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Abstract: In the present paper, the nonlocal-in-time damping models, called “damping-with-memory”
models, are reviewed. Since such models do not involve the distribution along the longitudinal
coordinate, they are easily adjustable for the FEM (Finite Element Model) algorithm, which is a big
advantage due to the fact that FEM is the most-used method in engineering calculations. Within
damping-with-memory models, the internal damping of a structure at the current time, is assumed
to be dependent not only on the instant strain-rate magnitude or displacement-velocity magnitude
but also on the strain-rate or velocity values along the previous time history. The greater the gap
between the two time points, the lower the influence that one of them has on the other. To implement
a composite beam vibration simulation involving damping with memory, the equation of motion of a
structure written in the matrix form could be solved using the central difference method. The models
constructed could be calibrated based on 3D numerical simulation data with the least squares method.
It has been shown that the results obtained using the implementation of a calibrated damping-with-
memory model within the 1D finite-element beam algorithm are in good correlation with those given
by the 3D-FEM numerical simulation data.
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1. Introduction

The problem of modeling the vibrations in structural elements made of modern com-
posites and nanomaterials is a significant challenge. Unlike traditional building materials,
such as metals, composites are highly heterogeneous and anisotropic [1,2].

One of the features of such structural materials is that the physical properties of matri-
ces and binders that comprise their basis differ significantly. By using various combinations
of parameters and orientations of inorganic and organic materials in manufacturing com-
posites, it is possible to control their properties and to achieve the desired characteristics and
parameters, allowing one to solve different problems in a wide variety of manufacturing
industries [1,2].

Classic hypotheses are often not enough to describe the behavior of such materials.
Hence, it is suggested that mathematical models are especially flexible and controllable to
simulate the dynamic response of structures considering their orthotropic or other types of
anisotropy properties [3,4].

The aim of this review is to overview recent publications and results addressing the
application of the models with nonlocal-in-time damping for solving dynamics problems
of structural mechanics.
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2. Mathematical Modeling of the Internal Friction

The problem of modeling the internal friction in composite or even homogeneous
materials is especially challenging. Currently, this problem does not have an unambiguous
solution. Internal friction in a material means energy-irreversible processes that accompany
the cyclic deformation of bodies [5–7]. It is believed that the irreversibility of these processes
is characterized by the fact that part of the deformation energy for each cycle is converted
into heat or electricity and dissipated. In the literature, there exist several measures of
internal friction [5], among them: the tangent of the mechanical loss angle; specific energy
dissipation; and the inverse value of the quality factor, etc.

There have been over one hundred and fifty years of research into the issues of
internal friction in a deformable material [8–13]. During this period, many different and
often contradictory theories and models have been developed that describe the process
of the dissipation of the energy of vibrations. For example, according to the Kelvin–Voigt
hypothesis [14], energy losses due to internal friction in a material are proportional to the
rate of change in cyclic deformations. On the contrary, in the theory developed by Maxwell,
the internal absorption parameter is inversely proportional to the vibration frequency [15],
while Sorokin’s hypothesis of complex stiffness [7] is frequency independent.

None of the currently existing hypotheses is universal or applicable to various materi-
als within a wide frequency range. It is clear that only a stable correspondence to actual
dynamic processes could confirm the reliability of one theory or another.

The monograph in Reference [16] was devoted to the problems of vibration and noise
in various fields of mechanical and civil engineering, wherein different ways of describing
various types of damping were considered. Particular attention was paid to models of
viscoelastic damping, which determine the behavior of composites: polymer and vitrified
materials. At the same time, it was noted in Reference [16] that during the manufacturing
of composites, as a rule, producers do not ascribe to the goal of achieving high damping
characteristics. Therefore, in laboratory or ambient experiments, it is difficult to separate the
pure damping effects from the effects arising from the nonlinear behavior of the material.
Thus, it is necessary to describe the influence of viscoelastic damping on the dynamic
behavior of structures.

Adhikari [17] presented an analysis of complex systems with damping. The main
object of research was a multiple-degree-of-freedom system with viscous and/or non-
viscous internal friction. The theory of a viscoelastic-hereditary medium was used as the
theory of inviscid friction, and its particular case was the model of viscous friction in
Reference [18].

3. Non-Classical Models of Composite and Viscoelastic Materials

Before we focus on internal friction modeling, the non-classical models of composite
materials considering general deformation should be discussed. Various conceptual and
mathematical models have been proposed to take into account the peculiarities of composite
and viscoelastic materials’ response under loading, among them: gradient models [19];
mathematical models involving the apparatus of fractional calculus [20–22]; nonlocal
models [23]; and nonlocal models via operators of fractional order [24–27].

Flügge, in his book on viscoelasticity [28] (see p. 74), noted that “The response q(x1)
at some point x1 obviously depends, of course, not only upon the local value w(x1) of the
deflection but also upon that at neighbor points x2. Their influence decreases as the distance
|x1 − x2| increases.” Thus, Flügge came to the conclusion that in order to solve practical
engineering problems, it is necessary to study a class of models that are now called nonlocal.

Lei et al. [4] emphasized that from a physical point of view, the need to take into
account nonlocal elastic or damping properties arises when it is expedient to model a
two-dimensional or spatial element as a one-dimensional one. Therefore, such an ap-
proach has many potential applications in engineering structures with nonlocal energy
dissipation mechanisms.
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In 1972, Eringen and Edelen [29] proposed a nonlocal model of the elastic properties
of a structural material, which was further developed by many researchers, among them
References [30–32].

In 1975, Ahmadi studied a linear theory of nonlocal viscoelastic material in Refer-
ence [33] and obtained the constitutive equations for nonlocal Kelvin–Voigt, Maxwell,
and Boltzmann–Volterra viscoelastic materials. It was shown that the simple viscoelastic
materials, in fact, are nonlocal-in-time properties.

Baretta et al. [34] suggested a combination of Eringen’s nonlocal elasticity model
and the fractional derivative model of viscoelasticity to solve the problem of bending of
Euler–Bernoulli beams in porous viscoelastic materials.

Another way to generalize the linear relationship between stress and strain was proposed
by Boltzmann [35] and Volterra [36], who developed the theory of a viscoelastic medium with
heredity, according to which the strain at any given time depends on all that has happened
before, i.e., on the whole stress history. The final deformation at the considered moment of
time is represented by the sum of the deformations caused by each of the previously acting
forces, considering the decrease in their influence over the current time. The degree of such a
decrease is described by a memory function that monotonically decreases with an increase
in the argument, which characterizes the hereditary properties of the material. The type of
hereditary kernel should be selected based on experimental data.

A great contribution to the development of the hereditary theory of elasticity was made
by Academician Rabotnov [13,37,38]. The fractional–exponential kernel of the hereditary
elasticity proposed by him [37] enabled results that are in good agreement with the results
of testing polymeric materials to be obtained.

The monograph in Reference [39] was devoted to the construction of nonlocal models
(Kunin chains). It has been noted that nonlocality could be of a physical or geometric
nature. In the first case, the scale parameter corresponds to the characteristic size of the
material’s microstructure. In the second case, it is due to the approximate consideration of
such parameters as the thickness of a structural element (rod or plate), while the nonlocal
model serves for an effective approximate description of the behavior of a homogeneous
three-dimensional medium. The book [39] presented in detail the construction of the math-
ematical apparatus of nonlocal theories and also noted a number of inherent ambiguities,
such as the ambiguity of the certainty of energy density, stresses, etc.

Nonlocal elasticity models were used for theoretical studies of nanorod and nanoplate
systems in References [40,41]. The nonlocal elasticity model was applied to the wave
propagation modeling in Reference [42].

Bažant and Jirásek [23] reviewed the progress in nonlocal models of the integral
type and discussed their physical justifications, advantages, and numerical applications.
It has been noted that “the term nonlocal has in the past been used with two senses,
one narrow and one broad. In the narrow sense, it refers strictly to the models with an
averaging integral. In the broad sense, it refers to all the constitutive models that involve a
characteristic length (material length), which also includes the gradient models. This broad
sense stems from the realization that some gradient models are derived as approximations
to the nonlocal averaging integrals and that for all the gradient models, the gradient, in fact,
includes a dependence on the immediate (infinitely close) neighborhood of the point under
consideration”. An interested reader could find a state-of-the-art in the field of application
of such nonlocal models in mechanics in Reference [23].

Potapov [43,44] considered the problem of the dynamic stability (in the sense of
Lyapunov) of a composite rod with the simultaneous application of the hypotheses of
nonlocal elasticity and nonlocal damping. Although this approach, on the one hand, makes
the model very flexible, which is very important when working with orthotropic and
anisotropic materials, on the other hand, the simultaneous consideration of both nonlocal
elasticity and nonlocal damping makes the model quite complex from a mathematical point
of view.
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Suppose that in order to achieve the required calculation accuracy, it is sufficient to use
either only the hypothesis of nonlocal elasticity or only the hypothesis of nonlocal damping.
Further, we would focus on the hypothesis of nonlocal damping.

4. Nonlocal Damping Models

For the first time, a damping model, nonlocal-in-spatial coordinates, was proposed by
Russell [45] for the dynamic analysis of a composite beam.

Banks and Inman [3] examined four damping models using the example of vibrations
of a composite cantilever beam with a concentrated mass at the free end. The beam was
made of fiberglass-reinforced plastic. In so doing, the reinforcement was arranged in the
longitudinal and transverse directions. It was noted that this material possesses damping
properties that are different from those of homogeneous materials. It was assumed that the
behavior of the beam corresponded to the Bernoulli hypothesis, and the torsional, shear,
and longitudinal displacements were negligible.

Three models presented in Reference [3] describe internal friction: the Voigt model;
time hysteresis; and spatial hysteresis. The model called temporary hysteresis in Reference [3]
is similar to the theory of the medium with heredity, where the system’s response to external
influences that took place in the past affects its dynamic behavior in the present.

Spatial hysteresis is similar to the damping model nonlocal-in-coordinates [45]. This
model is based on the assumption that the energy losses during lateral vibrations of the
beam are associated with the fact that the internal friction in the material is caused by the
rotation of the sections relative to each other. Moreover, not only the considered cross-
section of the beam affects the process of internal damping but also the cross-sections
adjacent to it. In this case, a kernel function or an influence function should be introduced,
which is the law of a decrease in the influence of cross-sections on each other with an
increase in the distance between them.

The fourth model in Reference [3] described external viscous damping. In other words,
it assumed that the vibration damping process was associated with the friction of the
structure against the external medium. The damping forces were considered proportional
to the displacement rates. This hypothesis is convenient for practical applications.

Some combinations of these models are also considered in Reference [3]. It is noted that
the described approaches are based on physical considerations. Damping models are involved
in the equation of bending vibrations of the Euler–Bernoulli beams. In this case, the boundary
conditions were chosen so that they could be used with different damping models.

The selection of the parameters for damping models was carried out in Reference [3]
according to the experimental data using the least squares method. The parameters ob-
tained in this way were utilized in integrodifferential equations to simulate the dynamic
response of the system. The vibration process modeled in such a way was compared with
experimental data. It has been shown that the spatial hysteresis used as a model of inter-
nal friction in combination with external viscous damping gives the best agreement with
the experiment.

Banks and Inman [3] emphasized that the intuitive idea physically confirmed that
external damping is significantly manifested at lower vibration frequencies, while inter-
nal friction has a stronger effect on the vibration process at higher frequencies. It is also
noted that the proposed damping models cannot be constructed using standard damp-
ing coefficients obtained by modal analysis since they completely hide the physics and
the mechanism of the damping process. The natural frequencies obtained as a result of
mathematical modeling for the considered beam were compared with those measured
experimentally. It has been noted that the results of numerical calculations of a beam with
plastic fiberglass reinforced, according to the Euler–Bernoulli theory, coincide well with the
experimental data, and there is no need to use the Timoshenko beam model.

For the dynamic analysis of Euler–Bernoulli beams and Kirchhoff plates, Lei et al. [4]
suggested using a nonlocal damping model, which includes spatial and temporal hysteresis. In
contrast to the usual local models, the damping forces are calculated as the average of the velocity
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field in a certain region determined by the kernel function. The resulting integro-differential
equation of motion in partial derivatives is solved by the Bubnov–Galerkin method.

It was emphasized by the authors of [4] that a new nonlocal damping model proposed
for analyzing the dynamic characteristics of bending beams under various boundary
conditions is the generalization of the classical model of viscous friction and could be
applied in the calculations of engineering structures when it is important to take into
account the nonlocal mechanism of energy dissipation during vibrations. Such structures
include those with a viscoelastic damping coating, structures on viscoelastic foundations,
structures made of composite and nanomaterials, etc.

Within such an approach, it is assumed that damping at some point of the bar with
coordinate x1, measured along its axis, is considered dependent not only on the local value
of the rate of deformation change

.
ε(x1, t) at the same point x1 but also on the value of the

rate of change in deformations at neighboring points at some area adjacent to this point.
The less the degree of influence of the damping properties of the points under consideration
on each other is, the greater the distance between them.

The approach proposed in Reference [4] was further utilized for solving different
engineering problems, among them: a modal analysis [46] and a finite element analysis of
the Euler–Bernoulli beams with internal nonlocal damping [47,48]; a finite element method
for elastic beams resting on nonlocal foundations [49]; and Timoshenko beams with internal
nonlocal damping [50].

Reference [48] concluded that “the external damping parameters have simple effects
on the natural frequencies and the dependence with nonlocal parameter is not strong”.
Hence, the nonlocal-internal and -external damping parts in the equation of motion can
be modeled independently. Therefore, the modal analysis technique for the nano-scale
Euler–Bernoulli beams was proposed with the consideration of damping that is nonlocal
both in time and space in Reference [51].

A novel dynamic finite-element approach for bending vibrations of damped nonlocal-
in-space beams on an elastic foundation was proposed in Reference [51]. Both internal
and external damping mechanisms were employed. The stiffness and mass matrices of the
nonlocal beam were obtained using the conventional finite element method. The scale factor
of the nonlocal model was not determined by any experimental data, and for numerical
examples, it was considered from 0 to 2 nm [51].

Emphasizing the physical significance of nonlocal models, Gonzales et al. [52] utilized
the approach by Lei et al. [4,46–50] for treating the Euler–Bernoulli beams with separate
areas of nonlocal properties via the Galerkin method. In Reference [53], the models of
spatial and spatiotemporal nonlocal-internal damping were applied to the nonlinear seismic
analysis of a four-story frame. It was shown that nonlocal damping models do not exhibit
spurious damping properties as exhibited by the global damping models on the onset
of inelasticity.

We should also mention the series of theoretical papers [54–60] which are devoted to
the nonlocal energy damping model with linear and nonlinear terms, wherein the energy
dissipation is considered in Euler–Bernoulli beams and Kirchhoff plates with different
boundary conditions. The authors of [54–60] declared that the model is suitable for flight
structures, pipes, and plate dynamic simulation, including supersonic flatter.

The significant contribution to the development and application of the nonlocal damp-
ing theory to practical engineering problems was made by Potapov [61,62]. In 2012, he
implemented the nonlocal-in-space damping model to the problem of the stability of
vertical columns subjected to longitudinal force [61]. The solution was found using the
Bubnov–Galerkin and the Runge–Kutta fourth-order methods. Further, this approach was
utilized for modeling nonlinear systems, and the problem of shallow arch stability was
solved [62].

To this purpose, instead of the traditional Voigt hypothesis

σ = Eε + Etκ
.
ε, (1)



Axioms 2023, 12, 676 6 of 21

where σ and ε are the normal stress and longitudinal strain, respectively,
.
ε is the strain rate,

E is Young’s modulus, and tκ is the retardation time, the following relationship was used:

σ(x, t) = Eε(x, t) + χ

l∫
0

C(|x− θ|) .
ε(θ, t)dθ, (2)

where C(|x− θ|) is a function that describes the decrease in the influence of points with
coordinates x and θ on each other, and χ is the dynamic viscosity.

The research started by Potapov and his collaborators [61–64] on modeling internal
damping nonlocal-in-spatial coordinates was further developed in References [65,66],
resulting in a technique allowing one to calibrate the model parameters using the data
of numerical simulations of the vibrations of a composite beam in a three-dimensional
configuration, taking its orthotropic properties into account. The results presented in
References [65,66] indicate that a one-dimensional nonlocal model could be used instead of
a detailed classical spatial computational model.

Although the nonlocal-in-space damping model shows good agreement with the
results of numerical experiments [65,66], its embedding into the algorithm of a numerical
calculation method, for example, the finite element method, is rather difficult and, to some
extent, farfetched. This is due to the fact that the kernel function describing the character of
the decrease in the influence of neighboring points of an element on each other can step
over the boundaries of finite elements.

But since the finite element method is the predominant method of analysis in en-
gineering practice, it becomes necessary to construct a model that is flexible enough
to describe the dynamic behavior of a composite material and, at the same time, is
easily integrated into the finite element method algorithm. Such a model similar to
that for damping nonlocal-in-time, proposed in Reference [3], was developed further by
Sidorov et al. [67], with the only difference that the authors of Reference [67] assumed that
damping at the current moment of time t depends not only on the instantaneous value of
the rate of change in deformations at this moment of time

.
ε(t) but also on the value of the

rate of change in deformations at the previous moments of time τ. Moreover, the less the
effect of the value of the rate of change in deformation at a certain moment of time τ is, the
longer the time interval between τ and the current moment t is. That is why we will refer
to this model as damping-with-memory.

See Table 1 for the main classical and nonlocal models of internal friction for solids
and structures. The main types of kernel functions C(|x− θ|) and G(t− τ) utilized in the
spatial and temporal nonlocal models, respectively, are presented in Table 2, where µ and
l0 are the characteristic parameters of the damping material [50], and γ is the coefficient of
inelastic reaction due to Sorokin [3].

Table 1. Basic models of internal damping.

Basic Classical Models of Damping due to Internal Friction

Kelvin–Voigt model σ = Eε + tκ
.
ε [3,8,50,63,66]

Sorokin’s complex stiffness
model σ = (1 + iγ)Eε [3]

Nonlocal models of damping due to internal friction

Internal friction model
nonlocal-in-spatial

coordinate x
σ(x, t) = Eε(x, t) + χ

l∫
0

C(|x− θ|) .
ε(θ, t)dθ [3,50,63–66]

Internal friction model
nonlocal-in-time t σ(x, t) = Eε(x, t) + χ

∫ t
−∞ G(t− τ)

.
ε(x, τ)dτ [3,67–70]
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Table 2. Kernel functions used in nonlocal damping models.

Kernel Functions for Nonlocal-in-Space Damping Models

Exponential kernel function C(|x− θ|) = µ
2 e−µ|x−θ| [50,63–66]

Error kernel function C(|x− θ|) = µ√
2π

e
−µ2(x−θ)2

2 [3,50,53]

Hat kernel function C(|x− θ|) =
{

1
l0

, for |x− θ| ≤ l0
2

0, otherwise
[50]

Triangular kernel function C(|x− θ|) =
{

1
l0

(
1− |x−θ|

l0

)
, for |x− θ| ≤ l0

0, otherwise
[50]

Kernel functions for nonlocal-in-time damping models

Exponential kernel function Gv(t− τ) = µe−µ(t−τ) [67]

Error kernel function Gν(t− τ) =
2µ√

π
e−µ2(t−τ)2

[67,69–71]

5. Damping-with-Memory Model

Within the algorithm of the finite element analysis, the equilibrium equation of a struc-
ture deformed during its motion could be represented in the matrix form as follows [71]:

M
..
V(t) + D

.
V(t) + KV(t) = F(t), (3)

where V(t) is the displacement vector, M is the mass matrix, K is the stiffness matrix of the
finite element model, F(t) is the load vector, while D is the damping matrix.

The stiffness and mass matrices of the i-th beam element have the form [71]:

Ki =


12EI

l3
6EI
l2 − 12EI

l3
6EI
l2

6EI
l2

4EI
l − 6EI

l2
2EI

l
− 12EI

l3 − 6EI
l2

12EI
l3 − 6EI

l2
6EI
l2

2EI
l − 6EI

l2
4EI

l

, (4)

Mi =
ρAl
420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l 3l2 −22l 4l2

, (5)

where l is the element length, I is the moment of inertia, and ρ is the material density.
Assuming that the memory model of material damping depends on the values of the

strain rate, its damping matrix could be deduced according to the requirement of stationary
state of the full energy of the vibrating system. Thus, the dissipation of energy during
deformation of a finite element under dynamic loading will be represented by a dissipative
function ΦD [72,73]:

ΦD =
1
2

χ
.
ε

2, (6)

where the coefficient defining material viscosity χ could be obtained as follows:

χ = Etκ , (7)

and tκ is the retardation time (sometimes it is called the delay time [72]) which could be
determined in terms of the damping coefficient (critical fraction) ξcr and the first natural
frequency of the system ω [72,73]

t κ =
2ξcr

ω
. (8)
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Energy dissipation through the material of the whole system could be presented as
the summation of energy dissipation ΦDi through each finite element:

ΦD =
N

∑
i−1

ΦDi, (9)

where i is the finite element number (i = 1, 2, . . . , N), N is the number of elements in the
whole FE computational model, which, in the case of a bent beam, has the form [68]

ΦDi =
1
2

∫
l

∫
A

χ
.
ε

2
bdAdz, (10)

where A is the element’s cross-section area, z is the longitudinal coordinate, l is the element
length, and

.
εb is the bending-induced axial strain rate.

Bending-induced axial strain for the Euler–Bernoulli beam is as follows [73]:

εb =
1
R

y =
d2v
dz2 y, (11)

where R is the radius of curvature of the beam’s neutral layer, y is the distance to the
considered beam fiber from its neutral layer, and v is the transverse displacement.

Then Equation (10) is reduced to

ΦDi =
1
2

Iχ
∫
l

(
d2 .

v
dz2

)2

dz. (12)

Within the FEA, the transverse displacements could be approximated along the beam
element with cubic shape function:

[Nv]
T =


1− 3ξ2 + 2ξ3

l
(
ξ − 2ξ2 + ξ3)
3ξ2 − 2ξ3

l
(
−ξ2 + ξ3)

, (13)

where ξ = z
l is the reduced local longitudinal coordinate.

Considering (13), the Expression (12) could be reduced to

ΦDi =
1
2

Iχ

1∫
0

(Av[Nv])
T Av[Nv]

.
v2

i ldξ. (14)

where
.
vi =


.
v0.
ϕ0.
vl.
ϕl

 are nodal velocity vectors during bending. In so doing,
.
v0 and

.
vl are

the velocities of the transverse displacements at the initial and terminal points of each i-th
element, and

.
ϕ0 and

.
ϕl are velocities of rotation displacements, and Av = d2

l2·dξ2 .
The requirement for the stationary state of the full energy of the vibrating system

∂ΦD

∂
.
v

= 0 (15)

gives us the D
.

V term in the equilibrium equation in Motion (3).
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The beam’s damping matrix D is obtained by topological summation of the element’s
damping matrices Di as follows:

Di = Iχ

1∫
0

(Av[Nv])
T Av[Nv]ldξ, (16)

or

Di = χ·


12I
l3

6I
l2 − 12I

l3
6I
l2

6I
l2

4I
l − 6I

l2
2I
l

− 12I
l3 − 6I

l2
12I
l3 − 6I

l2
6I
l2

2I
l − 6I

l2
4I
l

. (17)

To construct the damping-with-memory model, Equation (3) should be represented as
follows: [67]

M
..
V(t) + D

∫ t

0
G(t− τ)

.
V(τ)dτ + KV(t) = F(t), (18)

where G(t− τ) is the kernel function which describes the decrease in the influence of the
motion velocity at the moment τ on damping at the current moment t. The kernel function
should be normalized to satisfy the following condition:∫ t

−∞
G(t− τ)dτ = 1. (19)

Considering (19), the error function could be used as the kernel function

G(t− τ) =
2µ√

π
e−µ2(t−τ)2

, (20)

where µ is a parameter of the model that determines the rate of decay of the influence of
the nonlocal damping over distance, i.e., the parameter characterizing the level of damping
temporal nonlocality [68]. The higher is µ, the closer the model is to the classic local one
(Figure 1).
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𝑍𝑍+

1
2Δ𝑡𝑡
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2𝜇𝜇
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6. Equilibrium Equation Solving with the Method of Central Differences

To solve the dynamic equilibrium equation, the method of the central differences could
be adopted [69], what allows one to reduce Equation (18) to the following form [67]:

1
∆t2 M(Vi+1 − 2Vi + Vi−1) +

D
2

Z +
1

2∆t
D(Vi+1 −Vi) + KVi(t) = Fi, (21)
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where i = 1, 2, 3 . . . is a number of the considered moments in time t, and ∆t is the time step.
In Equation (21), the vector has the form

Z =
i

∑
j=1

2µ√
π

e−µ2[t−(τ−∆t/2)]2(Vj −Vj−1
)
, (22)

where τ = j ∆t, and t = i∆t.
From Equation (21), it follows that the displacement vector Vi+1 could be calculated in

terms of Vi and Vi−1 as follows:

Vi+1 = QFi −Q1Vi −Q2Vi−1 −Q3Z, (23)

where
Q =

(
1

∆t2 M + 1
2∆t D

)−1
,

Q1 = Q
(
− 2

∆t2 M− 1
2∆t D + K

)
,

Q2 = Q
(

1
∆t2 M

)
, Q3 = 1

2 QD.

(24)

At the first step, i.e., for i = 1, V0 = 0 and V1 = 0 are taken as the initial conditions.
The solution obtained by the explicit scheme turned out to be quite unstable and

demanding in a sense of calculation time. For the explicit scheme, the maximum allowed
time increment was 0.001 s. For the larger time steps, the finite element model fell apart [67].
Thus, it was further decided to use the Newmark method (the implicit scheme) instead,
since it has been found in Reference [69] that the implicit scheme allows the maximum time
increment of 0.01 s, i.e., 10 times larger in comparison to the central difference method.

7. Modified FEA Model Considering Nonlocal Damping Solved by the Implicit Scheme

In order to make the modal more flexible and controllable, the additional terms have
been added to the FEA equation of Motion (3) [69,70]:

M
..
V(t) + αD

.
V(t) + (1− α)D

 t−∆t∫
t0

G(µ, t− τ)
.

V(τ)dτ

+ KV(t) = F(t). (25)

Similar to Reference [4], the material had separate parts of locality and nonlocality,
the damping properties were also divided into nonlocal and local parts, and α was the
coefficient of nonlocality, i.e., the parameter assigning the share of local properties of the
model (0 < α < 1).

The equation of motion (25) could be solved using the modified Newmark method [71].
The computational scheme for the vertical displacements of the beam is as follows:

V(ti+1) = K−1
e f Re f (ti+1), (26)

where the effective stiffness matrix Ke f and the effective load vector Re f (ti+1) have the
following forms:

Ke f =
1

a·∆t
M +

α

∆t
D + K,

Re f (ti+1) = F(ti+1) + Q1

(
V(ti) + ∆t

.
V(ti) + ∆tb

..
V(ti)

)
+

+Q2V(ti)− (1− α)D∑i
j=1

(
G
(
ti, τj

) .
V
(
τj
)
∆τ

)
,

Q1 = 1
a·∆t M, Q2 = α

∆t D, i = 1, 2, 3 . . . n is the number of the time step, j = 1 ÷ i,
∆t = |ti+1 − ti| is the time gap between the moments ti and ti+1, and ∆τ is considered
equal to ∆t.
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Iterative schemes for calculating accelerations and velocities based on the assumption
of the change in accelerations over a finite interval [ti−1, ti+1] according to a linear law
utilizing the Newmark method are the following:

..
V(ti+1) =

V(ti+1)−V(ti)

2(∆t)2 −
.

V(ti−1)

2∆t
− a + b

b + c

[ ..
V(ti+1)−

..
V(ti)

]
, (27)

.
V(ti+1) =

.
V(ti−1) + 2∆t

..
V(ti−1) + 2∆t

a + b
b + c

[ ..
V(ti+1)−

..
V(ti)

]
, (28)

where a is the interval between ti−1 and ti, b is the interval between ti and
(
ti + t̂ ), c is the

interval between
(
ti + t̂

)
and ti+1, and, thus, a + b + c = 2∆t (Figure 2).
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Figure 2. A scheme of the elements of the acceleration vector
..
V(t) within the analyzed time steps

ti−1 and ti+1.

In Formulas (27) and (28), the characteristic time t̂ defines the influence coefficient
( a+b

b+c ). It could be chosen according to the minimal divergence between the calculated and
experimental magnitudes of displacements. In the model discussed, it has been taken as a
constant value with due account for the minimal error of calculations [69].

Since the influence kernel function is fading with time and after some time becomes
insignificantly small, there is no need to remember the whole vibration process to determine
the damping forces. For a rather long duration of the vibration processes, the memory
length is limited using the mnemonic parameter according to the rule (Figure 3)

G
(
ti − τj

)
=

2µ√
π

e−µ2(ti−τj)
2
, (29)

where i = 1, 2, 3, . . . , Tn/∆t + 1 is the number of the current discrete time step, j =
k, k + 1, . . . , i are numbers of all computational steps previous to i, Tn = |tn − t0| is the
length of the time interval of forced mechanical vibrations until their entire damping, and
∆t = Tn/n is the step of discretization of the time interval [t0, tn] divided into n segments.
In so doing, k = 1, 2, . . . , Tn/

(
∆tMη

)
is the number of the time step that limits the interval

of memory history with the length equal to the magnitude of the mnemonic parameter
Mη of nonlocal-in-time damping, which characterizes the endurance of material memory
about its deformations.
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8. Numerical Example and Results for the Beam Model

The mathematical model of beam vibrations considering the nonlocal damping-with-
memory was implemented in the MATLAB software package. In order to make this
model to be applicable for practical use, it should be calibrated according to the results of
experimental data.

The method for determining the parameter µ, describing the level of damping non-
locality of the beam material, based on the data of the numerical experiment via the least
squares method is presented in Reference [65]. This technique was used to determine the
influence distance for the damping-with-memory model in References [69,70]. For this
purpose, a three-dimensional finite element model of the considered beam element was
realized within the verified calculation software SIMULIA Abaqus CAE. The obtained data
were imported into the MATLAB software package. Determination of the three parameters
µ, α, Mη , which control the nonlocal damping model, was implemented according to the
rule of minimum error based on the least squares method (Figure 4):

100%
N
·

N

∑
i=1

∣∣∣∣∣V
exp

(ti)−Vmodel
(α, µ, Mη, ti)

Vexp
(ti)

∣∣∣∣∣ = f error, (30)

where Nt = 251 is the number of time increments, Vexp
(t) and Vmodel(

α, µ, Mη , t
)

are,
respectively, the displacement vector components obtained via numerical experiments and
due to the nonlocal-in-time model.
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Figure 4. Error variation f error[%] depending on µ ∈ (0.25)[s] and α ∈ (0.1).

As an example, let us consider the dynamic behavior of a composite beam shown in
Figure 5, which was made of orthotropic thermoset vinyl ester class 1 GFRP, the properties
of which were determined experimentally in References [74–76] and are given in Table 3.
The beam is clamped at the ends and is subjected to instantly applied uniformly distributed
load q = 10 kN/m.
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Table 3. Properties of thermosetting vinyl ester fiberglass 1FRP [74–76].

Young’s modulus in the longitudinal direction Elong 17.2 GPa

Young’s modulus in the transverse direction Etrans 12.2 GPa

Poisson’s ratio in the longitudinal direction µlong 0.32

Poisson’s ratio in the transverse direction µtrans 0.15

density of the material ρ 1900 kg/m3

Damping coefficient (critical fraction) 0.042

The displacements of a middle span of the beam in time are shown in Figure 6. The
solid line corresponds to the beam displacements obtained using the calibrated nonlocal
model, and the dashed curve to those via a standard 3D model simulated in SIMULIA
Abaqus (Figure 7).
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In order to estimate the value of divergence between the results, the root-mean-square
error σerror was calculated.

σerror =

√
∑N

i=1(yi − fi(µ))
2

N
, (31)

where yi are the ordinates of the numerical experiment data, and fi(µ) are the ordinates of
the results via the nonlocal-in-time damping model.
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The root-mean-square error was 5.9% for the deflection at 20 s.
A comparison of the displacements of the middle node obtained using the classical

(local in time) one-dimensional damping model based on the Voigt hypothesis with those
obtained in SIMULIA Abaqus is shown in Figure 8. In this case, the relative root-mean-
square error was 16.5%.
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Instead of central differences (explicit scheme), the Newmark method (implicit scheme)
could be utilized [69,70]. In this case, the nonlocal model becomes more stable and larger
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time increments could be implemented. The accuracy of the obtained results is almost
the same in comparison to the central differences, but the time of one simulation of the
vibration process is shortened more than twenty times [69].

9. Modeling of Composite Frame Vibrations Considering Nonlocal-in-Time Damping
Model

Let us show how the nonlocal-in-time damping model could be integrated into the
FEA algorithm to study dynamic response of frame structures [77,78]. The equation of
motion for the frame structure is similar to Equation (3), while the stiffness matrix for the
2D frame element has the following form [71]:

Ki =



EA
l 0 0 − EA

l 0 0
0 12EI

l3
6EI
l2 0 − 12EI

l3
6EI
l2

0 6EI
l2

4EI
l 0 − 6EI

l2
2EI

l
− EA

l 0 0 EA
l 0 0

0 − 12EI
l3 − 6EI

l2 0 12EI
l3 − 6EI

l2

0 6EI
l2

2EI
l 0 − 6EI

l2
4EI

l


. (32)

The damping matrix could also be obtained according to the requirement of stationary
state of the total energy of the vibrating system as was demonstrated earlier. The procedure
for developing the damping matrix has been presented in detail in Reference [67]. Unlike
the beam element, for the frame element, the axial displacement u should be taken into
account. Then, energy dissipation could be written as follows:

ΦDi =
1
2

∫
l

χ
.
ε

2
a Adz +

1
2

∫
l

∫
A

χ
.
ε

2
bdAdz, (33)

where A is the frame element cross-section area, and
.
εa is the tension-induced axial strain rate.

Tension-induced axial strain is as follows [73]:

εa =
du
dz

. (34)

Then Equation (33) will take the form

ΦDi =
1
2

Aχ
∫
l

(
d

.
u

dz

)2

dz +
1
2

Iχ
∫
l

(
d2 .

v
dz2

)2

dz. (35)

Considering the linear shape function for the axial displacements [Nu] =
[
1− ξ ξ

]
relationship (35) could be transformed to:

ΦDi =
1
2

Aχ

1∫
0

(Au[Nu])
T Au[Nu]

.
u2

i ldξ +
1
2

Iχ

1∫
0

(Av[Nv])
T Av[Nv]

.
v2

i ldξ. (36)

where
.
ui =

( .
u0.
ul

)
is the vector of nodal velocities of axial displacements, Au = d

l·dξ , and
.
u0

and
.
ul are velocities of the initial and terminal points of the i-th element.
Therefore, the damping matrix of the frame element Di could be written as follows:

Di = Aχ

1∫
0

(Au[Nu])
T Au[Nu]ldξ + Iχ

1∫
0

(Av[Nv])
T Av[Nv]ldξ, (37)
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or

Di = χ



A
l 0 0 − A

l 0 0
0 12I

l3
6I
l2 0 − 12I

l3
6I
l2

0 6I
l2

4I
l 0 − 6I

l2
2I
l

− A
l 0 0 A

l 0 0
0 − 12I

l3 − 6I
l2 0 12I

l3 − 6I
l2

0 6I
l2

2I
l 0 − 6I

l2
4I
l


. (38)

In order to solve the equation of frame motion, the nonmodified Newmark method
(an implicit scheme) could be used [71]. In this case, the first- and second-order time
derivatives of the displacement vector V(t) (velocity and acceleration) entered into Equa-
tions (3) and (18) could be presented as follows:

.
Vi+1 =

Vi+1 −Vi
∆t

,
..
Vi+1 =

2
∆t2

(
Vi+1 −Vi −

.
Vi∆t

)
−

..
Vi. (39)

Considering Relationships (39), Equation (18) is reduced to the following form:

M
[

2
∆t2

(
Vi+1 −Vi −

.
Vi∆t

)
−

..
Vi

]
+ D

1
∆t

i+1

∑
j=1

G
(
ti+1, τj

) .
V j + KVi = Fi. (40)

Here G
(
ti+1, τj

)
is the discrete analog of the G(t− τ) kernel, which, for Error Func-

tion (20), is calculated as follows:

G
(
ti+1, τj

)
= ∆t

[
2µ√

π
e−µ2(t−τ+ ∆t

2 )
2
]

, (41)

where t = (i + 1)∆t, τ = j∆t, and j = 1, 2, . . . , i + 1 is the number of the time step, at which
the displacement vector is calculated.

The Newmark scheme is implicit, so one needs to know
.

Vi+1 to calculate the dis-
placement vector. To solve this problem, the damping-with-memory term in Equation (40)
should be divided into two parts, resulting in

M
[

2
∆t2

(
Vi+1 −Vi −

.
Vi∆t

)
−

..
Vi

]
+ βD + αD + KVi = Fi, (42)

where one of two memory parts, α, is related to the i + 1 step, when the other, β, corresponds
to all previous steps:

β =
i

∑
j=1

2µ√
π

e−µ2(tj−tj−1)
2(

Vj −Vj−1
)
, α =

2µ√
π

e−µ2(ti+1−ti)
2
(Vi+1 −Vi). (43)

Equation (42) could be transformed into the computational scheme for the step-by-step
calculation of Vi+1 using the vectors Vi and Vi−1, which are calculated on the previous
increments i and i− 1

ZVi+1 = Fi+1 + M
..
Vi + Q1

.
Vi + Q2Vi + βD, (44)

where

Z =

(
2

∆t2 M +
1

∆t
αD + K

)
, Q1 =

2
∆t

M, Q2 =
1

∆t

(
2

∆t
M + αD

)
. (45)

10. Numerical Results for the Frame Model

As a numerical example, the finite element model of a vibrating frame was imple-
mented in the MATLAB software package. The frame geometry, boundary conditions, and
loading are shown in Figure 9. The load is applied instantly.
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Figure 9. Scheme of the frame.

The frame is made of the same material as the beam structure considered before.
For the first step of the simulated vibration process i = 1, we assume V1 =

.
V1 =

..
V1 =

0 as the initial conditions.
To determine the scale parameter for the considered structure, once again the computer

simulation results obtained in SIMULIA Abaqus were used. The frame was modeled
utilizing 3D-solid finite elements considering the orthotropic properties of the material.
Using the least squares method, the magnitude of the parameter was calculated as µ = 0.22,
which points to a significant level of the nonlocal properties of the material. The deflection
time history simulated by the calibrated nonlocal model in comparison with the results of
3D modeling via Abaqus is shown in Figure 10.
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3D-numerical simulation.

Even though the orthotropic properties of the material were not taken into account in
the 2D-nonlocal-damping model of the frame, the results match the numerical experiment
with satisfying accuracy. This is due to the fact that the nonlocal model could be flexibly
controlled by its scale parameter µ. The difference between the results provided by the
classical local-damping model and Abaqus data is shown in Figure 11.
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11. Conclusions

From the review of damping models presented in this paper, it is evident that in
comparison to local damping models, the nonlocal models allow one to obtain the main
characteristics of the simulated vibration process in a more reliable and flexible way. The
proposed models enable one to consider both internal and external damping at a time.

The enlarged flexibility makes it possible to use one-dimensional models of beam
elements in the dynamic analysis of structures made of modern composite materials with
orthotropic properties. The damping model with memory, which could be calibrated using
the least-squares method, allows one to approximate the data of a numerical experiment
with satisfactory accuracy.

The so-called nonlocal-in-time damping models are more easily integrated into the finite
element method algorithm as compared with the nonlocal-by-coordinate damping models, what
makes its application quite effective for solving different engineering problems.
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