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1. Introduction

Integral equations have received considerable attention due to their wide range of
applications in many branches of engineering, economics, and mathematics. The solution of
integral equations has been studied by different researchers, and one of the most significant
tools for solving them is the theory of fixed points. Over the last few decades, this area
has drawn the attention of many researchers due to its substantial applications in many
disciplines, notably nonlinear analysis, engineering problems, and topology.

The development in the research areas mentioned above began in 1922 with the
first fixed point theorem known as Banach’s contraction principle [1]. In 1989, Bakhtin
introduced the concept of b-metric spaces, which is a generalization of metric spaces and
was a new concept at that time [2]. Since then, many significant results in b-metric spaces,
such as those in [3-6], have been proven. Similarly, many common fixed point results for
mappings satisfying rational-type inequalities, which are not worthwhile in cone metric
spaces, have also been proven [7-10]. Furthermore, Azam et al. [11] introduced the concept
of metric spaces in the complex version in 2011 and Rao and their coauthors introduced
the concept of b-metric spaces in the complex plane in 2013 [12]. Different fixed point
results for mappings satisfying conditions of different types of contractions in complex and
complex b-metric spaces have been justified and studied [13-18]. Although the concept
of a complex-valued b-metric space is more general than that of a complex-valued metric
space, both have been extensively studied in the literature.

Fixed point theory is one of the prominent ways to solve integral equations. Com-
mon fixed point results in complex-valued b-metric spaces are applied to find the unique
common solution of systems of integral equations. Many researchers, notably Sintu-
navarat et al. [19] and Rashwan and Salch [20], have used fixed point methods to put
forward solutions for integral equations of Urysohn. Similarly, Pathak et al. [21] and Rash-
wan and Salch [20] have studied system of Volterra-Hammerstein and nonlinear integral
equations using fixed point methods.
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Bahadur and Sarwar in [22] also used fixed point results with the help of the (CLR)
property and common (E.A) in a complex-valued metric space to solve nonlinear integral
equations and investigate the unique common solution. Similarly, Khaled and Abdelkrim
in [16] investigated the existence of a unique solution for Urysohn’s integral equations
using fixed point results for four mappings in a b-metric space in the complex plane.

This manuscript presents results for the existence and uniqueness of a common fixed
point for six self-maps holding a rational-type inequality in complex-valued b-metric spaces,
subject to compatibility and continuity conditions. In addition, the existence of a unique
common solution is provided for the following systems of Urysohn integral equations and
Volterra-Hammerstein integral equations in the complex plane.

u(z) = ¢(z) +J Ki(z,t,pu(t))dt

where z € (g,h) € R; i, i € C((g,h), R"), K; : (g,h) x (g,h) x RT — R",i=1,2,...,6 and

wz) = pi(z) +v Lx w(z, a)g;(, p(w))dec + UL 1(z, a)h;(a, p(a)) doc

forall x € (0, %0), where 1y, v are real numbers, ¢; € C is known and w(z, &), 7(z, a), g; («, p1())
and h; (oc, y(ac)), i =1,2,...,6 are real-valued measurable functions in both z and « on
(0, 00).

2. Preliminaries

In this sequel, we need the following definitions and notations.

Definition 1 ([16]). For a set of complex numbers C, a partial order < on C is given below: {1 < (>
<= Real({1) < Real({p) and Img({1) < Img(ls).
Therefore, we can say that {1 < {7 if one of the following is necessities fulfilled:

(1) Real(g1) = Real({2) ,Img(C1) < Img(2);
(2) Real({1) < Real(Z2) ,Img(g1) = Img({2);
(3) Real({1) < Real(L2) ,Img(gq) < Img({2);
(4) Real(Z1) = Real((2) ,Img(g1) = Img({).

We can say that {1 5 (o if {1 # {2 and one of the above conditions is satisfied and similarly
{1 < (o if amd only if condition (3) is fulfilled.

Definition 2 ([16]). Let v # ¢ andlet d : v x v — C be a complex valued metric space on C, if it
fulfils the following necessities;

(1)0<d(N, 1) forall X\, e Cand d(X, i) = 0 if and only if X = F;

(2)d(R, 1) =d(h,RX) forallN,ie C;

(3)d(N, 1) <d(X,c)+d(c,h) forall X, h,c e C.

Then, d is known as complex valued metric on y and (vy,d) is known as a complex valued
metric space.

Example 1 ([23]). Let Z = C be a set of complex numbers defined d; Z x Z — C by d(x1,x3) =|
a1 —ap | +1 | by — by | where k1 = ay + 1by and xy = ap + 1by. Then, (C,d) would be a complex
valued metric space.

Example 2 ([16]). Let Z = C define mapping d : Z x Z — C by d(k1, 1) = e | k1 — ko | where
x € (0,7t/2). Then, (Z,d) is said to be a complex valued metric space.

Definition 3 ([16]). For a provided real number b > 1 and a nonempty set 7, a function dy,: 7 x
Z — C is termed as complex valued b-metric on Z. If for all 11, £, € 7 the following necessities are

fulfilled.
(1) dy(h,p) =0ifandonly ifh = p,Vh,pe Z;
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(2) dy(h, ) =0 forallh, p e Z;
(3)dy(h, o) =dy(p,h) forall h, p € Z;
(4) dy(h, o) < bldy(h,€) +dy(¢, p)] forall b, p, £ € Z.

Example 3 ([16]). Let Z = [0,1] defined, : Z x Z — Cby dy(v1,v2) = | v1 —vp [* +1 | vy — 15 |?
forallvi,vp,v3 € Z.
Then, (Z,dy) is a complex valued b-metric space with b = 2.

Definition 4 ([16]). Suppose (Z,d}) is a complex valued b-metric space; then, a sequence s, is a
Cauchy sequence if for every 0 < e € Z, there exists a positive number 6 such that n, u = 6 implies
dy(sy —su) <&

Definition 5 ([16]). A sequence (sy) in a complex valued b-metric space (Z,dy) will converge to
w € Z if for a given & > 0, there exists a positive integer 6 depending on e such that dy(sy, a) < &
whenever 11 = 4.

Definition 6 ([16]). If every cauchy sequence in Z converges, then the space (Z, dy,) will be declared
as a complete complex valued b-metric space.

Example 4 ([24]). Let Z = C. Define a function d, : Z x Z — C such that dy(x1,%x2) =
lc1 — ¢af? +ilo1 — 02|% where xky = g1 +i01 and ky = ¢p + i02.
Then, (Z,dy) is a complete complex valued b-metric space with b = 2.

Definition 7 ([16]). Two self mappings H and T of a complex valued b-metric space (Z,d) would
be declared compatible if these mandatory requirements are fulfilled.

lim, o0 d(HTsy, THsy) = 0;

Whenever for a sequence s in Z;

limy, o Ts; = limy o Hsy = k for some k € Z.

Definition 8 ([25]). A positive term series Y., such that limq_,oo(sq)% =K,
(a) For K < 1; the series converges;
(b) For K > 1; the series diverges;
(c) The test fails and does not provide any proper information if K = 1.

Theorem 1 ([26]). (1) If A(z) is a complex function and it is analytic on a simple closed curve,
then §- A(z)dz = 0.

(2) If A(z) is an analytic function in a closed curve C and if ‘k’ is any point contained in C,
then A(k) = ﬁ c %dz.

2
Example 5. SC k‘{—zdk , where C is a curve.

Let A(k) = ek Thus, C is a simple closed curve and k = 2 is inside C. Thus, the solution is
2mA(2) = 271t

Lemma 1 ([27]). Let (s;) be a sequence of real numbers and let (s;) — K. If U is a continuous
function at K and it is defined for all s, then U(s;) — O(K).

3. Main Results

In this section, we present the proof of a common fixed point theorem for six mappings
in a complex-valued b-metric space. Additionally, we provide examples and applications
based on the theorem. The first new result is presented below:

Theorem 2. Let (Z,d) be a complex valued b-metric space and A,W,C,T,N,Q: Z — Z be six self
mappings fulfilling the following necessities;
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(CM1) A(Z) = T(Z), A(
(CM2) d(As, Wi) S &R
where

Z) = N(Z), W(Z) < C(Z) and W(Z) = Q(Z).
(s,m),ifb=1andpe (0,1) foralls,m e Z.

R(s,m) = max {d(Ns, Tm),d(As,Cm),d(Am, Nm),d(Wm, Qm), W}.

(CM3) The pairs (N,A), (C,A), (TA), (A,Q) and (W,A) are compatible.
(CM4) N, C, T, Q and W are continuous.
Then, A, W, C, N, T and Q have a unique common fixed point.

Proof. Let sy € Z be an arbitrary point in Z, then from condition (CM1) there exist s1, sy, 53
and s4 such that

my = TS] = ASO, my = N52 = ASl,
my = CS3 = W52 , ms = QS4 = WS3.

We can construct sequences my and Sy in Z. Therefore,

Moy = TSZrerl = ASZW’

Moy+1 = QSoy+2 = Wspy 11, )
Moy+2 = Csoyt3 = Wspy 12,

Mop+3 = Nspy 4 = Asoy3.

Moy = Tsoy41 = Asgy,
Myyt1 = Qsay+2 = Bsyy41,
Moy +2 = Csoy43 = Bsyy42,
Moy 43 = PSyyya = Asyya.
Using (1) in (CM2), we get
d(may, Moy 1) = d(Aszy, Wsayi1) < %R(sz,],sz,7+1)

where

R(s2y,82741) =
max {d(NWQ,I, Tm2,7+1), d(ASzU, CSz,7+1), d(ASz,?_H, NSZ;]—H)/ d(WSz,7+1, Q52,7+1),

d(ASz,], TSQ,;)d(WSz,ﬁ_l, NSZW-H) }
14 d(Csay, Qs2y41) '

Therefore,

R(s2y, 827 41) =

max {d(m_l, Moy ), d(maoy, Moy ), d(May 41, may), d(may 41, may),

d(maoy, Moy41)d(Moy11, May11) }
1 +d(mZ;y—lrmZW) ‘

Thus,
R(Sz,], SZr]+l) = max[d(mzn_l, mzﬂ), d(m2,7+1, mz,])].
Let max = d(my; 11, m2y;). Then,

R(s2y,825+1) = d(may11, may).
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So,
d(may 1, moy) < Frd(may 41, may).
Thus,
d(may 1, m2y) — £rd(may 1, may) < 0.
Therefore,
(1= &) (d(may41,mzy)) < 0.
(1-£) %0

p and b are positive and also d(my, 1, m2y,) > 0.
Hence, there arises a contradiction.
Thus, d(myy 1, m2y) is not a maximum.
Thus, we deduce that max = d(mp; 1, may).
So,

d(moy 41, M2y) < %d(eryflszW)-

Similarly, we get

d(my 2, Moy 1) S frd(may, mayi1).
It follows that
d(myy 1, may) < fd(may—1,may) . .. 5 (f)1d(mo, my).
Which implies that:
| d(myi1,my) |< & | d(myy—1,may) | ... < (H)7 | d(mo,my |.
Forv <y,

[y, my) |< ()" | d(mo,my) | +02 (L)1 | dmo,ma) | +83(F5)1+ | d(mo,m) |

4.+ b”f’ﬁl(b%)"*1 | d(mo, my) |.

Z bl 5) 1 d(mo, my) |

Therefore,
[ dlmy,my) 1< ST DG | d(mg,my) |= SN0 | d(mg,my) |

(b b2
w (p ()
< Zl:q(?)] | d(morml) ‘: (1_%) (mO/ml) |

This is a geometric sequence.
Hence, by the Cauchy root test,

let

Then,

—
—_

(S asY

~
<[
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Which implies

()
a-§

S

1 .
hmr]%(xj (5;7) T = 11m;7*>00

=3I

Since, % < 1,and because b > 1and p € (0,1) .

Thus, the series s;; converges and from a real analysis we know that the necessary
condition for the convergence of the series is that when 7 — oo then s, — 0.

Therefore,

()"
b ) | d(mg, mq) |—> 0asny — oo

| d(mq,m,,) |= a-n

Thus, my, is a cauchy sequence in Z which proves that Z is complete, so there exists
u € Z such that m; — pasn — oo.
So, we have

T52W+1 e ]/l, ASZ” — ,’l/l ,
Nsyy1 — M, Wsay — 1,
Csopt1 — 1y Qsop+1 — 1 -

for sub-sequences.

Now, from (CM4), the mapping N is continuous.
So, by Lemma 1
NNsp; — Npand NAsy;, — Npasy — .

In addition, (N,A) is compatible; thus, it implies that AN oy — Np.

Indeed,
d(ANsyy, Npu) < b[d(ANsy,, NAsy,) + d(NAsy,, Nu)].

So,
| d(ANsy;, Nu) |< b | d(ANsyy, NAsy,) | +b | d(NAsy,, Nu) |- 0as 17 — oo.
Now, we prove that
(1) Np = p
On contrary let
Ny # u.
d(Nu, ) < bd(Np, ANsy,) + b2d(Ast,7, Wsp41) + bzd(WSy]H/y).
By using (CM2) with s = Nsp, and m = sy, 41, we get:
d(ANsyy, Wspy11) S 3 R(Nszy, 5241)
where
R(N527715277+1) =

max {d(NNSz,Y, T5217+1)/ d(ANSz,?, CSZ77+1), d(ASz,ﬁ_l, NsZU—i—l)/ d(W5217+1/ Q5271+1)r

d(ANsay, TNs2y)d(Wszy 11, Nsoy11)
1+ d(CNsyy, Qs2y+1) '

Let 7 — oo, then we get:

d(ANsy,, TNso, )d(i,
R(Ns2y,52+1) = max {d(Ny,y),d(Ny,y),d(y,y),d(%y), (1+d(sé}71\1527:35)2;7?1§4) }



Axioms 2023, 12, 685 7 of 20

R(Nspy, $2y41) = d(Np, ).
Further,

|[d(Np,p) |[< & |d(Np,p) | = (1—f) | dNp,p) [<0,
which is a contradiction.

So | d(Nu, i) |= 0, which is possible only if Ny = p.
Next,
2) Ap = p.

On contrary, let Ay # p

d(Ap, p) < bd(Ap, Wsay) + bd(Wsz;7+1/ H).
By using (CM2) with s = p and m = s, 11, we get:

d(Ap, Wsay11) < £ R(1 52741

where
R(,ur SZV]-‘rl) =

max {d(Ny, Tsoy+1), d(Ap, Csoy41), d(Asoy 1, Nsoy11), d(Wsoy 41, Qs2y41),

d(Ap, TNszy)d(Wsoy41, Nsoy11)
1+d(Cp, Qs2y+1) ‘

Let 7 — oo, then we get:

d(ANsy,, TN d(u,
R(p, $2y+1) = max {d(%ﬂ),d(A%ﬂ),d(%w,d(u,ﬂ), ( ‘?Ld(cifl)) . m}.

R(p,s2p41) = d(Ap, ).
Further,
ld(Ap,p) < E1d(Auu) | = (1—§) [d(Ap ) <0,

which is a contradiction.
So, | d(Ap, i) |= 0, which is possible only if Ay = .
Further, we show
(3) Cpu = p.
On the contrary, let Cu # u.
From (CM4), C is continuous.
Then, by Lemma 1
CAsyy — Cp and  CCspy — Cpasn — oo,
In addition, the pair (C,A) is compatible, which implies that:
ACsy — Cp.

Indeed,
d(ACsyy, Cp) < b[d(ACsyy, CAsyy) +d(CAsyy, Cu)l.
So,
| d(ACsoy, Cp) |[< b | d(ACsy, CAsgy) | +b | d(CAspy, Cp) | 0,as 17 — o0.
d(Cp, p) < bd(Cu, ACspy) + bzd(ACszﬂ, Wspy41) + bZd(W52,7+1, W).

By using (CM2) with s = Csy; and m = sp;11,
we get:

d(ACsay, Wsay11) S £ R(Csap,52941)
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where

R(Cs2y,52p41) =
max {d(NCSzU, T52,7+1), d(ACSz,], C52,7+1), d(AS2;7+1, N52,7+1), d(WSz,7+1, Q5277+1),

d(ACspy, TCspy)d(Wspy+1, NSoy41) }
1+ d(CCsay, Qsay+1) '

Let 7 — o0, then we get:

d(Cu, TN d(u,
R(Cszy, 52y41) = max {d(Ny,y),d(Cy,y),d(y,y),d(y,y), W}

R(Cszy, 52y+1) = d(Cpi, ).
Further,

| d(Cu,p) |< & 1d(Cup) | = (A—=F)[d(Cpp) <0,
which is a contradiction.

So, | d(Cp, ) |= 0, which is possible only if Cy = u.
Next, we prove,

@) Tp = p.
On the contrary, let Ty # u,
again from (CM4), C is continuous, then by Lemma 1

TAsy, —» Tu and TTsy; — Tpasy — .
Furthermore, the pair (T,A) is compatible, which implies that ~ ATsp;, — Tp.
Indeed,

d(ATsyy, Ty) < b[d(ATsay, TAsoy) + d(TAsyy,, Tu)]
So,
| d(ATspy, Tu) |< b | d(ATsyy, TAsyy) | +b | d(TAszy, Ty) |[— 0asn —
d(Tu, ) < bd(Tu, ACsyy) + b?d(ATsz,, Wspy 1) + b*d(Wsay 11, 1)
By using (CM2) with s = Csy; and m = 3,11, we get:
d(ATsg, Wspy11) < £ R(Ts2,52941)

where

R(Ts2y, $2y+1) =
max {(NTSZU, Tsay+1), d(ATszy, Csoy11), d(Asay+1, Nsogi1), d(Wsay 41, Qsay+1),

d(ATs2y, TTspy )d(Wsoy+1, NSoy+1) }
I+ d(CTSZWI Q5277+1) ‘

Let # — oo, then
we get:

d(Au,TNsy, )d (1,
R(Ts2y, s2q-41) = max {(N%#)/d(T%#),d(u,ﬂ),d(u,u), W}
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R(Tsoy, 82p+1) = d(Tw, p).
Further,
[ d(Tu, ) IS & 1d(Tupw) | = (1-§)1d(Tu,p) <0,
which is a contradiction.
So, | d(Tu, u) |= 0, which is possible only if Ty = p.
Furthermore, we prove,

) Qu = p-
On the contrary, let Qu # u

Again from (CM4), Q is continuous, then by Lemma 1

QASZW — Qu and QQSZ77 — Qu as 7 — o0.
Furthermore, the pair (Q,A) is compatible, which implies that QAsy; — Q.
Indeed,

d(AQszy, Qu) < b[d(AQszy, QAsay) + d(QAszy, Qu)l.
So,
| d(AQs2y, Qu) |< b | d(AQs2y, QAsay) | +b | d(QAszy, Qu) | 0 as iy — oo
d(Qpu, ) < bd(Qu, AQsyy) + b*d(AQs2y, Wspy41) + b?d(Wspy 11, ).

By using (CM2) with s = Qsy; and m = sy, 11, we get:

d(AQszy, Wszy41) S £2R(Qsy,5241)
where
R(Qs2y,52541) =
max {d(NQszq, Tsoy+1), d(AQs2y, Csoy+1), d(Asay+1, Nszg1), d(Wszy 1, Qs2y41),

d(AQs2y, TQs2y)d(Wsay 11, QS2+1) }
1+ d(CQs2y, Qs2441) .

Let # — oo, then we get:

d(Qu,T d(u,
R(Qs2y,529+1) = max {d(Nu, ), d(Qpe 1), (e, ), d(p, ), W}

R(Qs2y, 52y+1) = d(Qp, ).
Further,
[dQu ) < & 1dQup) | =  (1-£)[dQup) <0,
which is a contradiction.
So, | d(Qu, i) |= 0, which is possible only if Qu = p.
Next, we need to prove,
(6) Wy = p.
On the contrary, let Wy # u
Again from (CM4), W is continuous, then by Lemma 1

WAsy, —» Wu  and  WWsy,;, — Quasn — oo.
Furthermore, the pair (W,A) is compatible, which implies that WAs, — Wp.
Indeed,

d(AWsay, W) < b[d(AWsoy,, WAsy,) + d(WAsy,, Qu).
So,
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| d(AWsqy, W) |< b | d(AWsoy, WAsyy) | +b | d(WASyy, W) |- 0as iy — oo,
d(Wy, u) < bd(Wu, AWsy,) + bzd(AWsz,?, Wspy41) + bzd(Wsz,ﬁl, 1.
By using (CM2) with s = Qsz; and m = sp;,11, we get:
d(AWsgy, Wsay41) S 5 R(Wsay, 52541)

where

R(Wsay, 52541) =
max {d(NWSzﬂ, T32,7+1), d(AWSzW, C5277+1)’ d(ASz,?+1, N52,7+1), d(WSZ,7+1, QSZ;]Jrl),

d(AWszy, TWspy)d(Wsay 11, Qs2+1) }
1+ d(CWsay, Qs2y41) '

Let 7 — oo, then we get:

AW, TWsy,) )d(u,
R(Wsay, s2y41) = max{d(Pp, ), d (Wi, ), d(u, 1), d(p, ), 5 g2

R(Wsay, s2y41) = d(Wp, ).
Further,
[dWup) IS G ldWppn) | = (1=£&) [dWpp) [<0
which is a contradiction. So, | (W, i) |= 0, which is possible only if Wy = p.
Thus, we conclude that:

Npy=Qu =Tp=Cpu =Wp=Ap =y

Uniqueness:
Now, we have to look forward for uniqueness.
Let us consider ¢ as another common fixed point of A, W, C, Q, N and T. Then,

N =Q0=To=Co=W0o=A0=10
By putting s = y and m = ¢ in (CM2), we get
d(p, 9) = d(Ap, T8) < {2 (p, 9)

b2
where
R(p, 8) = max{d(Np, T9),d(Ap, C9),d(W9, Q9),d(Ap, N8), LALTHIRENS) |
Thus,
R(p, 8) = max{d(p, 8), d(, 9),d(8, 8), d(, 9), {90 ED |
So,
R(p, 8) = d(p, 9).
Further,

ldp ) IS & ldw )| = (1—£)1du9)[<0,
which is a contradiction. So, | d(Wy, i) |= 0, which implies that y = 9.
Thus, the common fixed point for A, W, C, T, N and Q is unique. O

The above theorem yields the following corollaries.
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Corollary 1. Let (Z,d) be a complex valued b-metric space and A,C,T,N,Q: Z — Z be five self
mappings fulfilling the following necessities;

(CM1) A(z) < T(z), A(z) < N(z), A(z) < C(z) and A(z) < Q(z).
(CM2) d(As, Am) < %R(s,m), ifb=1landpe (0,1) forall s,m € Z where

R(s,m) = max{d(Ns, Tm),d(As, Cm),d(Am, Nm),d(Am, Qm), %}

(CM3) The pairs (N,A), (C,A), (T,A) and (A,Q) are compatible.
(CM4) N, C, T and Q are continuous.
Then, A, C, N, T and Q have a unique common fixed point.

Proof. For A =W in Theorem 2, this result can easily be obtained. [

Corollary 2. Let (Z,d) be a complex valued b-metric space and Q, AW, T: Z — Z be four self
mappings fulfilling the following necessities;

(CM1) A(z) < T(z), W(z) < Q(z).

(CM2) d(As, Ap) < %R(s,m), ifb=1andpe (0,1) forall s,w € Z, where

R(z,w) = max{d(Ts, Tm), d(As, Qu),d(Am, Tm),d(Am, Qm), %}

(CM3) The pairs (W,A), (T,A) and (A,Q) are compatible.
(CM4) T, W and Q are continuous.
Then, W, A, T and C have a unique common fixed point.

Proof. For T = N and C = Q in Theorem 2, this result can easily be obtained. [

Corollary 3. Let (Z,d) be a complex valued b-metric space and Q,A,T,: Z — Z be three self
mappings fulfilling the following necessities;

(CM1) A(z) < T(z), A(z) < Q(z).

(CM2) d(As, Am) < 5 R(s,m),ifb=1and p e (0,1) forall s,m € Z where

S

R(s,m) = max{d(Qs, Tm),d(As, Tm),d(Am, Tm), % }
(CM3) The pairs (T,A) and (A,Q) are compatible.
(CM4) Q and T are continuous.
Then, A, T and Q have a unique common fixed point

Proof. For A=B, C=T and N=C in Theorem 2, this result can easily be achieved. O

Corollary 4. Let (Z,d) be a complex valued b-metric space and A,Q: Z — Z be two self mappings
fulfilling the following necessities;

(CM1) A(z) < Q(2).

(CM2) d(As, Ap) < ﬁR(s,m), ifb=1landpe (0,1) forall s,m € Z, where

sz

R(s,m) = max{d(Qs, Qm),d(As,Qm),d(Am, Qm), %}.

(CM3) The pair (A,Q) is compatible.
(CM4) Q is continuous.
Then, A and Q have a unique common fixed point.

Proof. For A=W, C =T =N = Q in Theorem 2, this result can easily be obtained. [
Remark 1. Corollary 2 is the result of [16].

Example 6. Let Z=[0,1],Ys,m e Z. Defined : Z x Z — C as a complex valued b-metric space
with b =2 by;
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d(s,m) =|s—m|?> +1]|s—m|?

Now, define the mappings A, W, C, N, T and Q such that

Clearly,

(1) A(s) = T(s) ,A(s) < P(s) ,B(s) < C(s) ,B(s) < Q(s).

(2) The pairs (N,A), (C,A), (T,A), (A,Q) and (W,A) are compatible for s, = %
(3) A, W, C, N, T and Q are continuous.

(4)

2 2
d(As, Wm) =| 5 — 2 > +1| 55 — %5 |~

2
d(As, Wm) = {15 =% P +e| 5 - % P}

d(Ns, Tm) =| § =2 2 41| § — 22 |2,
Thus, d(As, Wm) = 2ééal(Ns Tm).
This means that d(As, Wm) < b’;R(S m), where p = 6%1 and b=2.
Thus, all the conditions of Theorem 2 are satisfied; therefore, A, W, C, T, N and Q have a
unique common fixed point.

Example 7. Let X = (0,x), k> 1,Vs,me X andY : X x X — C be defined by

Y(s(w), m(w)) = 57

which is a complete CV My, and let 1 be a closed path in Y containing a zero.
We first prove that Y is a complex valued b-metric space with b = 2

M_Jm(mz
7w
w)_Jy(W)+Jy(w)_fm(w>
7w 7w T w
el peive (2]
< f w)_J m(w)
w
Jyw |jy f m(w)[*

{J“J” D[

Y(s(w), m(w)) < 2Y(s(w), y(w)) + Y (y(w), m(w)).
Hence, it is proven that Y is a complex valued b-metric space with b = 2.
Now, we define the mappings A, W, C, T, Nand Q :X x X by:

Y (s(w),m(w) = 5

2

2

Ton

]

27
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As(w) =1—¢e%, Ws(w) =w, Cs( ) = sw? +w
Ts(w) =1—e?, Ns(w)=1—e%, Qs(w =%w +w.

Clearly,

(1) A(x) € T(x), A(x) € N(x), W(x) < C(x) and W(x) < Q(x).

(2) The pairs (N,A), (C,A), (T,A), (A,Q) and (W,A) are compatible.

(3) N, C, T, Q and W are continuous.

(4) By using the Cauchy integral formula when the mappings A, W, C, N, T and Q are analytic,
we get:

d(As(w), Wm(w)) = 5| {3 1_—;20 - : =0

d(Ns(w), Tm(w)) = 7 -
d(Am(w), Nm(w)) = 5| §3 55 = §; % 2 =0
st Tsw) = 25| 52— 5y 52| o
A(Wm(w), Qm(w)) = 2|52 — | 25| = 420"
d(As(w), Cm(w)) = 5| ;1 2“’ ol — i,
d(Wm(w), Nm(w)) = 51§35 — {3 % T 0.
d(Cste), Q) = ] 2 gy kel

So,

R(s(w), m(w)) = max{ 73,0} = £n°.

Further, 0 = R(As(w), Wm(w)) < §7°.

Thus, all the conditions of Theorem 2 are satisfied, which shows that the mappings A, W, C, T,
N and Q have a unique common fixed point.

4. Applications

In this section, our aim is to provide some applications based on our results.

4.1. Existence of a Unique Common Solution to the System of Urysohn Integral Equations

Now, in this section, we apply Theorem 2 for the existence of a unique common
solution to the following system:

u) = i)+ | " Kzt (), @

where z € (x,y) € R; i, ¢; € C((x,y),R") and K; : (x,y) x (x,y) x RT — R",i=1,2,...,6.
Let us denote

(1) = [ Kl o)

X
wherei =1,2,3,4,5,6.
Suppose these conditions are true:
(Uy):  Fori=34,

Yiu(z) + ¢1(2) + @i(z) = ¥ (F1(1(2) + 91(2) + 9i(2)) =0
(Up): Forj=5,6,
You(z) + ¢2(2) + @j(z) — ¥ (Yo (u(2) + 92(2) + 9j(2)) =0
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(Us):  Fori=3,4,5,6,
Yin(2) + ¢i(z) + ¥s5p(2) + ¢5(2) = 2u(2)
(Uy):  Forj=2,
Yip(z) + ¢1(2) = ¥ju(z) — j(z) = 0
(Us):  Fori=3,4,5,6,
—¥1¥ip(z) = ¥19i(2) — 91(2) + ¥i¥1p(2) + Yig1(2) + 9i(2) — 291(2) = 0
(Ug) Forj=2,
F1¥ju(z) + Yrgju(z) = ¥¥ipu(z) — ¥ipi(z) =

LetY =C ((x, y), R’l), x > 0 be a complete complex valued b-metric space with metric

d(s,m) = max | s(a) — m(a) || V/1+ 2"

ag(xy)

foralls,meY.

Define six operators I', I'y, T'3, I'y, I'sand I's: Y — Y by

[ip(z) = Y1p(z) + @1(2)

Dop(z) = You(z) + ¢2(z)

T3p(z) = 2u(z) — Yau(z) — ¢3(2) 3)
Tap(z) = 2pu(z) — Yap(z) — @a(2)

Usp(z) = 2u(z) — ¥sp(z) — ¢s(2)

Tep(z) = 2u(z) — Yop(z) — @6(2)-

Now, we have to formulate the existence results.

Theorem 3. (1): Based on these assumptions (U1-Us), if for eachs,m e Yandb > 1,p € (0,1)

-1 X
X1V 1+ x2et g lfz{m,mm,m, X6 X7}

where

1+ xs
x1 = | ¥1s5(z) + @1(z) — Yom(z) — 92(2) ||oo V1 + x2ettan'x
Xo = | 25(z) — ¥as(z) — @3(z) — 2m(z) + ¥am(z) + @a(2) |loo V1 + x2ean '
X3 = || ¥is(z) + @1(2) — 2m(z) + Fem(z) + @6(2) [loo V/1+ 22475,
xe = |[¥1m(z) + @1(z) —2m(z) + ¥am(z) + ¢3(2) ||o V1 + x2etan
x5 = | ¥am(z) + ga(z) — 2m(z) + ¥sm(z) + 5(2) [Joo V/1+ 226t
Xo = |Y¥1s(z) + @1(z) —25(2) + ¥45(z) + ¢4(2) |0 V1 4 x2etan'x
x7 = | Yom(z) + @2(z) — 2m(z) +‘P3m( )+ 93(2) [loo V1 + x2ean X,
xs = | 25(2) — Yes(z) — @e(z) — 2m(z) + ¥sm(z) + @5(2) [|oo V1 + 22e0n '

(2): T1(Y) < Ta(Y),T1(Y) < T3(Y),I2(Y) < T5(Y) and T (Y) < Tg(Y).
(3): (I',Ty), (T1,T3), (T1,T4), (I'1,T's5) and (I'1,T') are compatible.
Then, the system of Urysohn integral equations (2) has a unique common solution.

Proof. Note that System 2 of integral equations has a unique common solution if and only
if System 3 of operators has a unique common fixed point.
Now,
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d(T'ys, Tym) = maXze(x,y) | ¥15(2) + @1(2) — ¥2m(z) — 92(2) |lo me‘”’” Y,

A5 Tam) = g | 252 ~ ()~ go2) - 2mC) 1+ F4m() + () b V3 g
(T1s, Tem) = Maxee sy || F15(2) + 91(2) —2m(2) + Fom(z) + go(2) [loo VI + et

d(Tym,T3m) = maxze(w) | ¥1m(z) + ¢1(z) — 2m(z) + ¥3m(z) + ¢3(2) [|oo V1 x2etan™'x
(
(
(
(

ISW
"_1

QU

Tom,Tsm) = maX,e(y,y) | Yom(z) + @2(z) — 2m(z) + ¥sm(z) + 4,5 ) lloo menmrlx,
Ty5,T5) = MaXee(y,y) || ¥15(2) + 1(2) = 25(2) + ¥a5(2) + pa(2) [loo VT + et
d(Tom,Tam) = maxze(x V) | Yam(z) + @2(z) — 2m(z) + ¥3m(z) + ¢3(2) |0 V1 x2ettan™'x
d(Tgs, [5m) = mMaX,e(y,y) H 25(z) — Yes(2) — @o(z) — 2m(z) + ¥sm(z) + ¢5(2) [l me’t‘m_]x

From condition (CM2) of Theorem 2, we have

-1
X1V1+ x2etmr < ;{XZ,X&M/XSI A6 2 X7 },

1+ xs

QU

which implies that

_ max X max
max x1V/ 1+ x2e" o< ‘02 max Xp, max X3, max )(4, max xs, ac(xy) A6 ae(ey) X7 .
ae(xy) b> | ae(xy) ™ ac(xy) ac(xvy)” as(xy) 1+ maXae(y,y) X8

Using the above distances in Equation 4, we obtain

d(Tys,Tom) < p {d(l}s Iym),d(I'1s,Tem),d(T'ym,T3m),d(Ioym, Tsm),

d(Tys,Tys)d(Tom, Tam) }
»? '

1+ d(Tes, F5Wl)

Now, to show that T'1 (Y) < T4(Y), we have

Ty (T1p(z) + @a(z)) = 2[T131(2) + @a(2)] — Ya(T1p0(2) + @a(2)) — @a(2)
= T1p(2) + T1pu(2) + @a(2) — ¥a(T1p(2) + @a(2))

(4)

=Tp(z) + ¥1u(2) + @1(2) + @a(z) — ¥4 (F1p(2) + 91(2) + 94(2)).-

Using (U);

we get Ty (T11(2) + ¢a(2)) = T1p(2),
which implies that I'1 (Y) < T'4(Y).
Now, I'2(Y) < I's(Y), and thus we have

Ts5(Top(z) + ¢5(2)) = 2[Tap(2) + ¢5(2)] — ¥5(Tap(2) + ¢5(2)) — @5(2)
= Top(z) + Top(2) + @5(z) — ¥s5(Tapu(2) + ¢5(2))

= Top(z) + ¥op(z) + 92(2) + @5(2) — ¥5(F21(2) + 92(2) + @5(2)).

Using (Uy),

we get I's (Topu(2) + ¢5(2)) = Tap(z),

which implies that I',(Y) < I's(Y).
Similarly, one can prove that I'1 (Y) € I's(Y) and I'x(Y) < I's(Y).
Next, we need to show that the pair (I';,I's) is compatible.
For this, let us have a sequence x; such that limy, o, I'1x; = limy o I'sx; = x.
To prove that (I'1, I's) is compatible,

it is enough to prove that d(I'1I'sx, I'sI'1x) = 0 when d(I'1x,I'sx) = 0 forsome x € Y.
With the help of (U3),

[ T1(x) =Ts(x) [| = [ ¥1x(z) + ¢1(2) — 2x(2) + ¥5x(z) + @5(2) ||
= || —2x(z) + ¥1x(2) + ¢1(z) + ¥5x(2) + @5(2) ||
= || —2x(z) +2x(z) ||=0.
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So, d(T'1x,T'5x) = 0.
Now,

| T1T5(x) —TsTy(x) ||

| T1(2x(2) — ¥5x(2) — ¢5(2)) + @1(2) — [5(¥1x(2) + ¢1(2)) ||
= || 2¥1x(z) —¥1¥s5x(z) — Y195(2) + @1(z) — 2¥1x(2z) — 2911 (2)
+¥5%1x(2) + ¥501(2) + @5(2) ||
= || =¥1¢5(z) — ¥1¥5x(2) + ¢1(z) + ¥5¥1x(2)

+¥591(2) + 95(2) — 2¢1(2) [|= 0

Thus, d(I'1Ts5x, TsI'x) =0,
which implies that (I'1, I's) is compatible.

Similarly, by using (U3) and (Us), we can show that the pairs (I';,I'3), (I';,I'4) and
(T'1,T6) are also compatible and by using (Us) and (Ug) one can prove the compatibility of
(Fll FZ) .

Thus, by Theorem 2, we can find a unique common fixed point of I'y, I'p, I'3, I', I's,
and I'g in Y, that is, System (2) of Urysohn integral equations has a unique common solution
inY. O

4.2. Existence of a Unique Common Solution to the System of Volterra—Hammerstein Integral
Equations:

Here, we discuss the existence of a solution for the following System (5) of non-linear
Volterra-Hammerstein integral equations.
Let C = (L(0,%), R) be the space of real-valued measurable functions on (0, c0):

wz) = ai(z) + Jox w(z,a)g;(a, p(a))da + v JOOO 1(z, a)h; (o, p(a)) dec ®)

forall x € (0, 0), where 1y, v are real numbers, ¢; € C is known and w(z, &), 7(z, a), g; (a, p1(x))
and h; (oc, y(zx)), i =1,2,...,6 are real-valued measurable functions in both z and « on
(0, 0).

Let us denote

G = [ ol 0)gi o, o)l
and ”
= L 1(z, )b (o, p())da

wherei=1,2,...,6.
Assume that
(Vq): Fori=4,3,
O1p(z) + A1p(z) + 01(2) + 0i(2) — Ui (U1p(2) + Ap(2) + 01(2) + 0i(2))
—Ai(Cr1p(2) + AMp(2) + 01(2) + 0i(2)

(V,):  Forj=5,6,

o
I

0 = Uop(z) + Aapi(z) + 02(2) + @j(2) — Uj(V2pu(2) + Aopi(z) + 02(2) + 0j(2))
—A]' (Uzy(z) + AZ‘u(z) + QZ(Z) + Q]‘(Z)).

(V3): Fori=3,4,5,6,

O1u(z) + Ap(z) + 01(2) + 0i(2) + Oip(z) + Ajp(z) = 2u(z)
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(Va): Forj=2,
0 = Uy(Ujp(2) + Aju(z) + 0j(2)) + A1 (Ujp(z) + Aju(z) + 0j(2)) + 02(2)
—(02(Uju(z) + Aju(2) + 0j(2)) + A2 (Uju(z) + Aju(2) + 0j(2)) + 02(2)).
(Vs):  Fori=23,4,5,6,
0 = U1(2u(2) — Uip(z) — Aip(z) — 0i(2)) + M1 (2p(z) — Bip(2) — Aip(2) — 0i(2))

+01(2) — (2(G1p(2) + AMp(2) + 01(2)) — Ui (O1p(z) + A p(z) + 01(2))
—Ai(U1p(z) + A1p(2) + 01(2)) — 0i(2))

Let C = (L(0, %), R) be a complex valued b-metric space with metric:
d(s,m) = n(lax) | s(a) — m(a) [|oo V/1+ x2ett®n'x
ag(0

foralls,m e C.
Define six operators Y1, Y2, Y3, Y4, Y5 and Ye: C — C by

Y1p(z) = O1p(z) + A1p(2) + 01(2),

You(z) = Oap(z) + Aop(z) + 02(2),

Y3p(z) = 2u(z) — Usp(z) — As(z) — 03(2), ©)
Yy (z) = 2u(z) — Ogp(z) — Aa(2) — 04(2),

Ysp(z) = 2u(z) — Usp(z) — As(z) — 05(2),

Yep(z) = 2u(z) — Uep(z) — N6(2) — 06(2).

Now, we have to prove our existence results.

Theorem 4. (1):  Based on these suppositions (V1-Vs), if for each s,m e Candb > 1, v € (0,1)

TV/1+ et 72{32,33,34,35, do <L }

1+Jg
where
Iy =| Bip(z) + Ap(z) + 01(2) — Bap(z) — Aopu(z) — 02(2) [loo VI + 22107,
B = 2u(z) — Usp(z) — As(2) — 03(2) — 2p(2) + Vapa(z) + Aapi(2) + 04(2) [lop VI + 2t '%,
I =] Bip(z) + A1p(z) + 01(2) — 2#(2) + Uspt(z) + Nepi(z) + 06(z ) lloo ~/T + xZettan™x,
Iy =[| O1p(z) + Ap(z) + 01(2) — 211(2) + Uap(z) + Aapi(z) + 03(2) [loo VI + x2et %, @)
J5 =|| Bap(z) + Aop(z) + 02(2z) — 2u(z) + Usp(z) + Asp(z) + 052) ||oo V1 + xZettan'x,
Jo =| U1p(z) + Ap(z) + 01(z) — 2u(z) + Ogpi(z) + Agp(z) + 04(2) |loo V1 + x2ettan”x
7 =] Gap(z) + Mapu(2) + 02(2) — 20(2) + Uspu(2) + Aspi(z) + 03(2) [|oo VI + x2et %,
Ts =] 2p(2) — Ugp(z) — Aep(2) — 06(2) — 2p(2) + Uspu(2) + Asp(z) + 05(2) [loo VI + a2et0n ™'

(2): Y1(Z) € Y4(Z),Y1(Z) < Y3(2),Y2(2Z) € Y5(Z) and Y2(Z) < Ye(Z).
(3): (Y1,Y2), (Y1,Y3), (Y1,Ys), (Y1,Y5) and (Y1, Ye) are compatible.
Then, the system of Volterra—Hammertion equations (5) has a unique common solution.
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Proof. Note that System (5) has a unique common solution if and only if System (6) of
operators has a unique common fixed point.
Now,

d(Y18,Y2m) = maxee(g o0 || U15(2) + A18(2) + 01(2) — Uam(z) ]
—Aom(z) — 02(2) ||oo V1 + x2ettan™'x

d(Yss, Yam) = max.e(o,00) || 25(2) — Uss(2z) — Ass(z) — 03(2) — 2m(z) + Uam(z)
FAm(z) + 04(2) |loo V1 + x2ettan™'x,

d(Y1s, Yem) = maxze (0,0) | O15(2) + A1s(z) + 01(2) — 2m(z) + Vem(z)
+Aem(z) + 06(2) ||oo V1+ xZettan'x)
d(Yim,Yzm) = maxZE 0,0) | Ulm( )
+A3m(z) + 03(2) |loo VI + x2etan™'x,
d(Yzm Y5Wl) maxze 0,00 || Uzm )
+Asm(z) + 052) ||oo V1 + x2ettan™
d(Y1s, Y25) = maXye (o,00) | U15(2) + A1s(2) + 01(2) — 25(2) + Uys(2)

+A45(2) + 04(2) [|oo V1 + x2ettan™'x,

d(Yom, Yam) = maxe (oo || Oam(z) + Aam(z) + 02(z) — 2m(z) + Uam(z)
+Asm(z) + 03(2) ||oo V1 + x2e ”“”_1",

d(Yes, Ysm) = maxZe 0,00) |l 25(z) — Ugs(z) — Aes(z) — 06(2) —2m(z) + Usm(z)
+Asm(z) + 05(2) |0 V1+x e‘t”” 'x

+ Aym(z) + 01(2) — 2m(z) + Uzm(z)

+ Apm(z) + 02(z) — 2m(z) + Usm(z) ®)

From condition (CM2) of Theorem 2, we have
- Je x 3
1 2 itan 1x < g 6 7
Tiv1+x2e SR J2,33,34, 35, 1+ |/
which implies that

—1
max Jyv/1 + x2etmx

ag(xy)

MaX,e (0,00) 46 X MaAX4e (0,00 47
< Q{ max Jp, max J3, max Js, max Js, a€(0,0) a(0,0) .

b2 | ae(0,00)  ae(0,00)  ae(0,00)  ae(0,00) 1+ MaXe(0,00) Js

Using the above distances in Equation (8), we obtain

d(Yls, Yzm)

<8 {d<y3s Yam), d(Yss, Yem), d(Y1m, Yam), d(Xam, Ysm),

d(Y1s,Y48)d(Yom, Ysm) }
b2 '

1+ d(YéS, Y5m)

Now, to show that Y1(Z) < Y3(Z), we have

Y1(Yiu(z) + 03(2)) = 2[Yiu(z) +03(2)] — Us[Ym< ) +03(2)] — A3[Y11(2) + 03(2)] — 03(2)
= Yiu(z) + Y1pu(z) + 03(2) — O3[Y1p(2) + Y1p(z) + 03(2)]
—A3[Y1p(z) + Y1u(2) + 01(2) + 03(2)]

From condition (V7),

Y1(Y1p(z) + 03(2)) = Yap(z).

This implies that Y1(Z) < Y3(Z).
Similarly, we can show that Y{(Z) < Y4(Z), Y2(Z) < Y5(Z) and Y»(Z) < Y¢(Z) by
using (V1) and (V).
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Next, we have to show the compatibility of the pairs (Y1, Y2), (Y1,Y3), (Y1, Ys), (Y1,Y5)
and (er Y6)

For this, let us have a sequence x; such that limj, o Y1x; = limy, 4 Ys5x; = x.

To prove that (Y7, Ys5) is compatible, it is enough to prove that d(Y;Ysx, YsY1x) = 0
when d(Y1x, Ysx) = 0 for some x € C.

With the help of (V3),
[ Y1(x) = Y5(x) [| = | O1x(2) + A1x(2) + 01(2) — 2x(z) + Usx(z) + Asx(z) + 05(2) ||
= || —2x(z +le(z)+A1x( ) +01(2) + Asx(z) + 05(2) + 05(2) |
= || 2x(z) +2x(z) ||=

So, d(Y1x,Ys5x) = 0.
Now,

| Y1Y5(x) = YsY1(x) | = [ Y1(2x(2) — Usx(z) — Asx(z) — 05(2)) — Y5(U1x(2)
+A1x(z) +Ql ) |l
= || U1(2x(2) — Usx(z) — Asx(z) — 05(2)) + A1 (2x(z) — Usx(z)

—As5x(z) — QS( )) +01(2) — [2(U1x(2) + A1x(2) + 01(2))
—Us(U1x(z) + Ayx(z )+Ql( )) — As(U1x(2)
+A1x(z) + 01(2)) — 05(2)] [|= 0.

Thus, d(Y1Ysx,Y5Y1x) = 0, which implies that (Y1, Ys) is compatible.

Similarly, by using (V3), (V4) and (V5), we can show that the pairs (Y1, Y2), (Y1, Ys)
and (Y1, Ys) are also compatible.

Thus, by Theorem 2, we can find a unique common fixed point of Y1, Y2, Y3, Y4, Y5
and Y in C, that is, System (5) of Volterra-Hammerstein equations has a unique common
solutionin C. [

5. Conclusions

Many real-world problems can be described by integral equations, and there are
various techniques for investigating the solution of a system of integral equations. One of
the significant tools is the theory of fixed points.

In the current study, we establish new fixed point results for six self mappings satisfying
rational-type inequalities that serve as a useful tool for investigating unique solutions to systems
of integral equations. This approach offers new ways to examine complicated mathematical
systems and has the potential to significantly advance the study of integral equations.
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