should be avoided.

n

∑
i=1

zij = 0, j = 9, 18, . . . , 45.

2. A student should not have more than two events in consecutive timeslots daily.

n

∑
j=1

m

∑
l=1

a+2

∑
k=a

xijkl ≤ 2, 1 ≤ i ≤ p;

a = 1, 2, . . . , 7, 10, 11, . . . , 16, . . . , 37, 38, . . . , 43.

3. Having only one event a day is not recommended for a student.

n

∑
j=1

m

∑
l=1

d+8

∑
k=d

xijkl > 1, 1 ≤ i ≤ p; d = 1, 10, 19, 28, 37.

The objective is to achieve an optimal solution for the PE-CTP by satisfying all the
hard constraints and reducing the overall penalty cost of the soft constraint violations.
Therefore, the objective function f (I) for an individual solution I can be defined as

min f (I) = γ× hcv(I) + scv(I),

where hcv(I) and scv(I) represent the counts of hard and soft constraint violations in
solution I, and γ is a constant greater than the maximum potential violation of the soft
constraints. To simplify the process, a direct solution representation is used, which in-
volves an integer-valued ordered list of size |E|, denoted as a[i], where 1 ≤ a[i] ≤ 45 and
1 ≤ i ≤ |E|. Each element a[i] represents the timeslot for event ei. The assignment of rooms
is generated using a matching algorithm where a set of events appearing in a timeslot and a
pre-processed list of rooms based on their sizes and features are used. A bipartite matching
algorithm is employed to obtain a maximum cardinality matching between these two sets,
which is determined by using a deterministic network flow algorithm as provided by [47].
The remaining unplaced events are assigned to the room with the fewest events, in order,
until all events are assigned. Following these procedures, a similar integer-valued ordered
list of size |E|, say b[i], where 1 ≤ b[i] ≤ m and 1 ≤ i ≤ |E| is obtained for the event-room
assignments. Here, m denotes the total number of rooms. In the case of a tie, the first room
is selected. This process leads to a complete assignment of all the events to suitable rooms
and timeslots.

3.2. Curriculum-Based Course Timetabling Problem

This subsection presents a description of the CB-CTP and its corresponding mathe-
matical formulation. The CB-CTP refers to a weekly assignment problem that involves the
allocation of lectures for multiple courses within a given number of periods and a set of

Axioms 2023, 12, 720 10 of 38

rooms. The day is split into a fixed number of timeslots, and each period is identified as
a combination of a day and a timeslot. The total number of scheduling periods per week
is determined by multiplying the number of days per week by the number of timeslots
per day. It is necessary to schedule each course at different periods, and a set of curricula
comprises a group of courses with shared students. In case of conflicts between courses,
the curricula are used to resolve the issue instead of relying on student enrollment data. A
feasible timetable is one in which all lectures are scheduled within a period and a room
while satisfying the following hard constraints.

1. All lectures of a course must take place in distinct rooms and periods.
2. Two lectures cannot occur in the same room during the same period.
3. All lectures for courses taught by the same teacher or within the same curriculum

must be scheduled during different time periods. This means that there should not be
any overlap of students or teachers during any given period.

4. No lectures for the course can be assigned to a period if the teacher of the course is
unavailable for that period.

Also, a penalty is imposed on the timetable for each violation of any of the following
soft constraints:

1. The lecture room’s capacity should not be exceeded by the number of students attend-
ing the course.

2. All lectures in a course should be scheduled in the same room. If this is not possible,
the number of occupied rooms should be as low as possible.

3. The lectures of a course should be spread over the given minimum number of days.
4. A curriculum incurs a violation when a lecture is not adjacent to any other lecture of

the same curriculum within the same day. This requirement ensures that the student’s
schedule is as compact as possible.

The aim is to minimize the violation of soft constraints. The problem involves assigning
TNL lectures from a set C of n courses to w = u× v periods. Here, v and u represent the
number of timeslots per day and the number of days per week, respectively. Additionally,
the problem involves a set R of m rooms with different capacities. Each course ci ∈ C
comprises n`i lectures, each scheduled at a different period and assigned to a different
room. The problem also includes a set Π of x curricula, where each curriculum is a group
of courses with common students. The following notations are used to establish the
mathematical formulation of CB-CTP.

• Π = {π1, π2, . . . , πx} is a set of x curricula.
• C = {c1, c2, . . . , cn} is a set of n courses.
• D = {d1, d2, . . . , du} is a set of u days in a week.
• T = {t1, t2, . . . , tv} is a set of v timeslots in a day.
• P = {p1, p2, . . . , pw} is a set of w periods, where w = u× v.
• R = {r1, r2, . . . , rm} is a set of m rooms.
• L = {`1, `2, . . . , `TNL} is a set of TNL lectures.
• n`i is the total number of lectures for course ci. Taking n`0 = 0, a lecture `k corresponds

to a course ci for k satisfying
i−1

∑
j=0

n`j < k ≤
i

∑
j=1

n`j, 1 ≤ i ≤ n. Also,
n

∑
i=1

n`i = TNL.

• nsi is the total number of students taking course ci.
• mindi is the minimum number of days for course ci.
• ri.capacity represents the capacity of room ri.
• Xijkl is a decision variable representing that lecture `i of course cj takes place in room

rk at period pl and defined for 1 ≤ i ≤ n`j, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and 1 ≤ l ≤ w, as

Xijkl =

{
1 if the combination mentioned above is valid,
0 otherwise.

Axioms 2023, 12, 720 11 of 38

• Yijk is a decision variable representing that lecture `i of course cj takes place at period
pk and defined for 1 ≤ i ≤ n`j, 1 ≤ j ≤ n, and 1 ≤ k ≤ w, as

Yijk =

{
1 if the combination mentioned above is valid,
0 otherwise.

• Zijk is a decision variable representing that course ci takes place in room rj at period
pk and defined for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ w, as

Zijk =

{
1 if the combination mentioned above is valid,
0 otherwise.

• ηij is a decision variable representing that course ci takes place in room rj and defined
for 1 ≤ i ≤ n, and 1 ≤ j ≤ m, as

ηij =

{
1 if the combination mentioned above is valid,
0 otherwise.

• unaij is a decision variable representing that course ci is unavailable at period pj and
defined for 1 ≤ i ≤ n, and 1 ≤ j ≤ w, as

unaij =

{
1 if the combination mentioned above is valid,
0 otherwise.

• ξij is a decision variable representing that course ci belongs to curriculum πj and
defined for 1 ≤ i ≤ n, and 1 ≤ j ≤ x, as

ξij =

{
1 if the combination mentioned above is valid,
0 otherwise.

• μij is a decision variable representing that course ci takes place at period pj and defined
for 1 ≤ i ≤ n, and 1 ≤ j ≤ w, as

μij =

{
1 if the combination mentioned above is valid,
0 otherwise.

• ρij is a decision variable representing that course ci takes place in day dj and defined
for 1 ≤ i ≤ n, and 1 ≤ j ≤ u, as

ρij =

{
1 if the combination mentioned above is valid,
0 otherwise.

• τij is a decision variable representing that course of curriculum πi takes place at period
pj and defined for 1 ≤ i ≤ x, and 1 ≤ j ≤ w, as

τij =

{
1 if the combination mentioned above is valid,
0 otherwise.

Now, the mathematical formulation of hard constraints can be described as follows:

1. All lectures of a course must take place in distinct rooms and periods.

Axioms 2023, 12, 720 12 of 38

n`j

∑
i=1

Yijk ≤ 1, 1 ≤ j ≤ n; 1 ≤ k ≤ w;

n`j

∑
i=1

w

∑
k=1

Yijk = n`j, 1 ≤ j ≤ n.

2. Two lectures cannot occur in the same room during the same period.

n

∑
j=1

n`j

∑
i=1

Xijkl ≤ 1, 1 ≤ k ≤ m; 1 ≤ l ≤ w.

3. All lectures for courses taught by the same teacher or within the same curriculum
must be scheduled during different time periods. This means that there should not be
any overlap of students or teachers during any given period.

n

∑
j=1

n`j

∑
i=1

m

∑
k=1

(Xijkl × ξjy) ≤ 1, 1 ≤ l ≤ w; 1 ≤ y ≤ x.

4. No lectures for the course can be assigned to a period if the teacher of the course is
unavailable for that period.

n`j

∑
i=1

Yijk ≤ 1− unajk, 1 ≤ j ≤ n; 1 ≤ k ≤ w.

Similarly, the soft constraints can be formulated mathematically as follows:

1. The lecture room’s capacity should not be exceeded by the number of students attend-
ing the course.

ηij × nsj ≤ rj.capacity, 1 ≤ i ≤ n; 1 ≤ j ≤ m.

2. All lectures in a course should be scheduled in the same room. If this is not possible,
the number of occupied rooms should be as low as possible.

w

∑
k=1

Zijk − w× ηij ≤ 0, 1 ≤ i ≤ n; 1 ≤ j ≤ m.

3. The lectures of a course should be spread over the given minimum number of days.

v

∑
j=1
μij − ρik ≥ 0, 1 ≤ i ≤ n; 1 ≤ k ≤ u; and

u

∑
j=1
ρij ≥ mindi − Hi, 1 ≤ i ≤ n.

Here, Hi will take the value 0 if and only if course ci takes more than (mindi − 1)
number of days.

4. A curriculum incurs a violation when a lecture is not adjacent to any other lecture of
the same curriculum within the same day. This requirement ensures that the student’s
schedule is as compact as possible.

n

∑
i=1

(μij × ξik)− τkj = 0, 1 ≤ j ≤ w; 1 ≤ k ≤ x; and

−τi(j−1) + τij − τi(j+1) − Iij ≤ 0, 1 ≤ i ≤ x; 1 ≤ j ≤ w.

Axioms 2023, 12, 720 13 of 38

Here, τi(j−1) is removed for j = 1, w
u + 1, 2× w

u + 1, . . . , (u− 1)× w
u + 1, and τi(j+1) is

removed for j = w
u , 2× w

u , . . . , u× w
u . Also, Iij will take the value 1 if πi has an isolated

lecture at period pj.

Similar to the PE-CTP, the goal is to attain an optimal solution for the CB-CTP by
satisfying all the hard constraints and minimizing the penalty cost of the soft constraint
violations. Hence, the objective function f (I) for an individual solution I can be defined
as follows:

min f (I) = γ× hcv(I) + scv(I),

where the symbols retain their usual meanings. Here also, a direct solution represen-
tation is selected. A solution involves an integer-valued ordered list of size TNL, say
a[i] (1 ≤ a[i] ≤ |P| and 1 ≤ i ≤ TNL). Here, list a[i] corresponds to the assigned periods.
Taking n`0 = 0, the k consecutive entries of a[i], satisfying ∑i−1

j=0 n`j < k ≤ ∑i
j=1 n`j are

corresponding to the periods for all the n`i number of lectures of course ci. Once the assign-
ments of all the lectures for all the courses to periods are completed, the room assignments
are made by using a bipartite matching algorithm. A set of courses appears in a period and
a set of rooms based on their sizes. Now, a bipartite matching algorithm is used to obtain
a maximum cardinality matching between these two sets using a deterministic network
flow algorithm as given by [47]. This solves our CB-CTP by assigning all courses to the
appropriate rooms and periods.

4. Proposed Hybrid Metaheuristic Approach

This section develops the proposed exploration and exploitation-based metaheuristic
algorithm that combines GA and ILS to find an optimal solution for the UCTP.

The study conducted by Golberg [48] observed that although GAs can identify po-
tential regions for global optima in the search space, they face significant challenges when
dealing with highly constrained problems. Moreover, it has been noted [49,50] that hybridiz-
ing GA with other optimization techniques can yield even better solutions. Incorporating
these findings, we propose an approach for finding optimal solutions for PE-CTP and CB-
CTP. Our algorithm aims to reduce the exponential time complexity of GA by combining
it with the ILS algorithm, thereby increasing the likelihood of convergence to an optimal
solution in the search space. The ILS algorithm refines the GA search and improves the
chances of convergence to an optimal solution through successive iterations in various
sub-parts of the search space. It is important to note that while GA may generate individu-
als representing both good and bad search spaces, the ILS algorithm ensures fairness by
exploring different sub-parts of the search space.

Let us briefly recall the basic concepts of GA to explain the technical details of our
algorithm. This stochastic algorithm is based on the principle of survival of the fittest and
is used to iteratively map a population of solutions, known as chromosomes with fitness
values, into a new population of solutions known as offspring. It requires the problem-
specific encoding of a solution, where genes on chromosomes are characterized by variables.
Therefore, it works with a randomly generated population of solutions in the search space
and consists of three primary processes: selection, reproduction, and replacement.

In the selection process, more duplications of candidate solutions with higher fitness
function values are made to enforce the survival-of-the-fittest mechanism. The reproduction
stage uses crossover and mutation operators for the selected parents. In the crossover,
segments of two solutions in the population are combined to obtain new and possibly
improved solutions. In contrast, a solution is modified locally in a random order in the
mutation process. Finally, the original parental population is replaced by a population
of offspring solutions generated through the selection and reproduction processes. This
replacement includes keeping the best solutions and removing the worst ones. The selection
phase ensures better utilization of healthier offspring, while the reproduction phase ensures
adequate exploration of the search space. Natural selection ensures the propagation of
better fitness function values on chromosomes in future generations. The algorithmic

Axioms 2023, 12, 720 14 of 38

layout of GAILS can be found in Algorithm 1. The complete working procedure of GAILS
is shown in the flow chart in Figure 1.

Remark 1. The algorithms and descriptions provided are designed based on PE-CTP. However, in
the case of CB-CTP, the event ei ∈ E and timeslot tk ∈ T are replaced with lecture `i ∈ L and period
pk ∈ P, respectively, along with their respective parameters.

Algorithm 1 The proposed hybrid metaheuristic approach−GAILS
Require: A problem instance I
Ensure: an optimal solution ybest for I
1: begin
2: for (i← 1 to max) do . randomly generated initial population of size max
3: yi ← randomly generated starting solution;
4: yi ← solution obtained by applying LS; . LS given in Algorithms 3 and 4
5: compute fitness function value of yi ;
6: end for
7: organize the population of solutions in ascending order based on their fitness function values;
8: ybest ← y1; . y1 denotes the finest solution within the population
9: repeat

10: use tournament selection to select two parents from population;
11: y← offspring solution obtained by applying crossover with α rate and mutation with β rate;
12: if (f (y) < f (ybest)) then . f (y) is the fitness function value of y
13: y← solution generated after applying ILS to y; . ILS given in Algorithm 2
14: end if
15: ymax ← y; . the worst solution ymax is replaced by y in the population of sorted solutions
16: create and sort the population of solutions in ascending order of their fitness function values;
17: ybest ← y1;
18: until (termination criteria not satisfied);
19: end

Since all the variables in both PE-CTP and CB-CTP problems are binary, there is
no need for special methods for the solution encoding. Chromosomes in the proposed
algorithm are vectors of Boolean values of all decision variables. For the PE-CTP prob-
lem: yi = (x1,1,1,1, . . . , xp,n,45,m, y1,1,1, . . . , yn,m,q, z1,1, . . . , zn,45). For the CB-CTP problem:
yi = (X1,1,1,1, . . . , Xn`n ,n,m,w, Y1,1,1, . . . , Yn,`n ,w, Z1,1,1, . . . , Zn,m,w, η1,1, . . . , ηn,m, unai,j, . . . ,
unan,w, ξ1,1, . . . , ξn,x, μ1,1, . . . , μn,w, ρ1,1, . . . , ρn,u).

By utilizing a uniform distribution, our proposed algorithm produces a population
of random solutions with a size of max, where each event is assigned a timeslot. As the
quality of the initial solutions impacts the final solutions, good initial solutions produce
better results in less computation time [51,52]. We applied the LS to each initial population
to create a population of good-quality initial solutions. The problem-specified heuristic
information from the LS is then used by a steady-state evolution process in which only
one pair of parent individuals is chosen for reproduction in each generation. The LS
assigns events to timeslots and then uses the matching algorithm to allocate rooms to each
event–timeslot pair using three neighborhood operators. Following that, the population of
solutions is arranged in ascending order according to their fitness function values, where
y1 represents the best solution. Some individuals with the best fitness function values are
randomly selected as parents from the current population. The fitness function f (I) for an
individual solution I is given by

f (I) = γ× hcv(I) + scv(I),

where hcv(I), scv(I), and γ are the counts of violations of hard and soft constraints on I,
and a constant greater than the maximum possible violation of soft constraints, respectively.
A child solution is generated using a uniform crossover operator with α probability and a
mutation operator with β probability over the selected parents. Two individual solutions
are chosen from the current population as the parents, using tournament selection with
a suitable tournament size to create a child solution using a crossover operator. In our
case, for each event, we select the parent with the smaller penalty value and assign their
corresponding timeslot and room to the event of the child solution. Finally, a mutation
operator is applied to the child solution obtained from the crossover operator.

Axioms 2023, 12, 720 15 of 38

The mutation operator is defined as a random move in the neighborhood of LS, which
is extended with four-cycle permutations of the timeslots corresponding to four different
events to complete the neighborhood of LS. Thus, the entire neighborhood consists of four
categories of neighborhood moves. In a type 1 move, a random event from a timeslot is
selected and moved to another timeslot. A type 2 move involves swapping two randomly
chosen events between two different timeslots. A type 3 move selects two timeslots
randomly and swaps all the events between them. Lastly, in a type 4 move, three randomly
selected events from three different timeslots are permuted in one of the two possible ways.

Generate initial

population of

solution of size max

Calculate fitness

of all solutions

Sort solutions in

increasing order of their

fitness function value

Apply tournament

selection strategy

Apply crossover

with probability a

Apply mutation

with probability b

New solution is

better then the previous

best solution ?

 No

Termination criteria

met ?

Start

Stop

Yes

Apply LS on

new solution

Yes

ILS termination

criteria met ?

Apply

perturbation

No

Apply LS

algorithm

Acceptance

criteria

satisfied ?

No

Replaced worst solution

of the population by

new solution

No

Yes

Yes
Apply LS on

each solution

Figure 1. Flow chart of GAILS.

A new solution y is obtained by applying the crossover and mutation operators on the
selected parents using tournament selection. If f (y) is less than f (ybest), the ILS algorithm
described in Section 4.1 is applied to y. Here, ybest and f (ybest) correspond to the best

Axioms 2023, 12, 720 16 of 38

solution in the population and the fitness function of the best solution, respectively. Next,
the worst solution ymax is replaced by the new solution y. The population of solutions
is then sorted in increasing order of their fitness function values so that y1 will be the
best solution. This procedure is repeated until a termination criterion is met. Termination
criteria may include a time limit, a number of iterations, or achieving an optimal solution
with a zero fitness function value. The next subsection discusses the ILS and LS algorithms
utilized in the GAILS.

4.1. Iterated Local Search Algorithm

This subsection describes, in brief, the ILS algorithm applied to solve the UCTP. The
main disadvantage of LS is that it can become trapped in locally optimal solutions, which
are considerably worse than the global optimal solution. It improves the LS algorithm by
providing new starting solutions obtained from the current solution using perturbations
rather than considering a random restart. Hence, ILS escapes from the local optimal
solution by using perturbations. Every single execution of a perturbation in it creates a new
solution. The strength of the perturbation is defined as the number of solution components
that are modified. It is crucial that the LS algorithm cannot undo the perturbation, or else
the solution will fall back into the just-visited local optimal solution. To apply ILS, four
components are specified. The first component, “GenerateInitialSolution”, modifies y in
GAILS to generate the initial solution y0, which is further improved to a new solution
y by applying LS. The second component, “Perturbation”, enhances the quality of the
current solution y by taking it to some intermediate solution y′. The third component,
“LocalSearch”, takes solution y′ and gives an enhanced solution y′′. Finally, the fourth
component, “AcceptanceCriteria”, selects the solution for the next perturbation, with the
acceptance criteria requiring the cost to decrease.

The article ref. [53] proposed that executing a random move within a higher-order
neighborhood is more effective for achieving excellent performance in perturbation than
moves performed in the LS algorithm. The perturbations should be compatible with the LS
algorithm and consider the problem’s properties for better results. If the perturbation is
too strong, the ILS algorithm may function similarly to a random restart. Conversely, if the
perturbation is too small, the LS algorithm will likely return to the previously visited local
optimal solution, limiting the diversification of the search space. The solution returned
by the AcceptanceCriteria employs this perturbation. The ILS algorithm is described in
Algorithm 2.

Algorithm 2 Iterated local search algorithm−ILS

Require: A solution y0 from the population
Ensure: An enhanced solution y

1: begin
2: y0 ← GenerateInitialSolution();
3: y← apply LS with y0;
4: while (termination criteria not met) do
5: y′ ← Perturbation(y, History);
6: y′′ ← apply LocalSearch with y′;
7: y← AcceptanceCriteria(y, y′′, History);
8: end while
9: end

The ILS method is utilized by starting with the randomly generated initial solution y0
of PE-CTP. The LS algorithm is applied to y0 with the help of some designed neighborhoods
to obtain an enhanced solution y. The new solution y is then subjected to perturbation
to obtain a further improved solution y′. The perturbation employs the search history,
referred to as History, to mine the previously discovered local optima, which are used to
generate better starting points for LS. After that, LS is applied once more to y′ to obtain
a further improved solution y′′. If the solution y′′ satisfies the acceptance criteria based

Axioms 2023, 12, 720 17 of 38

on the specified History, it replaces y′. The ILS method is repeated until the predefined
termination criteria used in GAILS are met. In our study, we utilize the following four
types of perturbation moves:

Per1: Selecting a different timeslot to a randomly chosen event.

Per2: Swapping timeslots for two randomly chosen events.

Per3: Selecting two timeslots randomly and swapping all their events.

Per4: Selecting three events randomly and permuting them into three distinct timeslots in
one of the two possible ways that differ from the existing one.

The random choices mentioned above were selected from a uniform distribution. To
determine the strength of the perturbation, each individual random move is performed r
times, where r ∈ {1, 5, 10, 20, 40, 50, 100}. We have considered three different methods to
accept solutions in the AcceptanceCriteria. The initial method, Random_Walk, consistently
accepts the new solution y′′ that LS returns. The second method, Accept_if_Better, only
accepts a new solution y′′ if it is an improvement over the current solution y. The third
method is Simulated_Annealing, which accepts y′′ if it is superior to the current solution;
otherwise, it is accepted with a probability determined by g(y). Here, g(y) represents
the total count of hcv or scv, depending on whether solutions y and y′′ are feasible. Two
methods used for calculating this probability are

M1: Prob1(y, y′′) = e−
(g(y)−g(y′′))

T

M2: Prob2(y, y′′) = e
− (g(y)−g(y′′))

T.g(ybest)

Here, T and ybest represent a temperature parameter and the optimal solution obtained
so far. Throughout the execution, the value of T remains constant. Generally, the temper-
ature decreases over time in the SA algorithm to facilitate convergence towards a local
minimum. However, when the ILS algorithm incorporates SA, the temperature is main-
tained at a constant level. The reason is that the ILS algorithm employs a distinct strategy to
overcome local minima. Instead of reducing the temperature, the ILS algorithm introduces
perturbations to alter the solution randomly. This allows the algorithm to explore new
regions of the search space and potentially escape from local minima. Further, the value of
T are selected from {0.01, 0.1, 1} and {0.05, 0.025, 0.01} for M1 and M2, respectively.

4.2. Local Search Algorithm

The classical method of local search is often used to find optimal solutions for many
combinatorial optimization problems through two phases. The first phase is called the
construction phase, which establishes feasibility. The second phase, the improvement phase,
optimizes soft constraints without violating the feasibility of the search space. During the
construction phase, the algorithm commences with an empty timetable and systematically
builds up a schedule by gradually including one event at a time. Typically, the initial
timetable is of poor quality with numerous constraint violations. The improvement phase
then gradually enhances the timetable’s quality by modifying certain events to achieve a
better timetable. The selection of good neighborhoods is a critical aspect of LS.

To solve PE-CTP, the construction and improvement phases of LS are applied to each
individual solution. During the construction phase, all possible neighborhood moves are
attempted for each event from the list of events associated with hcv and ignoring all scv
until a termination criterion is reached. Termination criteria can be an improvement in
the solution or the exhaustion of the pre-specified number of iterations. For simplicity, a
portion of the given solution is customized to form a new neighboring solution. In this
work, we used a neighborhood consisting of three smaller neighborhoods, N1, N2, and N3,
defined as follows:

N1: An operator that randomly chooses a single event and moves this event to a different
timeslot that produces the lowest penalty.

Axioms 2023, 12, 720 18 of 38

N2: An operator that swaps the timeslots of two randomly selected events.

N3: An operator that randomly selects two timeslots and swaps all their events.

The neighborhood operator N2 is applied only when N1 fails, and N3 is applied only
when both N1 and N2 fail. In this context, the term “penalty” refers to the number of
violations of hard and soft constraints. The resulting disturbance in room allocation is
resolved by applying the bipartite graph matching algorithm to the affected timeslots after
each neighborhood move, using its delta-evaluated measure. Delta-evaluation refers to the
computation of the hcv of events that move within a solution to obtain the fitness function
value dispute between the related event’s pre- and post-move. If there are no new moves
in the neighborhood or the current event has no hcv, the construction phase proceeds to
the next event. If there is any remaining hcv after applying all neighborhood moves to all
events, the construction phase ceases to function without discovering a viable solution to the
problem. Once a feasible solution is achieved, the improvement phase begins. It operates
similarly to the construction phase but focuses on satisfying soft constraints instead of hard
constraints. The goal is to minimize the scv by applying all neighborhood moves to each
event in sequential order without violating hard constraints. In summary, the construction
phase provides a feasible solution, while the improvement phase aims to optimize the
solution by satisfying as many soft constraints as possible. Algorithms 3 and 4 illustrate
the general framework of the LS algorithm in its construction and improvement phases.

Algorithm 3 Construction phase of the local search algorithm
Require: A solution I from the population
Ensure: Either a feasible solution I or the nonexistence of a viable solution
1: begin
2: construct a randomly ordered circular list (e1, e2, . . . , en) consisting of n events;
3: i ← 0; . i is the event counter
4: select event ei after i ← i + 1; . move to the next event
5: if (all neighborhood moves applied to all the events) then
6: if (∃ any hcv in I) then
7: END LOCAL SEARCH;
8: else
9: output a feasible solution I and END the construction phase;

10: end if
11: end if
12: if ((feasible ei)

∨
(no untried move left for ei)) then

13: goto 4;
14: end if
15: CheckSolution(ei , I); . all neighborhood moves applied and return the solution I
16: if (reduced number of hcv in I) then
17: make the move;
18: goto 3;
19: else
20: goto 12;
21: end if
22: end

Algorithm 4 Improvement phase of the local search algorithm
Require: Solution I from Algorithm 3
Ensure: An optimal solution I
1: begin
2: use the circular randomly ordered list (e1, e2, . . . , en) of n events generated in Algorithm 3;
3: i ← 0; . i is the event counter
4: select event ei after i ← i + 1; . move to the next event
5: if (all neighborhood moves applied to all the events) then
6: END LOCAL SEARCH with an optimal solution I;
7: end if
8: if ((ei NOT involved in any scv)

∨
(no untried move left for ei)) then

9: goto 4;
10: end if
11: CheckSolution(ei , I); . all neighborhood moves applied and return the solution I
12: if (number of scv reduced in I without making I infeasible) then
13: make the move;
14: goto 3;
15: else
16: goto 8;
17: end if
18: end

Axioms 2023, 12, 720 19 of 38

Procedure CheckSolution(ei, I)
ei and I are arguments. Returns I after neighborhood moves
Require: T: the set of 45 timeslots; R: the set of m rooms;

1: begin
2: apply N1 to solution I;
3: if (N1 successful) then
4: generate solution I;
5: else if (N1 to I not successful)

∧
(N2 to I successful) then

6: apply N2 to I and generate solution I;
7: else
8: apply N3 to I and generate solution I;
9: end if

10: for (k← 1 to 45) do
11: if timeslot tk is effected by either of the move N1, N2, or N3 then
12: use the matching algorithm for events held in tk to allocate rooms ;
13: end if
14: end for
15: delta-evaluate the result of the move;
16: return I;
17: end

5. Computational Results

In this section, we perform an experimental investigation to assess the performance of
our proposed approach, GAILS, compared to several existing algorithms commonly used
for solving the UCTP. The fitness function is employed as the measure of performance in
all cases. We implemented all algorithms in GNU C++ version 4.5.2 and executed them on
a PC with a processing speed of 3.10 GHz and 2 GB of RAM. We conducted experiments
using two distinct sets of benchmark problem instances. The first set consists of 11 PE-CTP
instances sourced from Socha’s benchmark dataset [7]. The second set includes 21 CB-CTP
instances from the third track of ITC2007 (UD2). In the following subsections, we address
these different problem instances separately.

5.1. Experiments on Socha’s Benchmark Dataset

In this subsection, the GAILS algorithm is tested over the 11 problem instances pro-
posed by [7]. The given problem instances comprise a range of 100–400 events. These
events must be organized within a timetable that covers 9 timeslots per day for 5 days.
Ensuring that the scheduling satisfies both room capacity and room feature constraints is
crucial. These instances are divided into five small instances, five medium instances, and
one large instance. The parameter values and the detailed description of these problem
instances have been presented in Tables 1 and 2.

Table 1. Parameter values for the problem instances of [7].

Class Small Medium Large

Number of events 100 400 400
Number of rooms 5 10 10

Number of students 80 200 400
Number of features 5 5 10

Approximate features per room 3 3 5
Percentage feature use 70 80 90

Maximum events per student 20 20 20
Maximum students per event 20 50 100

Axioms 2023, 12, 720 20 of 38

Table 2. Description of the problem instances of [7].

Instance n m q p Max S/E Max E/S Avg. F/R Avg. F/E

small01 100 5 5 80 15 15 2.8 1.88
small02 100 5 5 80 13 17 3.0 2.02
small03 100 5 5 80 20 13 3.0 2.21
small04 100 5 5 80 12 12 4.4 2.92
small05 100 5 5 80 17 19 3.8 2.80

medium01 400 10 5 200 11 20 2.9 2.355
medium02 400 10 5 200 11 20 3.0 2.33
medium03 400 10 5 200 12 20 3.2 2.525
medium04 400 10 5 200 11 20 3.1 2.493
medium05 400 10 5 200 20 20 3.2 2.535

large 400 10 10 400 30 20 4.8 4.37
S/E: students per event; E/S: events per student; F/R: features per room; F/E: features per event.

The GAILS algorithm is primarily executed on these problem instances, and the best
combination of parameters is identified. The population size (δ), tournament size (ω),
crossover probability (α), and mutation probability (β) are selected as 10, 5, 0.8, and 0.5,
respectively. The different parameters are selected for the ILS depending on the size of the
problem instance. For small problem instances, Per1 with r = 1 and M2 with T = 0.025 are
used. For medium and large problem instances, Per1 with r = 5 and M1 with T = 0.1 are
used. The value of γ in the fitness function is set to 106, which indicates that any solution I
with f (I) ≥ 106 is infeasible.

To evaluate performance, all small problem instances are run independently for
100 trials, with a specific time-bound in each trial. The lowest fitness function value
among them is used as the optimal solution’s performance measure. For medium and large
problem instances, the trials are fixed at 50 and 20, respectively. The maximum number of
iterations in LS is set to 200, 10,000, and 100,000, respectively. Initially, the time limit for all
small problem instances is fixed at 2 s.

In Table 3, the results obtained for small problem instances are presented, showcasing
the fitness function values of the best solution (fmin), the worst solution (fmax), and the time
taken to achieve the best solution (Time). Notably, in each independent trial, the GAILS
algorithm consistently produces the best solution with a fitness value of zero for all small
problem instances. The graph in Figure 2 illustrates the relationship between the fitness
function values and the time GAILS takes for these small problem instances. It is worth
noting that the optimal solution is consistently achieved in a mere 0.2 s.

Table 3. Performance of small problem instances.

Instance fmin fmax Time

small01 0 0 0.052
small02 0 0 0.016
small03 0 0 0.008
small04 0 0 0.152
small05 0 0 0.020

One of the goals of GAILS is to prevent local optima by incorporating perturba-
tion within ILS. To support our claim, we executed medium problem instances under
four different time limits: 900, 1200, 1500, and 12,000 s. This was chosen to examine how
time duration affects the solution quality. In Tables 4–7, we present the minimum (fmin),
maximum (fmax), and average (favg) fitness function values for all trials, along with the
standard deviation (ς) and the corresponding time duration. The results demonstrate a
significant improvement in fitness function values as the time limit increases. Figure 3
illustrates the best fitness function value attained by GAILS across all medium-sized prob-

Axioms 2023, 12, 720 21 of 38

lem instances for the four time periods. Each instance underwent independent testing for
20 trials, with a time limit of 12,000 s.

Figure 2. fmin versus time for small problem instances.

Table 4. Performance of medium problem instances with a time limit of 900 s.

Instance fmin fmax favg ς Time

medium01 92 112 102.23 5.538 818.14
medium02 82 120 99.13 9.958 803.51
medium03 122 159 139.77 12.42 857.35
medium04 73 106 90.37 9.397 641.20
medium05 89 128 109.90 12.14 871.69

Table 5. Performance of medium problem instances with a time limit of 1200 s.

Instance fmin fmax favg ς Time

medium01 85 111 98.43 7.234 1097.41
medium02 78 118 98.73 10.65 1041.31
medium03 112 159 136.87 16.37 1198.55
medium04 69 107 85.97 9.995 1142.16
medium05 77 124 106.23 12.54 1152.59

Table 6. Performance of medium problem instances with a time limit of 1500 s.

Instance fmin fmax favg ς Time

medium01 78 111 96.50 8.784 1482.74
medium02 75 109 91.27 10.02 1433.71
medium03 102 159 124.17 17.82 1452.59
medium04 60 104 81.97 11.70 1443.61
medium05 70 128 103.70 13.30 1478.37

Table 7. Performance of medium problem instances with a time limit of 12,000 s.

Instance fmin fmax favg ς Time

medium01 35 52 42.05 5.395 11,755.91
medium02 31 60 40.85 8.362 9893.19
medium03 56 83 68.25 9.453 11,638.80
medium04 35 57 44.05 7.052 11,809.90
medium05 43 66 52.30 8.417 11,498.91

Axioms 2023, 12, 720 22 of 38

0 100 200 300 400 500 600 700 800 900
50

100

150

200

250

300

350

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium01

medium02

medium03

medium04

medium05

0 200 400 600 800 1000 1200
50

100

150

200

250

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium01

medium02

medium03

medium04

medium05

0 500 1000 1500
50

100

150

200

250

300

350

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium01

medium02

medium03

medium04

medium05

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

Time (in seconds)
F

it
n

e
ss

 f
u

n
c
ti

o
n

medium01

medium02

medium03

medium04

medium05

Figure 3. fmin versus time for medium problem instances with different time ranges.

Similarly, the large problem instance is executed over three different time limits, taken
as 9000, 12,000, and 15,000 s, and fmin, fmax, favg, ς, and time are obtained. These outcomes
are presented in Tables 8–10. The best fitness function value versus time obtained by GAILS
for the large problem instance over these different time limits is depicted by the graphs in
Figure 4.

Table 8. Performance of large problem instance with a time limit of 9000 s.

Instance fmin fmax favg ς Time (in Seconds)

large 585 708 635.35 40.24 8392.23

Table 9. Performance of large problem instance with a time limit of 12,000 s.

Instance fmin fmax favg ς Time (in Seconds)

large 580 702 614.95 36.27 11,839.19

Table 10. Performance of large problem instance with a time limit of 15,000 s.

Instance fmin fmax favg ς Time (in Seconds)

large 572 702 612.6 38.50 14,133.13

Axioms 2023, 12, 720 23 of 38

1000 2000 3000 4000 5000 6000 7000 8000 9000
550

650

750

850

950

1050

1150

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

large

0 2000 4000 6000 8000 10000 12000
500

600

700

800

900

1000

1100

1200

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

large

2000 4000 6000 8000 10000 12000 14000
550

650

750

850

950

1050

1150

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

large

Figure 4. fmin versus time for large problem instance with different time ranges.

Figures 5 and 6 depict boxplots that summarize the outcomes obtained from the
medium and large problem instances across various time limits during all the independent
trials. The boxplots represent the interquartile range, which is the span between the 25%
and 75% quantiles of the data. A bar represents a median, while outliers are indicated using
a plus sign.

medium01 medium02 medium03 medium04 medium05

80

100

120

140

160

F
it

n
e
s
s
 f

u
n

c
ti

o
n

medium01 medium02 medium03 medium04 medium05
60

80

100

120

140

160

F
it

n
e
s
s
 f

u
n

c
ti

o
n

medium01 medium02 medium03 medium04 medium05
50

70

90

110

130

150

170

F
it

n
e
s
s
 f

u
n

c
ti

o
n

medium01 medium02 medium03 medium04 medium05
25

40

55

70

85

F
it

n
e
s
s
 f

u
n

c
ti

o
n

Figure 5. Boxplots of results obtained for medium-sized problems with various time limits.

Axioms 2023, 12, 720 24 of 38

large
580

600

620

640

660

680

700

720

F
it

n
es

s
fu

n
ct

io
n

large
570

590

610

630

650

670

690

710

F
it

n
es

s
fu

n
ct

io
n

large
560

580

600

620

640

660

680

700

720

F
it

n
es

s
fu

n
ct

io
n

Figure 6. Boxplots of results obtained for large problem instances with various time limits.

5.1.1. Comparative Experiments

In this section, we initially compare the performance of GAILS with ILS, GALS,
and NHA [24], as well as the existing algorithms GSGA [20], EGSGA [21], BHSA and
MHSA [12]. To ensure a fair comparison, we maintain the same relevant parameters for
GALS and ILS as those used in GAILS. For small-sized problem instances, we independently
run all algorithms for 100, 50, 50, and 50 trials for GAILS, GALS, ILS, and NHA, respectively.
For medium and large-sized problem instances, we independently run GALS and ILS for
50 trials each, while for NHA, this number is limited to 20. Similarly, for GAILS, the figure
is 50 for medium-sized problems and 20 for large ones. We restrict the time limit to 2, 900,
and 9000 s for small, medium, and large problem instances, respectively, for all algorithms.

We present the comparison of GAILS with GALS, ILS, and NHA through the graphs
in Figure 7. The x-axis represents time in seconds, while the y-axis represents the best
fitness function value. We give the results obtained by all eight algorithms for all problem
instances in terms of fmin, fmax, favg, and ς in Table 11. The term x% Inf. represents the
percentage of infeasible solutions over all runs. The comparison results of Figure 7 and
Table 11 show that GAILS is more effective than other algorithms, producing lower favg
and ς on most problem instances. In fact, in some cases, the fmax obtained by GAILS is
better than the fmin obtained by other algorithms. These results indicate that GAILS is
more reliable than the other algorithms.

0 0.5 1 1.5 2

0

10

20

30

40

50

60

70

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

small01

GAILS

GALS

ILS

NHA

0 0.2 0.4 0.6 0.8 1 1.2

0

20

40

60

80

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

small02

GAILS

GALS

ILS

NHA

Figure 7. Cont.

Axioms 2023, 12, 720 25 of 38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10

15

20

25

30

35

40

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

small03

GAILS

GALS

ILS

NHA

0 0.5 1 1.5 2

0

10

20

30

40

50

60

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

small04

GAILS

GALS

ILS

NHA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

10

20

30

40

50

60

70

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

small05

GAILS

GALS

ILS

NHA

0 100 200 300 400 500 600 700 800 900
80

120

160

200

240

280

320

360

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium01

GAILS

GALS

ILS

NHA

0 100 200 300 400 500 600 700 800 900
70

110

150

190

230

270

310

350

380

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium02

GAILS

GALS

ILS

NHA

0 100 200 300 400 500 600 700 800 900
110

160

210

260

310

360

410

460

490

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium03

GAILS

GALS

ILS

NHA

0 100 200 300 400 500 600 700 800 900
60

110

160

210

260

310

360

410

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium04

GAILS

GALS

ILS

NHA

0 100 200 300 400 500 600 700 800 900
80

130

180

230

280

330

380

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

medium05

GAILS

GALS

ILS

NHA

1000 2000 3000 4000 5000 6000 7000 8000 9000
500

600

700

800

900

1000

1100

1200

1300

1400

Time (in seconds)

F
it

n
e
ss

 f
u

n
c
ti

o
n

large

GAILS

GALS

ILS

NHA

Figure 7. Comparison between GAILS, GALS, ILS, and NHA.

Axioms 2023, 12, 720 26 of 38

Table 11. Comparison of different algorithms on PE-CTP instances.

Instance GAILS GALS ILS NHA GSGA EGSGA BHSA MHSA

small01 fmin 0 0 0 0 0 0 3 0
fmax 0 15 17 0 9 4 8 4
favg 0 8 7.14 0 2.11 1.71 5 2.5
ς 0 3.207 3.807 0 3.33 2.42 1.632 1.178

small02 fmin 0 4 2 0 0 0 4 0
fmax 0 21 20 0 16 11 9 4
favg 0 11.78 10.32 0 2.32 2.01 6.3 2.5
ς 0 4.117 3.857 0 5.59 3.71 1.494 1.269

small03 fmin 0 2 0 0 0 0 2 0
fmax 0 17 21 0 11 2 5 2
favg 0 8.98 8.76 0 2.2 1.8 3.7 0.8
ς 0 3.583 4.547 0 3.21 1.53 1.059 0.788

small04 fmin 0 1 0 0 0 0 3 0
fmax 0 14 19 0 11 5 5 3
favg 0 7.48 7.58 0 1.84 0.63 3.4 1.2
ς 0 2.808 4.366 0 2.20 1.89 0.843 0.918

small05 fmin 0 0 0 0 0 0 1 0
fmax 0 12 14 0 5 3 4 0
favg 0 5.5 4.12 0 0.51 0.55 2.8 0
ς 0 2.393 2.981 0 1.86 0.82 1.032 0

mediam01 fmin 92 112 110 106 240 139 296 168
fmax 112 150 145 147 260 202 318 200
favg 102.23 133.7 120.9 131.45 247 142 307.3 179.7
ς 5.538 11.26 11.51 13.3 9.02 6.384 8.602 10.3

mediam02 fmin 82 116 108 107 162 92 236 160
fmax 120 182 140 140 209 134 256 188
favg 99.13 138.3 121.3 126.7 172.4 112 245.1 178.67
ς 9.958 19.43 10.3 9.647 14.49 10.96 6.573 9.772

mediam03 fmin 122 172 156 132 242 122 255 176
fmax 159 244 200 185 290 160 286 196
favg 139.77 201.5 176.28 151 247 128.4 274.3 182.8
ς 12.42 20.16 11.5 17.55 6.021 4.832 11.29 7.699

mediam04 fmin 73 80 74 72 158 98 231 144
fmax 106 147 120 121 212 112 265 161
favg 90.37 116.78 98.4 92.8 162.7 100.2 244.7 153.4
ς 9.397 18.98 13.79 16.65 17.01 5.451 10.37 7.471

mediam05 fmin 89 91 98 107 124 116 207 71
fmax 128 187 166 140 200 151 222 92
favg 109.9 153.38 139.6 124.8 128.5 121.3 214.7 80.2
ς 12.14 24.45 23.04 11.26 23.67 13.29 4.945 8.521

large fmin 585 1133 739 505 801 615 100% Inf. 417
fmax 708 1255 1052 655 921 670 − 530
favg 635.35 1189.2 869.15 555 858.2 648.5 − 476.6
ς 40.24 47.39 99.85 37.54 40.35 19.11 − 37.32

A t-test statistical analysis was performed to compare different algorithms, and the
results are presented in Table 12. The comparison was conducted with (n1 + n2− 2) degrees
of freedom at a significance level of 0.05, where n1 and n2 are the sample sizes of the first
and second samples, respectively. The t-test results are indicated by symbols such as “s+”,
“s−”, “+”, “−”, or “∼” to demonstrate whether the first algorithm is significantly better,
significantly worse, insignificantly better, insignificantly worse, or statistically equivalent
to the second algorithm, respectively. “Inf.” signifies that either or both of the compared
algorithms failed to provide a feasible solution for the given problem instance.

The table indicates that GAILS outperforms GALS, ILS, GSGA, and BHSA significantly
in all problem instances, and it also performs better than most other algorithms in the
majority of cases. This suggests that using only local area- or population-based algorithms
is not ideal for solving PE-CTP. Instead, the hybridization of local area-based algorithms
with suitable population-based algorithms can significantly improve solution quality.

Axioms 2023, 12, 720 27 of 38

Table 12. The t-test comparison of different algorithms on PE-CTP instances.

Algorithms s01 s02 s03 s04 s05 m01 m02 m03 m04 m05 l

GAILS vs. GALS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
GAILS vs. ILS s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GAILS vs. NHA ∼ ∼ ∼ ∼ ∼ s+ s+ s+ + s+ s−
GAILS vs. GSGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

GAILS vs. EGSGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ +

GAILS vs. BHSA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ Inf.
GAILS vs. MHSA s+ s+ s+ s+ ∼ s+ s+ s+ s+ s− s−

Note: Here, s, m and l denotes small, medium, and large respectively.

5.1.2. Comparison with Existing Algorithms

In this segment, we compared the experimental results of the proposed GAILS algo-
rithm with some other existing algorithms and displayed them in Table 13. The running
time limits for each independent trial of the small, medium, and large problem instances are
taken as 2, 12,000, and 15,000 s, respectively. The description of the compared algorithms
under which these outcomes were reported is as follows:

GAILS The proposed exploration and exploitation-based metaheuristic approach by com-
bining GA with ILS.

B1 The results of a population-based LS heuristic embedded within an LS proposed
by [14] were reported from 20 independent trials. Each trial lasted for 120–600 s
for small problem instances, while for medium and large problem instances, the
duration was 36,000–46,800 s.

B2 The tabu-search hyper-heuristic proposed by [9] involves heuristics competing to
be selected by the hyper-heuristic. The results were reported from five independent
trials with different iterations: 12,000, 1200, and 5400 for small, medium, and large
problem instances, respectively.

B3 Ref. [54] proposed a tabu-based MA, and the results were reported from five
independent trials, each with 100,000 iterations per trial. Each trial lasted less than
60 s for small problem instances, while for medium and large problem instances,
the duration was 14,400–28,800 s.

B4 Ref. [11] proposed an adaptive randomized descent algorithm called a new
heuristic search. The results were reported from 11 independent trials, each with
200,000 iterations. Each trial lasted for 180–600 s for small problem instances, while
for medium and large problem instances, the duration was 14,400–32,400 s.

B5 Ref. [55] proposed a randomized iterative improvement algorithm with a com-
posite neighborhood structure. The results were reported from five independent
trials with 200,000 iterations per trial. Each trial lasted for a maximum of 50 s for
small problem instances, while for medium problem instances, the duration was
28,800 s.

B6 Ref. [22] proposed a hybrid metaheuristic approach that combines an electromagnetic-
like mechanism with the great deluge algorithm. The results were reported from
five independent trials with 200,000 iterations per trial. For small, medium, and
large problem instances, the duration was 90, 7200, and 21,600 s, respectively.

B7 Ref. [56] proposed an extended great deluge algorithm, and the results were
reported from ten independent trials, with each trial having 200,000 iterations. For
small problems, the best solutions were achieved in 15–60 s.

B8 Ref. [57] proposed a modified great deluge algorithm that uses a non-linear decay
of water level. The results were reported from ten independent trials, each with a
different duration depending on the problem instance size: 3600, 4700, and 6700 s
for small, medium, and large problem instances, respectively.

B9 Ref. [58] proposed a non-linear great deluge hyper-heuristic approach that uses
a learning mechanism and a non-linear great deluge acceptance criterion. The

Axioms 2023, 12, 720 28 of 38

results were reported from ten independent trials, each with 500,000 iterations per
trial. For small, medium, and large problem instances, the duration was less than
2500, 10,800, and 18,000 s, respectively.

B10 Ref. [12] proposed a modified harmony search algorithm, and the reported results
were based on ten independent trials, each with 100,000 iterations.

B11 Ref. [59] proposed a simulation of fish swarm intelligence adapting the biological
behavior of fish. The results were reported based on 11 independent trials, with
500,000 iterations per trial.

B12 Ref. [60] proposed a hybridization between the multi-neighborhood particle col-
lision algorithm and adaptive randomized descent algorithm acceptance crite-
ria. The results were reported from 20 independent trials, each consisting of
200,000 iterations.

B13 Ref. [61] proposed the hybridization of the hill-climbing optimizer within the ABC
algorithm. The reported results’ running time range was measured between 360
and 25,200 s.

B14 Ref. [62] proposed hybridizing the great deluge and ABC algorithms. The findings
were derived from 30 independent trials, each taking 900–7200 s for the primary
ABC and 3600–14,400 s for the proposed algorithm, depending on the problem
instance size.

B15 Ref. [63] proposed a memetic computing technique called the hybrid harmony
search algorithm. The reported results did not have a running time limitation;
however, the minimum time reported to achieve the solutions was 21,600 s.

B16 Ref. [64] hybridized a non-dominated sorting GA (NSGA-II) with two LS tech-
niques and a TS heuristic. They added an additional LS technique to the existing
LS of NSGA-II for further performance enhancement. The outcomes were reported
based on 50 independent trials of small and medium problem instances, with
a running time of 100 and 1000 s, respectively. Additionally, the large problem
instance was reported after 20 runs with a time-bound of 10,000 s.

B17 Ref. [27] proposed a hybrid approach based on the improved parallel genetic
algorithm and local search (IPGALS) to solve the PE-CTP. In their approach, the
LS is used to strengthen the GA. The result is reported after ten independent
executions. They also categorized their parameters into three groups based on the
number of events: less than 200, between 200 and 400, and more than 400.

Here, we would like to emphasize that the algorithms referred to earlier, along with
the circumstances in which their results were documented, have been widely employed in
the literature to evaluate the efficacy of the proposed algorithm. While this method may
not be entirely equitable, as the conditions for each algorithm could vary, the reported
results may give us a general idea of the proposed algorithm’s effectiveness.

Table 13. Comparison results on PE-CTP instances.

Instance GAILS B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17
small01 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
small02 0 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
small03 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
small04 0 0 1 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
small05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

medium01 35 41 146 55 82 242 96 80 140 71 168 45 64 73 52 99 127 84
medium02 31 39 173 70 78 161 96 105 130 82 160 40 65 79 45 73 122 99
medium03 56 60 267 102 136 265 135 139 189 137 176 61 91 132 96 130 172 142
medium04 35 39 169 32 73 181 79 88 112 55 144 35 66 69 52 105 110 84
medium05 43 55 303 61 103 151 87 88 141 106 71 49 89 61 56 53 160 112

large 572 463 1166 653 680 100% Inf. 683 730 876 777 417 407 576 462 461 385 904 516

Table 13 shows that GAILS provides the best fitness function values for problem
instances medium01, medium02, medium03, and medium05. For the medium04 problem
instance, GAILS delivers the second-best fitness function value. Moreover, we have noticed
that the solution quality continues to improve as the time restriction extends, a unique

Axioms 2023, 12, 720 29 of 38

characteristic not found in other approaches. This result demonstrates that GAILS can
effectively avoid local optima.

5.2. Experiments on ITC2007’s Benchmark Dataset of CB-CTP

The proposed approach is tested on the 21 CB-CTP instances as presented and defined
in the third track of ITC2007 (UD2). These problem instances are described in Table 14.
In order to obtain experimental results for this subsection, each problem instance is run
independently for 20 trials by fixing a specific time-bound for each trial. The least fitness
function value among them is selected as an optimal solution. The time limit for each
independent trial is restricted to 600 s.

Table 14. Description of CB-CTP instances.

Instance n TNL m v u x MiLDC MaLDC

comp01 30 160 6 6 5 14 2 5
comp02 82 283 16 5 5 70 2 4
comp03 72 251 16 5 5 68 2 4
comp04 79 286 18 5 5 57 2 4
comp05 54 152 9 6 6 139 2 4
comp06 108 361 18 5 5 70 2 4
comp07 131 434 20 5 5 77 2 4
comp08 86 324 18 5 5 61 2 4
comp09 76 279 18 5 5 75 2 4
comp10 115 370 18 5 5 67 2 4
comp11 30 162 5 9 5 13 2 6
comp12 88 218 11 6 6 150 2 4
comp13 82 308 19 5 5 66 2 3
comp14 85 275 17 5 5 60 2 4
comp15 72 251 16 5 5 68 2 4
comp16 108 366 20 5 5 71 2 4
comp17 99 339 17 5 5 70 2 4
comp18 47 138 9 6 6 52 2 3
comp19 74 277 16 5 5 66 2 4
comp20 121 390 19 5 5 78 2 4
comp21 94 327 18 5 5 78 2 4

MiLDC: Minimum lectures/day/curricula; MaLDC: Maximum lectures/day/curricula.

To find the best combination of parameters for GAILS, we first run trials on all possible
combinations of parameters, limiting each trial to 100 s. The values of parameters α and β
are selected from {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0} whereas the value of δ and ω is chosen from
{5, 10, 20, 50}. Similarly, the type of Perturbation and AcceptanceCriterion are selected
from the possibilities given in Section 4.1. The best resulting configuration of parameters
selected are: α = 0.8, β = 0.5, δ = 10,ω = 5, Perturbation = Per1 with r = 5 and
AcceptanceCriterion = M1 with T = 0.1. The maximum number of iterations in the LS
is also fixed at 200,000. The results obtained for all the 21 CB-CTP instances out of these
20 independent trials are displayed in Table 15 in terms of fmin, fmax, favg, ς, and Time.
Also, the fitness function values versus time taken by GAILS for eight randomly selected
problem instances are depicted by the graphs in Figure 8. The x-axis, in this case, represents
time (in seconds), and the y-axis represents the best fitness value.

Axioms 2023, 12, 720 30 of 38

Table 15. Results obtained for CB-CTP instances.

Instance fmin fmax favg ς Time (in Seconds)

comp01 5 5 5 0 18.34
comp02 24 55 36.4 11.70 257.62
comp03 72 91 79.8 6.579 436.95
comp04 35 50 43 5.395 373.42
comp05 303 321 314 6.236 440.36
comp06 44 59 50.4 5.254 264.33
comp07 7 26 14.5 6.932 324.46
comp08 39 50 43.4 3.718 450.95
comp09 100 116 107.8 5.073 207.11
comp10 6 24 14.3 6.273 335.82
comp11 0 0 0 0 7.76
comp12 349 367 356.3 6.395 260.39
comp13 65 78 71.5 4.428 392.9
comp14 52 62 56.3 3.529 302.52
comp15 72 94 82.8 7.451 463.62
comp16 31 42 36.7 3.831 293.94
comp17 75 86 79.3 4.001 351.08
comp18 79 94 86.3 5.165 418.52
comp19 62 76 68.3 4.715 302.66
comp20 25 41 30.3 5.187 412.42
comp21 83 107 94.4 8.303 219.11

0 5 10 15
0

20

40

60

80

100

120

140

160

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp01

110 140 170 200 230 260 290 320 350 380

50

100

150

200

250

300

350

400

450

500

550

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp04

0 40 80 120 160 200 240 280

50

100

150

200

250

300

350

400

450

500

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp06

10 60 110 160 210 260 310 360 410 460

50

100

150

200

250

300

350

400

450

500

550

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp08

Figure 8. Cont.

Axioms 2023, 12, 720 31 of 38

0 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp11

0 100 200 300 400 500
50

100

150

200

250

300

350

400

450

500

550

600

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp15

50 100 150 200 250 300 350 400 450
50

100

150

200

250

300

350

400

450

500

550

600

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp18

80 100 120 140 160 180 200 220

100

150

200

250

300

350

400

450

500

550

600

Time (in seconds)

F
it

n
es

s
fu

n
ct

io
n

comp21

Figure 8. Best fitness function value versus time for CB-CTP instances.

The fitness function values obtained for all 21 instances from all 20 independent trials
are summarized by the boxplot in Figure 9.

comp01 comp11
−1

0

1

2

3

4

5

6

F
it

n
es

s
fu

n
ct

io
n

comp02 comp16 comp20
20

25

30

35

40

45

50

55

60

F
it

n
es

s
fu

n
ct

io
n

comp03 comp15 comp17
70

75

80

85

90

95

100

F
it

n
es

s
fu

n
ct

io
n

comp04 comp06 comp08
30

35

40

45

50

55

60

65

F
it

n
es

s
fu

n
ct

io
n

Figure 9. Cont.

Axioms 2023, 12, 720 32 of 38

comp05 comp12
300

310

320

330

340

350

360

370

F
it

n
es

s
fu

n
ct

io
n

comp07 comp10
4

8

12

16

20

24

28

F
it

n
es

s
fu

n
ct

io
n

comp09 comp18 comp21
70

80

90

100

110

120

F
it

n
es

s
fu

n
ct

io
n

comp13 comp14 comp19
50

55

60

65

70

75

80

F
it

n
es

s
fu

n
ct

io
n

Figure 9. Boxplots of results obtained for CB-CTP instances.

5.2.1. Comparative Experiments

In this segment, we compare the performance of GAILS with the performance of the
five finalist algorithms in the third track of ITC2007. These algorithms C1, C2, C3, C4,
and C5 were proposed by [29,32,35,39,65], respectively. For all the 21 CB-CTP instances,
each of these five algorithms was run independently for ten trials. A ranking was then
calculated based on these 50 outcomes for each problem instance. Finally, a ranking was
established according to the ranks realized on these 21 CB-CTP instances. Rank-wise, these
five finalists were C1, C2, C3, C4, and C5. The detailed results of their outcomes in terms of
fmin, fmax, favg, and ς are given in Table 16.

Table 16. Comparison of different algorithms on CB-CTP instances.

Instance C1 C2 C3 C4 C5
fmin fmax favg ς fmin fmax favg ς fmin fmax favg ς fmin fmax favg ς fmin fmax favg ς

comp01 5 5 5 0 5 5 5 0 5 6 5.1 0.316 5 9 6.7 1.059 10 68 27 19.66
comp02 51 70 61.3 6.783 55 74 61.2 5.329 50 76 65.6 7.905 111 168 142.7 21.25 111 146 131.1 11.05
comp03 84 103 94.8 5.922 71 101 84.5 8.086 82 95 89.1 4.932 128 188 160.3 18.18 119 167 138.4 14.64
comp04 37 48 42.8 3.490 43 53 46.9 3.315 35 44 39.2 2.530 72 91 82 6.992 72 110 90.2 10.97
comp05 330 379 343.5 14.62 309 346 326 14.23 312 353 334.5 13.54 410 691 525.4 89.45 426 2000 811.5 628.80
comp06 48 65 56.8 5.350 53 80 69.4 8.656 69 84 74.1 4.408 100 129 110.8 8.377 130 181 149.3 17.20
comp07 20 45 33.9 7.172 28 49 41.5 6.671 42 56 49.8 4.467 57 89 76.6 10.15 110 191 153.4 22.53
comp08 41 55 46.5 4.353 49 58 52.6 2.989 40 50 46 2.828 77 90 81.7 4.448 83 116 96.5 9.733
comp09 109 117 113.1 2.767 105 127 116.5 6.900 110 121 113.3 3.234 150 178 164.1 9.769 139 157 148.9 6.967
comp10 16 27 21.3 4.423 21 48 34.8 9.343 27 49 36.9 6.454 71 96 81.3 7.818 85 122 101.3 12.693
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.3 0.675 3 8 5.7 1.337
comp12 333 367 351.6 10.352 343 380 360.1 12.441 351 378 361.6 8.527 442 544 485.1 32.78 408 487 445.3 29.42
comp13 66 81 73.9 4.533 73 87 79.2 4.541 68 82 76.1 4.202 98 125 110.4 9.204 113 145 122.9 10.556
comp14 59 69 61.8 2.936 57 77 65.9 6.226 59 68 62.3 3.433 90 108 99 5.077 84 127 105.9 12.71
comp15 84 103 94.8 5.922 71 101 84.5 8.086 82 95 89.1 4.932 128 188 160.3 18.18 119 167 138 14.79
comp16 34 49 41.2 4.826 39 57 49.1 5.567 40 60 50.2 6.477 81 103 92.6 6.620 84 127 107.3 11.98
comp17 83 92 86.6 2.547 91 111 100.7 6.848 102 115 107.3 4.423 124 161 143.4 13.56 152 178 166.6 9.454
comp18 83 102 91.7 5.539 69 93 80.7 6.255 68 80 73.3 3.773 116 145 129.4 9.312 110 142 126.8 11.033
comp19 62 74 68.8 3.676 65 77 69.5 4.353 75 85 79.6 3.373 107 184 132.8 23.612 111 148 125.4 12.633
comp20 27 44 34.3 4.855 47 72 60.9 8.171 61 71 65 3.590 88 109 97.5 6.399 144 201 179.3 17.06
comp21 103 121 108 6.683 106 137 124.7 8.693 123 150 138.1 8.80 174 210 185.3 12.81 169 202 185.8 12.02

In order to compare different algorithms statistically, their t-test comparison was
performed, and the obtained results are presented in Table 17. This statistical comparison
was implemented by using n1 + n2 − 2 degree of freedom at 0.05 level of significance,

Axioms 2023, 12, 720 33 of 38

where n1 and n2 are the sample sizes of the first and second samples, respectively. The
t-test comparison of the two algorithms is also demonstrated as “s+”, “s−”, “+”, “−”, or
“∼”. The table clearly shows that GAILS outperforms the other algorithms in the majority
of the problem instances.

Table 17. The t-test comparison of different algorithms on CB-CTP instances.

Instance GAILS vs. C1 GAILS vs. C2 GAILS vs. C3 GAILS vs. C4 GAILS vs. C5

comp01 ∼ ∼ + s+ s+
comp02 s+ s+ s+ s+ s+
comp03 s+ + s+ s+ s+
comp04 ∼ s+ s− s+ s+
comp05 s+ s+ s+ s+ s+
comp06 s+ s+ s+ s+ s+
comp07 s+ s+ s+ s+ s+
comp08 + s+ + s+ s+
comp09 s+ s+ s+ s+ s+
comp10 s+ s+ s+ s+ s+
comp11 ∼ ∼ ∼ + s+
comp12 ∼ + + s+ s+
comp13 + s+ s+ s+ s+
comp14 s+ s+ s+ s+ s+
comp15 s+ + s+ s+ s+
comp16 s+ s+ s+ s+ s+
comp17 s+ s+ s+ s+ s+
comp18 s+ s− s− s+ s+
comp19 + + s+ s+ s+
comp20 + s+ s+ s+ s+
comp21 s+ s+ s+ s+ s+

It is simple to arrive at the conclusion that an algorithm that relies solely on exploration
or exploitation cannot be the best option for solving CB-CTP. Therefore, a suitable choice
that can significantly enhance the solution quality of CB-CTP is the hybridization of an
exploration-based algorithm (GA) with an appropriate exploitation-based algorithm (ILS).

5.2.2. Comparison with Existing Algorithms

GAILS is now being compared to the 20 existing state-of-the-art algorithms tested
on CB-CTP instances. These algorithms are listed in Table 18. The comparison of these
algorithms with GAILS is demonstrated in Table 19. Entries in this table signify a feasible
solution’s measured best fitness function value. Here, the entry “−” denotes an untried
instance in the experiment.

Table 18. Keys of the algorithms used for comparison.

No. Key Algorithm Reference

1 GAILS GA with ILS Proposed method
2 D1 Electromagnetic-like mechanism and great deluge algorithm [22]
3 D2 Constraint-based solver [35]
4 D3 Hybrid adaptive TS algorithm [32]
5 D4 TS algorithm with relaxed stopping condition [32]
6 D5 Combination of great deluge and TS algorithms [23]
7 D6 Dynamic TS algorithm [66]

Axioms 2023, 12, 720 34 of 38

Table 18. Cont.

No. Key Algorithm Reference

8 D7 Integer programming approach [67]
9 D8 General purpose constraint satisfaction problem solver [29]
10 D9 Memetic TS algorithm using random neighborhood [68]
11 D10 Memetic TS algorithm using general neighborhood [68]
12 D11 Repair based LS algorithm [39]
13 D12 Heuristic local search based on the principles of threshold accepting [65]
14 D13 Hybrid LS algorithm [69]
15 D14 ABC algorithm [41]
16 D15 New swarm intelligence algorithm based on the ABC algorithm [42]
17 D16 Harmony search algorithm [38]
18 D17 Two mixed-integer programming techniques with flow formulation [70]
19 D18 Adaptive large neighborhood search [71]
20 D19 Localized island model GA with dual dynamic migration policy [72]
21 D20 A competition-guided multi-neighborhood local search algorithm [45]

Table 19. Comparison results on CB-CTP instances.

Instance GAILS D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

comp01 5 5 5 5 5 5 5 13 5 5 5 9 5 5 23 5 322 5 5 5 5
comp02 24 39 43 34 56 39 75 43 50 30 27 103 108 41 190 86 732 8 33 382 39
comp03 72 76 72 70 79 73 93 76 82 70 73 101 115 66 171 101 665 38 71 82 70
comp04 35 35 35 38 38 36 45 38 35 35 39 55 67 35 132 57 577 35 35 38 36
comp05 303 315 298 298 316 309 326 314 312 300 312 370 408 301 1483 377 1297 186 292 5 303
comp06 44 50 41 47 55 43 62 41 69 42 30 112 94 43 237 87 879 16 39 0 42
comp07 7 12 14 19 26 17 38 19 42 8 10 97 56 18 259 61 930 6 12 0 13
comp08 39 37 39 43 42 40 50 43 40 37 37 72 75 39 154 60 645 37 39 0 39
comp09 100 104 103 99 104 104 119 102 110 100 100 132 153 96 190 127 685 74 100 0 100
comp10 6 10 9 16 19 12 27 14 27 7 5 74 66 15 210 51 816 4 11 0 13
comp11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 18 0 179 0 0 0 0
comp12 349 337 331 320 342 334 358 405 351 323 330 393 430 320 583 397 1398 142 310 242 332
comp13 65 61 66 65 72 67 77 68 68 59 62 97 101 64 156 90 694 59 60 0 65
comp14 52 53 53 52 57 54 59 54 59 55 53 87 88 53 165 77 702 44 52 0 53
comp15 72 73 84 69 79 88 87 − 82 70 73 119 128 66 193 92 665 38 67 0 71
comp16 31 32 34 38 46 52 47 − 40 18 18 84 81 28 215 83 827 13 29 32 31
comp17 75 72 83 80 88 88 86 − 102 65 61 152 124 71 206 110 830 44 63 81 69
comp18 79 77 83 67 75 84 71 − 68 72 79 110 116 69 122 97 510 36 65 0 74
comp19 62 60 62 59 64 71 74 − 75 58 57 111 107 60 205 82 608 56 61 75 62
comp20 25 22 27 35 32 34 54 − 61 11 4 144 88 29 263 77 950 0 21 46 28
comp21 83 95 103 105 107 98 117 − 123 86 90 169 174 89 233 74 835 57 92 0 94

Table 19 demonstrates that GAILS can deliver competitive results with current state-of-
the-art algorithms. From the obtained results, it can be observed that the appropriate com-
bination of a population-based algorithm emphasizing exploration and a local area-based
algorithm emphasizing exploitation can help to reduce the values of the fitness function
and produce good results for the CB-CTP in comparison to other existing algorithms.

6. Conclusions

An exploration-and-exploitation-based hybrid approach is proposed by combining
GA with ILS to solve the PE-CTP and CB-CTP. This hybrid approach is influential yet
straightforward and manages to produce several improved results. The algorithm uses ILS,
which utilizes various kinds of moves for neighborhood and perturbation. Furthermore, it
enables the refinement of the entire population generated by GA. The algorithm is tested
over 11 benchmark PE-CTP instances and 21 benchmark CB-CTP instances in two separate
experiments. In the first experiment, all the PE-CTP instances are run, each with different
execution times, and the least fitness function value is used as their performance measure. A
comparison with existing approaches has been carried out to demonstrate its effectiveness
over other approaches. Statistically, t-test comparisons also displayed the dominance of
GAILS. In this experiment, it is also observed that the solution quality improves a lot
for the extended time limit, establishing that by using the perturbation operator, GAILS
is capable of avoiding the local optimal. In the second experiment, the performance of
GAILS is measured by running each problem instance for twenty trials, and each trial lasts

Axioms 2023, 12, 720 35 of 38

for 600 s. Its performance is also compared with several other existing algorithms. The
computational results show that the proposed algorithm can produce competitive results
when compared with existing state-of-the-art algorithms.

Among the timetabling (scheduling) problems, the UCTP is one of the most complex
problems, with many decision variables and various soft and hard constraints. Problems
with formally simpler problem statements such as the industrial capacity planning [73,74]
are sometimes large-scale, and the standard approach of reducing the problem to an integer
linear programming problem leads to a huge increase in the number of variables, so in
practice, it is necessary to apply various combinations of heuristic algorithms, including
evolutionary algorithms, greedy search algorithms, and local search.

Our proposed algorithm gives encouraging results on several instances of rather
complex problems of two types. Therefore, further research can be aimed at applying this
approach to other scheduling problems; for example, to the problem of capacity utilization
planning. The limits of applicability of the proposed approach can be explored and, possibly,
extended to other complex optimization problems with Boolean variables for which local
search methods are known to be effective.

Author Contributions: Conceptualization, R.P.B., J.S., S.S., M.M., D.K.G., S.V., P.S.S., L.A.K. and
D.K.; methodology, R.P.B., J.S., S.S., S.V. and P.S.S.; software, R.P.B., J.S., M.M. and S.V.; validation,
R.P.B., J.S., S.S., M.M., D.K.G., S.V., P.S.S., L.A.K. and D.K.; data curation, R.P.B., J.S., S.S., M.M. and
S.V.; writing—original draft preparation, R.P.B., J.S., S.S., M.M., D.K.G., S.V., P.S.S., L.A.K. and D.K.;
writing—review and editing, P.S.S., L.A.K., D.K.G.; supervision, R.P.B., J.S., D.K.G. and P.S.S.; project
administration, R.P.B., J.S., S.S., M.M., D.K.G., S.V., P.S.S., L.A.K. and D.K.; funding acquisition, P.S.S.,
D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Ministry of Science and Higher Education of the Russian
Federation (Grant No. 075-15-2022-1121).

Data Availability Statement: Data and code will be provided on request to authors.

Acknowledgments: Predrag Stanimirović acknowledges support from the Ministry of Education,
Science and Technological Development, Republic of Serbia, grant No. 451-03-47/2023-01/200124
and from the Science Fund of the Republic of Serbia, (No. 7750185, Quantitative Automata Models:
Fundamental Problems and Applications-QUAM).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wren, A. Scheduling, timetabling and rostering—A special relationship? In Practice and theory of automated timetabling; Springer:

Cham, Switzerland, 1996; pp. 46–75.
2. Di Gaspero, L.; McCollum, B.; Schaerf, A. The Second International Timetabling Competition (ITC-2007): Curriculum-Based Course

Timetabling (Track 3); Technical Report, QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0; Queen’s University: Belfast, UK, 2007.
3. Gotlieb, C. The construction of class-teacher timetables. In Proceedings of the International Federation of Information Processing

Congress, Munich, Germany, 27 August–1 September 1962; Volume 62, pp. 73–77.
4. Carter, M.W.; Laporte, G. Recent developments in practical course timetabling. In Practice and Theory of Automated Timetabling II;

Springer: Cham, Switzerland, 1998; pp. 3–19.
5. Chiarandini, M.; Birattari, M.; Socha, K.; Rossi-Doria, O. An effective hybrid algorithm for university course timetabling. J. Sched.

2006, 9, 403–432. [CrossRef]
6. Jat, S.N.; Yang, S. A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling. J. Sched. 2011,

14, 617–637. [CrossRef]
7. Socha, K.; Knowles, J.; Sampels, M. A max-min ant system for the university course timetabling problem. In Ant Algorithms;

Springer: Cham, Switzerland, 2002; pp. 1–13.
8. Rossi-Doria, O.; Sampels, M.; Birattari, M.; Chiarandini, M.; Dorigo, M.; Gambardella, L.M.; Knowles, J.; Manfrin, M.; Mastrolilli,

M.; Paechter, B.; et al. A comparison of the performance of different metaheuristics on the timetabling problem. In Practice and
Theory of Automated Timetabling IV; Springer: Cham, Switzerland, 2003; pp. 329–351.

9. Burke, E.K.; Kendall, G.; Soubeiga, E. A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 2003, 9, 451–470.
[CrossRef]

10. Burke, E.K.; McCollum, B.; Meisels, A.; Petrovic, S.; Qu, R. A graph-based hyper-heuristic for educational timetabling problems.
Eur. J. Oper. Res. 2007, 176, 177–192. [CrossRef]

http://doi.org/10.1007/s10951-006-8495-8
http://dx.doi.org/10.1007/s10951-010-0202-0
http://dx.doi.org/10.1023/B:HEUR.0000012446.94732.b6
http://dx.doi.org/10.1016/j.ejor.2005.08.012

Axioms 2023, 12, 720 36 of 38

11. Abuhamdah, A.; Ayob, M. Adaptive randomized descent algorithm for solving course timetabling problems. Int. J. Phys. Sci.
2010, 5, 2516–2522.

12. Al-Betar, M.A.; Khader, A.T. A harmony search algorithm for university course timetabling. Ann. Oper. Res. 2012, 194, 3–31.
[CrossRef]

13. Cambazard, H.; Hebrard, E.; O’Sullivan, B.; Papadopoulos, A. Local search and constraint programming for the post enrolment-
based course timetabling problem. Ann. Oper. Res. 2012, 194, 111–135. [CrossRef]

14. Abuhamdah, A.; Ayob, M.; Kendall, G.; Sabar, N.R. Population based Local Search for university course timetabling problems.
Appl. Intell. 2014, 40, 44–53. [CrossRef]

15. Méndez-Díaz, I.; Zabala, P.; Miranda-Bront, J.J. An ILP based heuristic for a generalization of the post-enrollment course
timetabling problem. Comput. Oper. Res. 2016, 76, 195–207. [CrossRef]

16. Goh, S.L.; Kendall, G.; Sabar, N.R. Simulated annealing with improved reheating and learning for the post enrolment course
timetabling problem. J. Oper. Res. Soc. 2019, 70, 873–888. [CrossRef]

17. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. Acm Comput. Surv.
(CSUR) 2003, 35, 268–308. [CrossRef]

18. Abdullah, S.; Turabieh, H. Generating university course timetable using genetic algorithms and local search. In Proceedings of
the Third International Conference on Convergence and Hybrid Information Technology (ICCIT’08), Busan, Republic of Korea,
11–13 November 2008; Volume 1, pp. 254–260.

19. Abdullah, S.; Burke, E.K.; McCollum, B. A hybrid evolutionary approach to the university course timetabling problem. In
Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1764–1768.

20. Jat, S.N.; Yang, S. A guided search genetic algorithm for the university course timetabling problem. In Proceedings of the
Multidisciplinary International Conference on Scheduling: Theory and Applications IV, Dublin, Ireland, 10–12 August 2009;
pp. 180–191.

21. Yang, S.; Jat, S.N. Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Trans. Syst.
Man Cybern. Part Appl. Rev. 2011, 41, 93–106. [CrossRef]

22. Abdullah, S.; Turabieh, H.; McCollum, B.; McMullan, P. A hybrid metaheuristic approach to the university course timetabling
problem. J. Heuristics 2012, 18, 1–23. [CrossRef]

23. Shaker, K.; Abdullah, S.; Alqudsi, A.; Jalab, H. Hybridizing Meta-heuristics Approaches for Solving University Course Timetabling
Problems. In Rough Sets and Knowledge Technology; Springer: Cham, Switzerland, 2013; pp. 374–384.

24. Badoni, R.P.; Gupta, D.; Mishra, P. A new hybrid algorithm for university course timetabling problem using events based on
groupings of students. Comput. Ind. Eng. 2014, 78, 12–25. [CrossRef]

25. Fong, C.W.; Asmuni, H.; McCollum, B. A hybrid swarm-based approach to university timetabling. IEEE Trans. Evol. Comput.
2015, 19, 870–884. [CrossRef]

26. Unprasertporn, T.; Lohpetch, D. An Outperforming Hybrid Discrete Particle Swarm Optimization for Solving the Timetabling
Problem. In Proceedings of the 12th International Conference on Knowledge and Smart Technology (KST’20), Pattaya, Thailand,
29 January–1 February 2020; pp. 18–23.

27. Rezaeipanah, A.; Matoori, S.S.; Ahmadi, G. A hybrid algorithm for the university course timetabling problem using the improved
parallel genetic algorithm and local search. Appl. Intell. 2021, 51, 467–492. [CrossRef]

28. Chen, M.C.; Goh, S.L.; Sabar, N.R.; Kendall, G. A survey of university course timetabling problem: Perspectives, trends and
opportunities. IEEE Access 2021, 9, 106515–106529. [CrossRef]

29. Atsuta, M.; Nonobe, K.; Ibaraki, T. ITC2007 Track2: An Approach Using General CSP solver. In Proceedings of the Practice and
Theory of Automated Timetabling (PATAT 2008), Montreal, QC, Canada, 19–22 August 2008.

30. Bellio, R.; Ceschia, S.; Di Gaspero, L.; Schaerf, A.; Urli, T. Feature-based tuning of simulated annealing applied to the curriculum-
based course timetabling problem. Comput. Oper. Res. 2016, 65, 83–92. [CrossRef]

31. Lach, G.; Lübbecke, M.E. Curriculum based course timetabling: New solutions to Udine benchmark instances. Ann. Oper. Res.
2012, 194, 255–272. [CrossRef]

32. Lü, Z.; Hao, J.K. Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 2010, 200, 235–244. [CrossRef]
33. Pillay, N.; Özcan, E. Automated generation of constructive ordering heuristics for educational timetabling. Ann. Oper. Res. 2019,

275, 181–208. [CrossRef]
34. Badoni, R.P.; Gupta, D.; Lenka, A.K. A new approach for university timetabling problems. Int. J. Math. Oper. Res. 2014, 6, 236–257.

[CrossRef]
35. Müller, T. ITC2007 solver description: A hybrid approach. Ann. Oper. Res. 2009, 172, 429–446. [CrossRef]
36. Azlan, A.; Hussin, N.M. Implementing graph coloring heuristic in construction phase of curriculum-based course timetabling

problem. In Proceedings of the 2013 IEEE Symposium on Computers & Informatics (ISCI), Langkawi, Malaysia, 7–9 April 2013;
pp. 25–29.

37. Rangel-Valdez, N.; Torres-Jimenez, J.; Jasso-Luna, J.O.; Rodriguez-Chavez, M.H. SAT Model for the Curriculum-Based Course
Timetabling Problem. Adv. Soft Comput. Tech. 2013, 68, 45–55. [CrossRef]

38. Wahid, J.; Hussin, N.M. Harmony Search Algorithm for Curriculum-Based Course Timetabling Problem. Int. J. Soft Comput.
Softw. Eng. 2013, 3, 365–371.

http://dx.doi.org/10.1007/s10479-010-0769-z
http://dx.doi.org/10.1007/s10479-010-0737-7
http://dx.doi.org/10.1007/s10489-013-0444-6
http://dx.doi.org/10.1016/j.cor.2016.06.018
http://dx.doi.org/10.1080/01605682.2018.1468862
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1109/TSMCC.2010.2049200
http://dx.doi.org/10.1007/s10732-010-9154-y
http://dx.doi.org/10.1016/j.cie.2014.09.020
http://dx.doi.org/10.1109/TEVC.2015.2411741
http://dx.doi.org/10.1007/s10489-020-01833-x
http://dx.doi.org/10.1109/ACCESS.2021.3100613
http://dx.doi.org/10.1016/j.cor.2015.07.002
http://dx.doi.org/10.1007/s10479-010-0700-7
http://dx.doi.org/10.1016/j.ejor.2008.12.007
http://dx.doi.org/10.1007/s10479-017-2625-x
http://dx.doi.org/10.1504/IJMOR.2014.059537
http://dx.doi.org/10.1007/s10479-009-0644-y
http://dx.doi.org/10.13053/rcs-68-1-4

Axioms 2023, 12, 720 37 of 38

39. Clark, M.; Henz, M.; Love, B. Quikfix a Repair-Based Timetable Solver. In Proceedings of the 7th International Conference
on the Practice and Theory of Automated Timetabling, PATAT, Montréal, QC, Canada, 18–22 August 2008. Available online:
http://www.comp.nus.edu.sg/~henz/publications/ps/PATAT2008.pdf (accessed on 1 July 2023).

40. Petrovic, S.; Burke, E.K. University timetabling. In Handbook of Scheduling: Algorithms, Models, and Performance Analysis;
Leung, J., Ed.; CRC Press: Boca Raton, FL, USA, 2004; Chapter 45; pp. 1–23.

41. Junaedi, D.; Maulidevi, N.U. Solving Curriculum-Based Course Timetabling Problem with Artificial Bee Colony Algorithm.
In Proceedings of the First International Conference on Informatics and Computational Intelligence (ICI), Bandung, Indonesia,
12–14 December 2011; pp. 112–117.

42. Agahian, S.; Pehlivan, H.; Dehkharghani, R. Adaptation and Use of Artificial Bee Colony Algorithm to Solve Curriculum-based
Course Time-Tabling Problem. In Proceedings of the Fifth International Conference on Intelligent Systems, Modelling and
Simulation (ISMS), Langkawi, Malaysia, 27–29 January 2014; pp. 77–82.

43. Akkan, C.; Gülcü, A. A bi-criteria hybrid Genetic Algorithm with robustness objective for the course timetabling problem.
Comput. Oper. Res. 2018, 90, 22–32. [CrossRef]

44. Banbara, M.; Inoue, K.; Kaufmann, B.; Okimoto, T.; Schaub, T.; Soh, T.; Tamura, N.; Wanko, P. teaspoon: Solving the curriculum-
based course timetabling problems with answer set programming. Ann. Oper. Res. 2019, 275, 3–37. [CrossRef]

45. Song, T.; Chen, M.; Xu, Y.; Wang, D.; Song, X.; Tang, X. Competition-guided multi-neighborhood local search algorithm for the
university course timetabling problem. Appl. Soft Comput. 2021, 110, 107624. [CrossRef]

46. Abdipoor, S.; Yaakob, R.; Goh, S.L.; Abdullah, S. Meta-heuristic approaches for the University Course Timetabling Problem. Intell.
Syst. Appl. 2023, 19, 200253. [CrossRef]

47. Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Courier Dover Publications: Mineola, NY,
USA, 1998.

48. Golberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addion Wesley: Boston, MA, USA, 1989;
Volume 1989.

49. Hageman, J.; Wehrens, R.; Van Sprang, H.; Buydens, L. Hybrid genetic algorithm–Tabu search approach for optimising multilayer
optical coatings. Anal. Chim. Acta 2003, 490, 211–222. [CrossRef]

50. Fatourechi, M.; Bashashati, A.; Ward, R.K.; Birch, G.E. A hybrid genetic algorithm approach for improving the performance of
the LF-ASD brain computer interface. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, Philadelphia, PA, USA, 23 March 2005; Volume 5, pp. 345–348.

51. Sastry, K.; Goldberg, D.; Kendall, G. Genetic algorithms. In Search Methodologies; Springer: Cham, Switzerland, 2005; pp. 97–125.
52. Datta, D.; Deb, K.; Fonseca, C.M. Multi-objective evolutionary algorithm for university class timetabling problem. In Evolutionary

Scheduling; Springer: Cham, Switzerland, 2007; pp. 197–236.
53. Lourenço, H.R.; Martin, O.C.; Stützle, T. Iterated Local Search. Sci. Kluwer 2002, 57, 321–353.
54. Turabieh, H.; Abdullah, S. Incorporating tabu search into memetic approach for enrolment-based course timetabling problems.

In Proceedings of the Second Conference on Data Mining and Optimization (DMO’09), Kajand, Malaysia, 27–28 October 2009;
pp. 115–119.

55. Abdullah, S.; Burke, E.K.; McCollum, B. Using a randomised iterative improvement algorithm with composite neighbourhood
structures for the university course timetabling problem. In Metaheuristics; Springer: Cham, Switzerland, 2007; pp. 153–169.

56. Mcmullan, P. An extended implementation of the great deluge algorithm for course timetabling. In Proceedings of the
International Conference on Computational Science (ICCS’07), Beijing, China, 27–30 May 2007; Springer: Cham, Switzerland,
2007; pp. 538–545.

57. Landa-Silva, D.; Obit, J.H. Great deluge with non-linear decay rate for solving course timetabling problems. In Proceedings of
the Fourth International Conference on Intelligent Systems (IS’08), Varna, Bulgaria, 6–8 September 2008; Volume 1, pp. 8–11.

58. Obit, J.; Landa-Silva, D.; Ouelhadj, D.; Sevaux, M. Non-linear great deluge with learning mechanism for solving the course
timetabling problem. In Proceedings of the Eighth Metaheuristics International Conference (MIC’09), Hamburg, Germany, 13–16
July 2009.

59. Turabieh, H.; Abdullah, S.; McCollum, B.; McMullan, P. Fish swarm intelligent algorithm for the course timetabling problem. In
Rough Set and Knowledge Technology; Springer: Cham, Switzerland, 2010; pp. 588–595.

60. Abuhamdah, A.; Ayob, M. MPCA-ARDA for solving course timetabling problems. In Proceedings of the Third Conference on
Data Mining and Optimization (DMO’11), Putrajaya, Malaysia, 28–29 June 2011; pp. 171–177.

61. Bolaji, A.L.; Khader, A.T.; Al-Betar, M.A.; Awadallah, M.A. University course timetabling using hybridized artificial bee colony
with hill climbing optimizer. J. Comput. Sci. 2014, 5, 809–818. [CrossRef]

62. Fong, C.W.; Asmuni, H.; McCollum, B.; McMullan, P.; Omatu, S. A new hybrid imperialist swarm-based optimization algorithm
for university timetabling problems. Inf. Sci. 2014, 283, 1–21. [CrossRef]

63. Al-Betar, M.A.; Khader, A.T.; Zaman, M. University course timetabling using a hybrid harmony search metaheuristic algorithm.
IEEE Trans. Syst. Man Cybern. Part Appl. Rev. 2012, 42, 664–681. [CrossRef]

64. Lohpetch, D.; Jaengchuea, S. A hybrid multi-objective genetic algorithm with a new local search approach for solving the post
enrolment based course timetabling problem. In Recent Advances in Information and Communication Technology 2016; Springer:
Cham, Switzerland, 2016; pp. 195–206.

http://www.comp.nus.edu.sg/~henz/publications/ps/PATAT2008.pdf
http://dx.doi.org/10.1016/j.cor.2017.09.007
http://dx.doi.org/10.1007/s10479-018-2757-7
http://dx.doi.org/10.1016/j.asoc.2021.107624
http://dx.doi.org/10.1016/j.iswa.2023.200253
http://dx.doi.org/10.1016/S0003-2670(03)00753-0
http://dx.doi.org/10.1016/j.jocs.2014.04.002
http://dx.doi.org/10.1016/j.ins.2014.05.039
http://dx.doi.org/10.1109/TSMCC.2011.2174356

Axioms 2023, 12, 720 38 of 38

65. Geiger, M.J. Applying the threshold accepting metaheuristic to curriculum based course timetabling. Ann. Oper. Res. 2012,
194, 189–202. [CrossRef]

66. De Cesco, F.; Di Gaspero, L.; Schaerf, A. Benchmarking Curriculum-Based Course Timetabling: Formulations, Data Formats,
Instances, Validation, and Results. In Proceedings of the 7th international Conference on the Practice and Theory of Automated
Timetabling, PATAT, Montréal, QC, Canada, 18–22 August 2008.

67. Lach, G.; Lübbecke, M. Curriculum based course timetabling: Optimal solutions to the udine benchmark instances. In Proceedings
of the Seventh International Conference on the Practice and Theory of Automated Timetabling, Montréal, QC, Canada, 18–22
August 2008.

68. Abdullah, S.; Turabieh, H. On the use of multi neighbourhood structures within a Tabu-based memetic approach to university
timetabling problems. Inf. Sci. 2012, 191, 146–168. [CrossRef]

69. Bellio, R.; Di Gaspero, L.; Schaerf, A. Design and statistical analysis of a hybrid local search algorithm for course timetabling.
J. Sched. 2012, 15, 49–61. [CrossRef]

70. Bagger, N.C.F.; Kristiansen, S.; Sørensen, M.; Stidsen, T.R. Flow formulations for curriculum-based course timetabling. Ann. Oper.
Res. 2019, 280, 121–150. [CrossRef]

71. Kiefer, A.; Hartl, R.F.; Schnell, A. Adaptive large neighborhood search for the curriculum-based course timetabling problem. Ann.
Oper. Res. 2017, 252, 255–282. [CrossRef]

72. Gozali, A.A.; Kurniawan, B.; Weng, W.; Fujimura, S. Solving university course timetabling problem using localized island model
genetic algorithm with dual dynamic migration policy. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 389–400. [CrossRef]

73. Kazakovtsev, L.A.; Gudyma, M.N.; Antamoshkin, A.N. Genetic Algorithm with Greedy Heuristic for Capacity Planning.
In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems and Workshops,
St. Petersburg, Russia, 6–8 October 2014; pp. 607–613.

74. Kazakovtsev, L.; Kovlovskaya, E.; Rozhnov, I.; Patsuk, O. A genetic algorithm with greedy crossover and elitism for capacity
planning. Facta Univ. Ser. Math. Inform. 2023, 37, 993–1006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10479-010-0703-4
http://dx.doi.org/10.1016/j.ins.2011.12.018
http://dx.doi.org/10.1007/s10951-011-0224-2
http://dx.doi.org/10.1007/s10479-018-3096-4
http://dx.doi.org/10.1007/s10479-016-2151-2
http://dx.doi.org/10.1002/tee.23067

	Introduction
	Related Work
	Related Work on PE-CTP
	Related Work on CB-CTP

	Problem Formulation
	Post-Enrollment Based Course Timetabling Problem
	Curriculum-Based Course Timetabling Problem

	Proposed Hybrid Metaheuristic Approach
	Iterated Local Search Algorithm
	Local Search Algorithm

	Computational Results
	Experiments on Socha's Benchmark Dataset
	Comparative Experiments
	Comparison with Existing Algorithms

	Experiments on ITC2007's Benchmark Dataset of CB-CTP
	Comparative Experiments
	Comparison with Existing Algorithms

	Conclusions
	References

