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1. Introduction
Ifp>1, %4—% =1, ayu b, >0,0< Zﬁzla,’; < oand 0 < Z;‘;lbz < o0, then we
have the following well-known Hardy-Hilbert’s inequality (cf. [1], Theorem 315):

£ Rt (B (E0) »
m=1n=1 m+n m(n/p) m=1 n=1

where the constant factor

ﬁ is best possible.
In 2006, Krnic et al. [2] obtained the following inequality, which is a generalization of
(1):for A; € (0,2](i=1,2), Ay + Ay = A € (0,4],
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with the best possible constant factor B (/\1, A3), in which

00 tu—l
B(u,v) = /O W dt(u,v > 0) (3)

is the beta function. In particular, for p = g =2, A = A = %, (2) deduces to Yang’s
inequality in [3]. In 2019, following the way of (2), by using Abel’s summation by parts
formula, Adiyasuren et al. [4] provided the following extension of (2) involving two partial
sums and some parameters, for
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where AA;B(A1, Ap) is the best possible constant factor, and A, = Y/";4; and B, =
Yi_1by (m,neN={1,2, ---}),satisfy the following inequalities:

o (o)
0< Z mPMTIAP < oo and 0 < Z n~171BY < co.

m=1 n=1

Both (1) and (2) with their integral analogues played an important role in real analysis,
in which some generalizations of (1) are given and a relation between (1) and the other
Hilbert-type inequality is obtained (cf. [5-16]). In 2021, Gu et. al. [17] provided a gener-

alization of (4) with ﬁ (a, 8 € (0,1]) as the kernel of inequality. In 2016, by using
mt+n

the weight coefficients and the techniques of real analysis, Hong et al. [18] considered a
few equivalent statements of the generalization of (1) with the best possible constant factor
related to multi-parameters. The other further results were obtained by [19-29].

In this article, based on the idea of [17,18], by using the techniques of real analysis and
the mid-value theorem, we introduce some preserving lemmas and then give a reverse
of (2) with two partial sums and multi-parameters, which is a new reverse version of
the inequality in [16]. We also consider a few equivalent conditions of the best possible
constant factor in the reverse inequality related to multi-parameters. Furthermore, several
inequalities are deduced by setting some particular parameters.

2. Some Lemmas

In what follows, we assume that 0 < p <1 (g < 0), % + % =1,A€(0,6],a,Bp€(0,1],

M€ (0,2]N(0,4), A € (0,3]N(0,A), Ay 1= 222 441 ]y = 220 4 2. We also
assume that a,,, b, > 0, Ay, = Z]mzl aj, By := Y1 bx (m,n € N), satisfy Ay = o(etma),

B, = o(e!"”) (t > 0;m,n — ), and the following inequalities:

0< Y mP-e)-1gh < 00,0 < Y pd1-PR)~1pl < oo, (5)

m=1 n=1

Lemma 1. For t > 0, the following inequalities on the partial sums are valid:

(o) 1 oo

eftm“mtxflAm > = eftm“um, (6)
- ta =
m=1 m=1
¢ 1 (e}
e PR, > — Y ey, @)
— tB =
n=1 n=1

Proof. Since Aye "™ =o(1)(m — ), by Abel’s summation by parts formula, it
follows that

(] g (] «
ey = lim Aye™™ + ¥ Ay [e—fm“ — e tm+D) }
=1 m—oo

m m=1

_ mil A, [e—tm"‘ _ e—t(m-&-l)”‘]
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We set function g(x) = et x € [m,m + 1]. Then, we find ¢’(x) = —tax* et and
for o € (0,1], h(x) := x*1e™"" is decreasing in [m, m + 1]. By the mid-value theorem,
we have
e ™ay =— ¥ An(g(m+1)—g(m))
m=1 m=1

=— OZO‘, Apgl(m+0) = ta OXO‘, (m + 6)*1e=tm+0)" 4
m=1

m=1

<tay m*le=t A, (0 € (0,1)).

m=1

Hence, we have (6). In the same way, inequality (7) follows.
The lemma is proved. [

In the following lemma, for estimating the weight coefficient in Lemma 3, we introduce
some results related to the Bernoulli functions and the related formulas.

Lemma 2. (Ref. [5]’s section 2.2.3, [30]) (i) If (—1 )ldd;g( ) > 0,t € [mo0)(m € N) with

g (c0) =0 (i =0,1,2,3), P,(t), B; (i € N) are Bernoulli functions and Bernoulli numbers of
i-order, then

o B

/m P 1 ()g(1)dt = —ex—2g(m)(0 < e < Lk =1,2,-++). @®)

In particular, for k = 1, since By = %, we find

1 <]
—580m) < [ Pibg(tde <0 ©)
m
For k = 2, based on By = —31—0, it follows that
oo 1

0< /m Pa(t)g(t)dt < =g (m). (10)

(ii) (Ref. [5]'s section 2.2.3, [30]) Suppose thatf(t)(> 0) € C3[m, o), f@(c0) = 0
(1=0,1,2,3). We have the following Euler—Maclaurin summation formula:

.00 1 00
= [ e+ S fom)+ [ Pi(o)f (1), @)
k=m m 2 m
i 1
[ s o=~ + ¢ [ P o (12)
m
Lemma 3. Fors € (0,6],s2 € (0, 5] (0,5), ks(s2) := B(sa,s — sa), the weight coefficient is
defined as follows:
‘552—1
_ au(s—sp) ,Bi’l 1
@s(sp,m) :=m Z 1y (m € N). (13)
Then, the following inequalities are valid:
1
0 < ks(s2)(1— O(m)) < @s(sp,m) < ks(s2)(m € N). (14)

where we indicate that O( 557 ) fo 12 ~du > 0.
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Proof. For any m € N, the function g(m, t) is defined by: g(m, t) := (ffj:'t;l)s (t >0).In

view of (11), we have
nglg(m,n) = [Zg(m, t)dt + Fg(m, 1) + [~ Pi(t)g' (m, t)dt
= fooog(m, t)dt — h(m),

where we set h(m fol g(m, t)d t——g(m 1) — [ Pi(t)g (m, t)dt.

) =
We obtain —3g¢(m,1) = W. By integration by parts, it follows that

1 t/352 1 U= tﬁ us2-1

_ dusZ 1

- fO m“+u - Sy m”‘Jru |0 + Sy fO ma+u)s+l du
_ 1 1 du2t!

T8 (m“+1)s ts (Sz+1)f0 (me+u)*+!

1_ 1 s us2+1 s(s+1) 1 s+1
>3 (m*+1)° + s2(sp+1) |:(ma+u)s+l :| 0 + 52 (52 11) (4 1)° 72 fO u du
1 + A 1 + s(s+1) 1
$2 (m*+1)°  sp(s2+1) (meg1)stL T sa(s2+1)(s2+2) (me41)527

_ _Bpsa—n)tP22 | prstPrpa2

—8g (m, t) - (m”‘+tﬁ)s (m"‘+tﬁ)s+1
_ _ B(Bsa=)tP27 | Brs(mitPomt) B2 B(Bs—Pspt1)tF272  pRsmethe2 2
(e +tP)° (me418)" (me+F)° (ma8) 17

and for 0 < s, < 2 ik 0< B <1, s <s <6, it follows that

i tPs2—2 i tPs2—2

@ Gy~ Y

| ———=]|>0(=0,1,2,3).
dtl (ma+t,5)s+1] > (l )

(=)'

By (9), (10), (11) and (12), we obtain

* P B(Bs — Ps> +1)
Pfs —Fs2 +1) 1 1t )(ma+tﬂ) 12(m* +1)
_ Bmes [ Py (1) —F2
IB m Sf] Pl(t) (m“-‘rtﬁ)SJrl
2m*s 2mts (oo Bsp—2 "
- 12(Za+1)5+1 -F 51 Pa(t) (mijtﬁ)qﬂ} dt

Bm*s _ BPm®s P22 !
12(711”‘+1)s+1 720 (m"‘thﬁ)s'H 1
Bn*+1-1)s  p(m*+1)s | (s+1)(s+2)B2 | P(s+1)(5-p—2psy) | (2=Ps2)(3—Ps2)
12(m“+1)5+1 720 (m”‘+l)s+3 (ma+1)s+2 (ma+1)s+1
Y ps
C12(m*+1) 12(met1)tH!
_&[(S+1)(S+2)ﬁ2 4 BGHDG—p-2ps)) | (Z—ﬁSz)(3—ﬁSz)]
7201 (e y1)°72 (me 1) (m*+1)°

s(s+1)
(m”‘+1)s+2

Hence, we have h(m) > (malﬂ)s h + o a+1)5+1 hy + h3, where

_ 1 B B—PBsa  P’s(2—Ps2)(3—psy)
s 2 12 720 '

Wy — 1 B B(s+1)(5-B—2ps)
27T (41 12 720 ’
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— 1 4(s42) .
and h3 := SETEHTD) b 7520 . We can find
s 1 B B—Psr sp(2—Ps2)(3—Ps2) _ g(s2)
=5 2 12 720 720s,”

where the function ¢(c)(c € (0, %]) is indicated by
g(0) == 720 — (4208 + 6sB?)c + (60B? 4 580> — sp*o.
For B € (0,1], s € (0,6], we obtain

— (4208 + 65B2) + 2(608? + 55B%)c — 3B%0?

§'o) =
< —4208 — 6p> +2(60p% + 55p) 5 = (14sB — 180)B < 0,

and then it follows that iy > £2L > /P — 1> 0. For s, € (0, ], we still find
B> B 5(s+1)p2 1 s+1

e 2
6 12 720 _(12 140)ﬁ >0,

and h3 > (35 — $52)B% > 0(s € (0,6]).

a 1
Hence, it follows that i(m) > 0. Setting t = mFf uf, we have

@s (s, m) = m*(5—52) E g(m,n) < m¥=2) [ o(m, t)dt
=1

n=
_ - oo P14t poo ys2ldy _
N ﬁma(s K 0 (m"‘—l—tﬁ)s ~J0 lzl+u)y a B(SZ,S B SZ) a ks(Sz).

On the other hand, in view of (11), we find

[ g(m, tydt + Fg(m, 1) + [{° P ()8 (m, t)dt
Ji g(m, t)dt + H(m),

e

o

S

=
|

where we set H(m) :

= Lo(m, 1) + [ Pi(t)g (m, t)dt.
We find %g(m, 1) =

B(Bs — Psy + 1)tF272 N B2sm®tPs2—2
(ma + tﬂ)s (m”‘ + t‘3>8+1 .

g (m,t) = —

For s, € (0, 3] N (0,5), 0 <'s < 6,by (7), we find

t‘B5272
_dt >0,

—B(Bs — Bs2 + 1)/1 Pl(t)m

and

0 Bsy—2 2K 2
ﬁzm“s/ P — g P P
1 (me + tB)° 2(m* +1)°" 7 12(m+1)

Hence, it follows that

B ps p 6f  _
H(m) > 2(m +1)°  12(m* +1)° = 2(m* +1)°  12(m*+1)° 0
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Then, we have

@s(Ag,m) = m*(5=52) Zg(mn)>m (s=52) [ o(m, t)dt
= m*(s7s2) [ gmt)dt— SSngm,td

la sp—1
:kS(S2)|: —7](5(152) Om (u2 ) du} >O

1
where we indicate that O(—1) = ks(lsz) Jo (” 2 o —du, satisfying

1 sh—1 1
X 14°2 o 1
< /m ——sdu < /m u2"ldy = .
0o (14u) 0 SpMm*s2

Therefore, inequalities (14) are valid.
The lemma is proved. [

In view of Lemma 3, the key inequality is obtained as follows:

Lemma 4. We have the reverse inequality, as follows:

© © 1 1
b= L L o > (pha(32) (Gha (A1)
o e . (15)
<| £ (a-otigpmro-ei gl | £ st -1y
m=1 " n=1

Proof. By the symmetry, for s € (0,211 (0,s),s € (0, 6], we obtain the inequalities of the
next weight coefficient, as follows:

0 < ks(s1)(1 - O()

- 16)
< wg(s1,n *nﬁ(ssl)): 115<ks n € N), (
s( 1 ) ) ma+nﬁ) S( 1)( )
where we indicate O( ﬁgl) = ﬁ O"ﬁ ('ﬂlu; du > 0.

Using the reverse Holder’s inequality (cf. [31]), it follows that

© ma(l—}\l)/q(ﬁnﬁ—l)l/ﬁ nﬁ(k/\z)/p(ama—l)l/ﬂ
Z L 1-My)/ a—1\1/19 am a(1-A _1\1/p by
o T T ) A0/ ()
1 1
E o) B mt(1=A1)(p=1),,p-1 P f 2 nﬁ(I*A2)('7*1)m“_1bZ q
m=1n=1 (m“”ﬂ) ﬁ(li}tz)(“m“ Dl ¥ n=1m=1 ( m”‘*”ﬁ) .1(141)(/3”;;,1)'771

=

— (137 [Ei @ (Ag, m)mP(1-50) 1aﬁ]
=1

1

X { ofj w;\(Al,n)nq(l_ﬁ;\Z)_le}

n=1

By (14), (16) and (5) (for s = A,s; = A;(i = 1,2)), since 0 < p < 1(g < 0) and the
assumptions, we obtain (15).
The lemma is proved. [

3. Main Results

By Lemma 1 and Lemma 4, the following theorem follows:
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Theorem 1. The following reverse inequality with two partial sums and parameters is valid:

Lim B 5 20t 28> i (B ha)) (M ()"
<| £ (- 0(hmt- o) % £ st g "
m=1 me2 n=1
In particular, for Ay + Ay = A, we have
0< i mPA—eM)=1P 6 0 < i nd(1=pr2)=1p1 o
m=1 n=1
as well as: o e Ll Lol

£ () 0) T

Xniﬁl_ogf)ﬁﬂuah %ﬂ;{anlmglm i (e

Proof. Based on the expression as follows

1 - / 02 1Pt gy
(m* +nf)2 T(A+2)Jo

by (6) and (7), we have

e i N (B B)
r(/\l+2) J'O t/\+1 (mz_ll efm“t ><Z e*nﬁt B— 1B )dt
o0 fad 4B
>ty Jo Wl(}x Le )(fﬁnge " fbn)dt

_ 1 - A—1,—(m*+nP r'(A)
1"(/\+2)tx/3m21 ngl ambnfo A== (m*+nP)t gy 7(/\+2)1X/3

Then, by (15), inequality (17) follows.
The theorem is proved. [

In the following two theorems, we provide a few equivalent conditions on (17).

Theorem 2. Assume that A € (0,2 —1]N(0,A), A2 € (0, %) N(0,A). A e (0,4].If A+ Ay =
1
q

1
) (1 ka(A2))? (1kr(A1))7 in (17) is the best possible. constant factor.

)L, then W (B

1+1 1+
Proof. We now prove that the constant factor r{)&)z) (%) ! (%) "B(A1, A7) in (18) is the
best possible. For any 0 < ¢ < min{pAq, |q] (% —A2)}, we set

= m* M) = n’g()‘r%)fl(m,n eN).

A -

Since 0 < Ay — 5 < 2_1,0<a(r— 5) <2—a < 2,by (22.24) (cf. [5]), we have

Ay = an‘, a; = Z M=) = "t ~lat
i=1 i=1
T 1] 4 Bla(h - 5) 1t

= apiey (™M™ P)+01+Ol( )1 )(eo € (0,1);m € N,m — co).
P
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In the same way, for 0 < B(Ay — 7) < 2, we have

Z b = B0 ! )(nﬁ()‘r%) +c+ 02(7’1‘6(/\27%)71))(?1 € N;n — ).
, €

q

We observe that A, = o(e'™"), B,y = o(e!"”) (t > 0;m, n — ).
If th ist tant M > (1 H%(l " TR _B(A4,A;), such that (18) is valid
ere exists a constant M > (E) F) 2y B(A1, A2), such tha is vali

1+1 1+3
when we replace (%) ! (%) ! r{)f +)2) B(A1,A2) by M, then in particular, we have

~ o o —_ —_
=161

= ngl m=1 (ma+n}5)A+2 AWZBH (19)
1 1
> M[ r (1-0:h ))mr’(lml)lﬁﬁl] ' [ 5 neuwlzz] "
m=1 mee2 n=1

By (19) and using the decreasingness property of series, it follows that
1

1
I> M[ Yy meel Z m~%=10( 51A2 )} ’ (1 + Y n_ﬁs_l) !
m=1 m= n=2

1
1+ 7y P ldy)

> M x e - om)
~4(t-r00) (o+)!

Q‘H <=

We still find that
7 1 2 _ 1 a—1(, a(A—%) a(Ar—
< oD R z—€>n21m217(ma+nﬁp+z [t () ey |+ or (M=) )]

ﬁ( )\ _E)_l . 1 1
<[ (#5020 o]+ 100 D)) = e ek
X ; ; W[W‘(M_EH)_1+|c1\m”‘*1+|Ol(m“(A1_%+1)_2)|}
B(A2

<|of " lealnb =t Oy (nP DR

_ 1 1
= am—;wmz—;)“o“l)'

oY) € e a(A—E+1)-1
where we indicate that Iy := 21 [nﬁ(Az it _ Y w], and
n=

o)

hi= L ¥ W[(Icllm"‘ 1101 (m

n=1m=1
#(Jerm* 1+ |0 " 2>><|cz|1gﬁ ' +0s(n
T (eglnf 1 40y (nP )

B(A _,+1) -1 © _£ —
: A (Jer|m* 1 4 Oy (m* MRy

oon 5
<yt ¥y

A1—§+1)—2)) /5()\2—£+1)—1|

n q

5(Az—g+1)—2)|)

n=1 m:} ( )1
y ﬁ L0y (P2 A—E41)-2
+ Z |cz|n + ()\2+1 SR Yy — /\1+1(|C1|m"‘ Ly |0y (m" a(A—5+1) )
n=1 (nﬁ) s ) m=1 ( )
2 (ealnf 140,271V & 1 a(h-541)-1
+n§1 (nf)*2 " mgl ey g < M; < oo
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By (14), fors = A +2 € (0,6],51 = A1 +1— £ (€ (0,3] N (0,4 +2)), we have

0 a(A+1-5)-1
Iy = % Z {nﬁ()\2+1+ Z a1 l+)Af2} n—pel

771+7’l

= ZwA+2()\1+1 % n)n—Fe-1

dhapa (M +1-5) (1 + ¥ npel

n=2
*kHz()\l +1- %) (1+ [y P dy)
2 aﬁB(Al +1- ,A2 +1+ %)(1 + Be).

/\ /\

Based on the above results, we have

1 1
1 1 ~ 1 iz 1\7
(B (/\1+177A2+1+ )(1+ e)+eM1]>sI>M(sO(1)> <s+> .

(= 5) P — ) b p P n B

Setting ¢ — 07 in the above inequality, in virtue of the continuity of the beta function,
we find
1.5 1. T(A) 1. 1
— ———=<B(A,A2) = (= - —BAM+1,A+1

1+1 1+3
Hence, M = (%) i (%) ’ %B(Al,/\z) is the best possible constant factor
in (18).
The theorem is proved. [

Theorem 3. Suppose that A1 € (0,2] N (0,A), Ay € (0 ﬁ} (0,A). A € (0,6]. If the constant
1 1
factor ()\J(riz))w(ﬁk)\()b)) (Lka(A1))7 in (17) is the best possible, then for

2 2

A=A =Ny € (—pA,p(A —A1))N [‘7(3 —MA2)p(C = M)]
we have A + Ay = A.
Proof. For A; = /\_p)‘z +% = #—FM, Ay = %+Q = #4—/\2, we

find A; + Ay = A. For A — Ay — Ay € (—pAy, p(A —Ay)), we have A; € (0,A), and then
Ay = A=Ay € (0,A); for A — Ay — Ay € [q(3 — Ap), p(2 — Ay)], we still have A; <

B = a’
Ay < % Then, for A; + A, = A in (17), substitution of A; = A; (i = 1,2), we still have
S AuBy 115 1+ T(A) pei 3
mglnglm >(E) q(ﬁ) (/\+2)B(/\1'A2)
T 1 1 (20)

00 3 p| > 5 q
Yy (1- o(m:32 ))mP(l—Ml)—laf;] {Z ni1(1=pA2) =11

m=1 n=1
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By using the reverse Holder’s inequality (cf. [31]), we still obtain

> [fooo M”Ahld“} [fo 1: A”Al 15”!] (21)
1 1
[} _ q
- [fo T {fo e 1‘1”}
1
= (ka(A2))7 (ka(A1))7

1 1
If %(ﬁk/\()tz))p (1kr(A1))7 in (17) is the best possible constant factor, then

compare it with the constant factors in (17) and (20), and we have the following inequality:

T(A+2)ap "
1+1 1\1+3 A3
> (L) B, A (€ Ry,
namely, B(A1,A,) S(kA(/\z))%(k)\(Al))%. Then, by (21), we have

which follows that (21) protains the form of equality.

We observe that (21) protains the form of equality if and only if there exist A and B,
such that they are not both zero and (cf. [31]) Aur="71 = ByM~1ge in R,. Assume that
A # 0. Tt follows that u? =12~ = %a.e. in Ry, and then A — A, — A1 = 0. Hence, we have
M+Ay=A

The theorem is proved. [

Remark 1. (i) Fora = p=1,A € (0,4], /\1 € (0,1]Nn(0,A), A2 € (0,2) N (0,A) in (18), we

have the following reverse inequality with AT +1) B(A1, Ay) as the best possible constant factor:

[c RN}

Ay By
mElnglm =) (A+1) B(A1,A2)

1 1
(1= 0t || £ -ty )

n=1

(22)
X

18

m=1

(i) Fora = B = %,A € (0,4],A1 € (0,3]N(0,A), Ay € (0,A) in (18), we have the following
reverse inequality with AT B(A1, Ay) as the best possible constant factor:

A+1)
0o AnB,
L ) > xem Bl A2)
- T 1 1 (23)
<| £ (-0l nm- 916 |"| £ w091
m=1 m

4. Conclusions

In this article, by using the techniques of real analysis, the way of weight coefficients
and the idea of introduced parameters, applying the mid-value theorem. We estimate
some lemmas and obtain a new reverse extended inequality (2) with two partial sums
and multi-parameters in Theorem 1. We consider a few equivalent statements of the best
possible constant factor related to several parameters in Theorems 2 and 3. We also deduce
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some inequalities for setting particular parameters in Remark 1. The theorems and lemmas
in this paper provide a useful extensive account of this type of inequality. Further studies
should be using the idea of this article to build some other kinds of Hilbert-type inequalities
with partial sums and parameters.
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