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Abstract: In this study, the Moore–Gibson–Thompson (MGT) concept of thermal conductivity is
applied to a two-dimensional elastic solid in the form of a half-space. This model was constructed
using Green and Naghdi’s thermoelastic model to address the infinite velocity problem of heat
waves. It has been taken into account that the free surface of the medium is immersed in an
electromagnetic field of constant intensity, undergoes thermal shock, and rotates with a uniform
angular velocity. The governing equations of a modified version of Ohm’s law account for the impact
of temperature gradients and charge densities. By using the method of normal mode analysis, an
analytical representation of the studied physical fields was obtained. The effect of rotation and the
modulus of modified Ohm’s law on the responses of the field distributions examined is discussed,
along with accompanying graphical representations. Other thermoelastic models have been compared
with the results of the proposed system when the relaxation time is ignored.

Keywords: magneto-thermoelasticity; varying heat; MGT heat equation; rotation; modified Ohm’s
law coefficient; normal mode analysis
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1. Introduction

The thermoelasticity theory integrates the concepts of elasticity and heat transfer. It is
concerned with how heat affects the deformation of elastic media and how this deformation,
in turn, affects the thermal state of the medium under study. When the temporal variance
of a heat source in a medium or the temporal variance of thermal boundary conditions
over a medium contrast with the oscillation features of the structure, thermal stress is
generated. When it comes to describing the physical state of an elastic material as it relates
to temperature, the thermoelasticity theory provides a more accurate description than
elasticity does. Recently, there has been a lot of interest in the possible applications of the
thermoelasticity theory in geophysics, plasma physics, and related topics, specifically in
consideration of the interactions between magnetic fields, non-thermal forces, and rotation.
Magnetic fields, rotation, and huge temperature gradients are other factors that need to
be considered during the construction and operation of equipment, especially in nuclear
research. Scientists apply their knowledge of thermoelasticity to develop materials and
objects that can withstand wide temperature fluctuations without cracking.

Yadav and Singh [1] investigated thermoelastic and electromagnetic plane waves.
Augustine Lgwebuike et al. [2] looked at the behavior of plane waves in thermoelastic
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and magneto-thermoelastic media. Verma and Maiti recently solved the thermal shock
problem [3]. In [4], Choudhury investigated the issue of wave propagation in a generalized
thermoelastic medium that was both spinning and micropolar. Singh and Chakraborty [5]
investigated the reflected plane magneto-thermoelastic wave at a solid half-space boundary,
while the system was subjected to initial stress. Aboueregal and Sedighi [6] investigated
the thermoviscoelasticity of an unbounded annular cylinder to determine the transition
temperature and stresses caused by thermal expansion. The inner and outer surfaces are
frictionless and free of thermal insulation, while the inner surface is heated by thermal
shock. Zhu et al. [7] investigated the behavior of a thermoelastic half-steady-state plane
in the presence of voids, subjected to a thermal source, and under the influence of a
harmonic force. Abouelregal and Abo-dahab [8] considered the generalized form of the
equations of generalized thermoelasticity for a heterogeneous isotropic flexible half-space
solid with a mode-I fracture issue on its surface caused by rotation. Within the Lord–
Shulman theory of thermoelasticity framework, Yadav [9] investigated the phenomenon
of the propagation of plane waves in a rotating magneto-thermoelastic half-space with
diffusion. After formulating the governing equations for a certain plane and solving them,
one obtains the velocity equation, which reveals the presence of four plane waves linked
together.

When three different types of shot Vanadium titanomagnetite (VTM) pellets were
discharged, Shi et al. [10] examined reduction behaviors and mechanisms. Because of
their reduction property, vanadium titanomagnetite (VTM) pellets are a crucial for the
rotary kiln-electric furnace method. The exceptional function of Zn in improving the
thermoelectric performance of Ga-doped PbTe was described by Luo et al. [11]. Zn is
shown to enhance the electronic transport characteristics and reduce the lattice thermal
conductivity of Ga-doped PbTe, achieving a maximum ZT value of 1.55 at 723 K and a
record high ZTavg~1.26 across the temperature range of 400–873 K. Because of its high
entropy, Wang et al. [12] improved the thermophysical properties of rare earth tantalate
ceramics.

Najibi and Wang [13] used quadratic Lagrangian shape functions to design a graded
finite element analysis algorithm to resolve the axisymmetric 2D hyperbolic heat transfer
problem in a finite hollow cylinder composed of functionally graded solids. For newly
suggested functionally graded porosity (FGP) media, Najibi and Shojaeefard [14] conducted
the numerical analysis of heat transfer. The responses of Fourier, Cattaneo–Vernotte (C-V),
dual-phase lag (DPL), and time-fractional heat transfer for a porous solid–gas medium were
compared with the experimental findings of various flux pulse durations. Through the
use of the Lord–Shulman theory, Jani and Kiani [15] investigated the response of a hollow
piezoelectric disc. By reducing the governing equations of the general state to those of the
plane stress state, we are able to obtain governing equations for the system. For the thermo-
viscoelasticity issue of a hollow sphere, Javani et al. [16] presented a unified formulation
that incorporates the LS, GL, and GN theories, as well as the impacts of viscosity. The
Kelvin–Voigt viscosity concept is used to define the characteristics of materials. Additional
research on generalized thermoelasticity for functionally graded materials may be found
in [17].

Biot’s traditional theory of thermoelasticity [18] contrasts with many representations
of thermal resistance, which use the equivalent thermodynamic equation and predict an
infinite velocity of heat transfer within the medium. That is why a variety of generalized
thermoelastic models with multiple applications have emerged to solve such problems.
To remedy the shortcomings found in the Biot theory [18], Lord and Shulman [19] and
Green and Lindsay [20] improved it by including the idea of the relaxation time coeffi-
cient in the heat transfer vector based on the idea of Cattaneo–Vernotte [21–23]. Using
an expanded thermodynamics system, Sarkar and Singh [24] provided the constitutive
modeling of a new generalized thermoelasticity framework by incorporating a strain-rate
term coupled with a relaxation time coefficient into the Lord–Shulman (LS) thermoelasticity
theory. Sherief et al. [25] considered a two-dimensional axisymmetric problem involving an
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infinite body. Within the body, there is an infinite cylinder made of different materials and
harboring a variable heat source. The mathematical model for the transmission of waves
in an extended thermoelastic, multiple-layered composite hollow cylinder was developed
by Mahesh and Selvamani [26]. This cylinder has a visco-thermoelastic layer on the inside
and a linear flexible material on the outside, and the layers are held together with fasteners.
Kumar et al. [27] discovered how particle Rayleigh wave motion, attenuation, and phase
velocity change in a generalized, nonlocalized thermal medium. Yang et al. [28] established
a technique to address issues combining coupled mechanical and thermal movements and
to study the propagation properties of thermoelastic waves produced by point sources
in a three-dimensional, multilayered half-space. Malik et al. [29] were interested in wave
transmission with diffusion over the boundary of two different nonlocally modified ther-
moelastic substances. The impact of the thermoelastic medium on wave propagation can
be shown once the mathematical issue has been formulated.

Green and Naghdi [30–32] have also contributed a theoretical model to this field by
making sufficient basic adjustments to the constitutive equations to allow the analysis
of a considerably broader class of heat flow issues. The method used by the authors
of [30–32] involves entropy balancing. They initially proposed this entropy equilibrium
in [33]. The common practices in thermodynamics typically include using an inequality
like Clausius–Duhem or a related inequality.

Since its introduction, the Moore–Gibson–Thompson (MGT) equation has been the
subject of many research studies. Since high-intensity ultrasound has many practical uses in
medicine and industry, such as lithotripsy, heat treatment, ultrasonic cleaning, etc., there has
been a great number of studies in this field. In the field of thermoelasticity, Quintanilla [34]
introduced a new model of heat transfer by including the MGT equation in the heat
conduction equation. In fact, by adding a relaxation coefficient to the Green–Naghdi type
III model, this new equation for thermal conductivity can be derived. In fact, this equation
can be obtained after the introduction of a relaxation parameter to the Green–Naghdi type
III model. Abouelregal et al. presented numerous new thermoelasticity equation systems
and numerous applications in this context in response to Quintanilla’s proposal [35–41].
This modified model has been used to investigate the difficulties of fluid mechanics and
the thermal and mechanical behaviors of different engineering structures [42–49].

Many researchers have studied coupling between the modified Fourier law of thermal
conductivity and different systems, and many results have been presented. Although many
authors have studied the effect of electromagnetism, only a few researchers have taken
into account the effects of modified Ohm’s and Fourier’s laws. In this paper, we extend
Ohm’s law by incorporating two new terms: one accounts for the temperature gradient
(also known as the Seebeck influence), and the other considers the cross-product of velocity
and the initial magnetic field. Not only that, but Fourier’s law of thermal conductivity has
also been modified for the Green and Naghdi model of the third kind [31] to include the
factor of relaxation time. One of the advantages of this new model is that the relaxation
time coefficient plays an important role in reducing the propagation of heat waves.

As a direct application to the proposed model, a two-dimensional problem was inves-
tigated for a homogeneous, isotropic, elastic thermal body in the form of half an area when
the boundaries are stress free and subject to time-dependent variable thermal shocks. A
magnetic field of constant intensity is also present around the medium’s free surface. In
order to fully solve the problem, a normal model analysis method was used. The numerical
results are analyzed and discussed using graphical representations of the studied physical
fields. Finally, the results of this investigation were compared with those obtained in the
previous literature in the presence and absence of relaxation time.

2. Mathematical Model and Basic Equations

It is taken into account that the studied thermoelastic medium rotates with a constant
angular velocity, Ω = Ωn, so that the direction of the axis of rotation is indicated by
a unit vector, n. As a result, there are two additional terms in the equation for motion
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due to an accelerated reference frame: (1) centripetal acceleration, Ω× (Ω× u), due to
time-independent motion and (2) Coriolis acceleration, 2Ω× ∂u

∂t , due to the motion of the
reference frame [50]. The form of the differential equations for generalized electromagnetic
thermoelasticity is based on the MGT thermal conductivity theory.

σ = λ(∇·u)In + µ
(
∇u +∇uTr

)
− γθIn, (1)

e =
1
2

(
∇u +∇uTr

)
, (2)

ρ

[
∂2u
∂t2 + 2Ω× ∂u

∂t
+ Ω× (Ω× u)

]
= (λ + µ)∇(∇·u) + µ∇2u + F− γ∇θ, (3)

where σ = σij is the stress tensor, e = eij is the strain tensor, ρ signifies the density,
θ = T − T0, T is the absolute temperature, u = ui denotes the displacement vector, In is the
identity tensor, Tr denotes the transpose of a matrix, F is the body force vector, T0 is the
reference temperature determined, so that

∣∣∣ T−T0
T0

∣∣∣ << 1, γ = (3λ + 2µ)αt, αt is the thermal
expansion coefficient and Lame’s constants are denoted by the notations, λ and µ.

Applying a magnetic field of constant strength, H, generates an induced magnetic field,
h, and an induced electric field, E, inside the medium. Electromagnetism has governing
equations that may be derived from Maxwell’s magnetic and electric field equations. The
following form can offer simpler equations for an electrically and thermally conductive
homogeneous elastic material [50]:

∇× h = J +
∂D
∂t

, (4)

∇× E = −∂B
∂t

, (5)

∇·B = 0,∇·D = ρe, (6)

B = µ0(H + h), D = ε0E. (7)

In this equation, J denotes the current density vector, µ0 measures the magnetic perme-
ability, D and B correspond to the electric and magnetic induction vectors, respectively [43],
ε0 provides the electric permeability, and ρe illustrates the electric charge density. A modi-
fied version of Ohm’s Law for use with thermoelastic materials is stated as follows [51]:

J = σ0

(
E + µ0

∂u
∂t
×H

)
− k0∇θ, (8)

where k0 is the Ohm’s law modification coefficient and σ0 is the electrical conductivity
at room temperature. k0 = σ0S can be used to represent the coefficient connecting the
temperature difference to the resulting electric current, where S is called the Seebeck
coefficient (thermoelectric sensitivity). This induced thermoelectric voltage is induced
when there is a temperature difference between the two sides of the material.

The improved GN-III system led to the proposal of a new form of Fourier’s law as per
the following formula [31]

q = −[K∇ θ + K∗∇ϑ], (9)

where q represents the direction and magnitudes of the heat flow vector, K denotes the
thermal conductivity, and K∗ indicates the rate of thermal conductivity. Also, the variable,
ϑ, designates the thermal displacement and is related to the distribution of the heat by the
relationship,

.
ϑ = θ.
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The equation that can be used to describe energy is as follows:

ρCE
∂θ

∂t
+ T0γ

∂e
∂t

= −∇·q + ρQ, (10)

where CE stands for the specific heat, Q stands for the heat supply, and e represents the
cubical dilatation that is defined as:

e = ∇·u = uk,k. (11)

The revised version of the heat equation that Quintanilla developed can be seen in the
following equation [34]

q + τ0
∂q
∂t

= −K∇ θ − K∗∇ϑ, (12)

where τ0 is the relaxation time coefficient.
It is possible to combine Equations (10) and (12) to produce the modified MGT heat

transfer equation, which is defined as [36,38](
1 + τ0

∂

∂t

)
∂

∂t

[
ρCE

∂θ

∂t
+ T0γ

∂e
∂t
− ρQ

]
=

(
K

∂

∂t
+ K∗

)
∇2θ. (13)

3. Problem Formulation

In this analysis, a homogeneous, isotropic, generalized thermoelastic semi-infinite
solid occupying the area, x ≥ 0, is considered. It is assumed that the border, x = 0, is
unconstrained, uncompressed, and starts at a uniform temperature, T0. It was decided that
a rectangular Cartesian coordinate system (x, y, z) should be used, where the origin lies on
the surface, x = 0. As shown in Figure 1, the x-axis perpendicular to the free surface points
downward to the depth of the medium. For this reason, we consider how plane waves
propagate within the medium in the x-axis direction. It is assumed that the free surface of
the medium is surrounded by a magnetic field parallel to the surface in the direction of the
z-axis. The surface also undergoes thermal shock that changes over time, while remaining
stress free. It has been taken into account that the problem is two-dimensional. Therefore,
the variables of the search field are functions in the x and y coordinates, as well as the
instantaneous time variable, t. In addition, the body was considered to rotate about the
y-axis with a uniform angular velocity, Ω.
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All material variables are assumed to be independent of the z-coordinate, assuming
that the deformation pattern is the same in all planes perpendicular to the x-y plane.
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Thus, the components of deformation vector,
→
u, are expressed as

→
u(x, y, t) = (u, v, 0). (14)

It is possible to obtain the following strain components from Equations (2) and (14)

exx =
∂u
∂x

, eyy =
∂v
∂y

, exy =
1
2

(
∂u
∂y

+
∂v
∂x

)
, exz = eyz = ezz = 0 (15)

It is possible to calculate the stress components using Equations (1) and (15), which
are

σxx = (λ + 2µ)
∂u
∂x

+ λ
∂v
∂y
− γθ, (16)

σyy = (λ + 2µ)
∂v
∂y

+ λ
∂u
∂x
− γθ, (17)

σxy = µ

(
∂u
∂y

+
∂v
∂x

)
. (18)

To represent the components of the magnetic force vector when a magnetic field of
constant magnitude is applied perpendicular to the boundary plane and the z-axis, we

write
→
H =

→
h +

→
H0 as

→
H0 = (0, 0, H0). Then, we have

Hx = 0, Hy = 0, Hz = H0 + h(x, y, t). (19)

A vector of electric strength is perpendicular to a vector of displacement and magnetic
intensity. So, it incorporates the following elements:

Ex = E1, Ey = E2, Ez = 0. (20)

Given the parallel nature of vectors,
→
J and

→
E , we have

Jx = J1, Jy = J2, Jz = 0. (21)

When Ohm’s law (8) is linearized, we obtain

J1 = σ0

(
E1 + µ0H0

∂v
∂t

)
− k0

∂T
∂x

, J2 = σ0

(
E2 − µ0H0

∂u
∂t

)
− k0

∂T
∂y

. (22)

The following equations are derived from Equations (4), (7), and (22):

∂h
∂y

= σ0

(
E1 + µ0H0

∂v
∂t

)
+ ε0

∂E1

∂t
− k0

∂θ

∂x
, (23)

∂h
∂x

= −σ0

(
E2 − µ0H0

∂u
∂t

)
− ε0

∂E2

∂t
+ k0

∂θ

∂y
. (24)

We use Equations (5) and (7) to derive the following equality.

∂E1

∂y
− ∂E2

∂x
= µ0

∂h
∂t

. (25)

Using Equations (19) and (22), we can write the Lorentz force components as

Fx =

(→
J ×

→
H
)

x
= σ0H0

(
E2 − µ0H0

∂u
∂t

)
− k0H0

∂θ

∂y
, (26)
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Fy =

(→
J ×

→
H
)

y
= −σ0H0

(
E1 + µ0H0

∂v
∂t

)
+ k0H0

∂θ

∂x
, (27)

Fz =

(→
J ×

→
H
)

z
= 0. (28)

Equations (3) and (26)–(28) can be used to write the following equations of motion:

(λ + µ) ∂e
∂x + µ∇2u− γ ∂θ

∂x + µ0σ0H0

(
E2 − µ0H0

∂u
∂t

)
− k0µ0H0

∂θ
∂y = ρ

[
∂2u
∂t2 − 2Ω ∂v

∂t −Ω2u
]
,

(29)

(λ + µ) ∂e
∂y + µ∇2v− γ ∂θ

∂y − µ0σ0H0

(
E1 + µ0H0

∂v
∂t

)
+ k0µ0H0

∂θ
∂x = ρ

[
∂2v
∂t2 + 2Ω ∂u

∂t −Ω2v
]
.

(30)

For MGT heat transfer, Equation (13) can be written in the absence of a heat supply
(Q = 0) as

∂2

∂t2

(
1 + τ0

∂

∂t

)
(ρCEθ + T0γe) =

(
K

∂

∂t
+ K∗

)(
∂2θ

∂x2 +
∂2θ

∂y2

)
. (31)

4. Solution Methodology

For convenience, we provide definitions for dimensionless variables below

x′ = c1ηx, y′ = c1ηy, u′ = c1ηu, v′ = c1ηv, Ω′ = Ω
ηc2

1
,

t′ = c2
1ηt, τ′0 = c2

1ητ0, θ′ = γθ
λ+2µ , σ′ij =

σij
µ , h′ = ηh

µ0σ0 H0
,

E′i =
ηEi

µ0
2σ0 H0 c1

, k′0 =
µ0 H0c2

1k0
γc2

2
, c2

1 = λ+2µ
ρ , c2

2 = µ
ρ , η = ρCE

K .

(32)

By using Equation (32), the governing equations are reduced to (the dashes can be
removed for readability)(

β2 − 1
)

∂e
∂x +∇2u− β2 ∂θ

∂x − k0
∂θ
∂y + β2 αβ1

(
β1E2 − ∂u

∂t

)
= β2

(
∂2u
∂t2 − 2Ω ∂v

∂t −Ω2u
)

,
(33)

(
β2 − 1

)
∂e
∂y +∇2v− β2 ∂θ

∂y + k0
∂θ
∂x − β2 αβ1

(
β1E1 +

∂v
∂t

)
= β2

(
∂2v
∂t2 + 2Ω ∂u

∂t −Ω2v
)

,
(34)

(
β2 +

∂

∂t

)
∇2θ =

(
1 + τ0

∂

∂t

)(
∂2θ

∂t2 + ε1
∂2e
∂t2

)
, (35)

∂h
∂y

= β1E1 + ε2
∂E1

∂t
+

∂v
∂t
− k0

β2 αβ1

∂θ

∂x
, (36)

∂h
∂x

= −β1E2 − ε2
∂E2

∂t
+

∂u
∂t

+
k0

β2 αβ1

∂θ

∂y
, (37)

∂E1

∂y
− ∂E2

∂x
=

∂h
∂t

, (38)

where
β2 = λ+2µ

µ , β1 = µ0σ0
η , β2 = K∗

Kηc2
1
, α =

µ0 H2
0

λ+2µ ,

ε1 = γ2T0
ρCE(λ+2µ)

, ε2 = µ0ε0c2
1.

(39)
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By simplifying the constituent Equations (16)–(18) we obtain

σxx =
(

β2 − 2
)

e + 2
∂u
∂x
− β2 θ, (40)

σyy =
(

β2 − 2
)

e + 2
∂v
∂y
− β2 θ, (41)

σxy =
∂u
∂y

+
∂v
∂x

. (42)

Differentiating (33) and (34) with respect to x and y, respectively, and then adding the
resulting equations yields(

∇2 − β1 α
∂

∂t
− ∂2

∂t2 + Ω2

)
e−∇2 θ − β2

1 α
∂h
∂t

= 0. (43)

Because it is simpler, we have ignored Coriolis acceleration. This makes sense given
that the sole impact of centrifugal acceleration is a slight alteration in the strength and
direction of the local gravitational acceleration.

Also, by differentiating (36) and (38) with regard to y and x, respectively, and then
adding the resulting equations, we obtain(

∇2 − β1
∂

∂t
− ε2

∂2

∂t2

)
h =

∂e
∂t

. (44)

5. Normal Mode Solution

Normal mode analysis, which provides precise answers, does not presumptively limit
the temperature, displacement, or stress distributions. If all the field values are sufficiently
smooth on the real line, the normal mode analysis of these functions exists, and if this
assumption is made, normal mode analysis is actually conducted to seek the solution in a
Fourier-transformed domain. Numerous thermoelasticity and thermodynamics issues may
be solved using the normal mode analysis method.

We can use the normal mode method shown below to analyze the solution of relevant
variables (

θ, u, v, σij, Ei, e, h
)
=
(

θ, u, v, σij, Ei, e, h
)
(x)e(iay+ωt), (45)

where a is the wave number in the y-direction, ω is the complex frequency and i =
√
−1 is

the imaginary unit.
Putting Equation (45) into Equations (35), (43) and (44), we obtain[

(ω + β2)D2 − (ω + β2)a2 − (1 + τ0 ω)ω2
]
θ(x) = (1 + τ0 ω)ε1 ω2e(x), (46)

(D2 − a2 − αβ1 ω−ω2 + Ω2) e(x)− (D2 − a2) θ(x)− β1
2 α ωh(x) = 0, (47)

(D2 − a2 − β1 ω− ε2ω2)h(x) = ωe(x), (48)

where D = d
dx .

After removing variables θ(x) and h(x) from Equations (46)–(48), we arrive at the
differential equation shown below(

D6 − AD4 + BD2 − C
)

e(x) = 0, (49)
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where
A = 3a2 + b1, B = 3a4 + 2b1a2 + b2, C = a6 + b1a4 + b2a2 + b3, (50)

with
b1 = ω[(1 + α)β1 + (1 + ε2)ω]−Ω2 + ω2(1+ε1)(1+τ0ω)

ω+β2
,

b2 = ω2(1+τ0ω)
ω+β2

[
(1 + ε2(1 + ε1))ω

2 + (1 + α + ε1)β1ω−Ω2
]

+ω3[(1 + αε2)β1 + ε2ω]−Ω2ω(β1 + ε2ω ),

b3 =
ω3(1+τ0ω)(ε2ω3+(1+αε2)β1ω2−Ω2(β1+ε2ω))

ω+β2
.

(51)

Similar to the previous method, the following equations can be obtained(
D6 − AD4 + BD2 − C

){
θ, h
}
(x) = 0. (52)

It is possible to factor Equation (49) as(
D2 − k2

1

)(
D2 − k2

2

)(
D2 − k2

3

)
e(x) = 0, (53)

where k2
i (i = 1, 2, 3) is the root of the following equation

k6 − Ak4 + Bk2 − C = 0. (54)

Thus, the bounded solution of Equation (53) is given by

e(x) = ∑3
i=1 Ri e−kix. (55)

Similarly, we can obtain
θ(x) = ∑3

i=1 R′i e−kix,
h(x) = ∑3

i=1 R′′i e−kix.
(56)

where Ri, R′i, and R′′i are parameters depending on ω and a.
When Equations (55) and (56) are substituted into Equations (46) and (48), the follow-

ing relations are obtained

R′i =
(1+τ0ω)ε1ω2

(ω+β2)(k2
i−a2)−(1+τ0ω)ω2 Ri, R′′i = ω

k2
i−a2−ω(β1+ε2ω)

Ri. (57)

When Equation (57) is introduced into Equation (56), we obtain

θ(x) = ∑3
i=1

(1+τ0ω)ε1ω2

(ω+β2)(k2
i−a2)−(1+τ0ω)ω2 Ri e−kix,

h(x) = ∑3
i=1

ω
k2

i−a2−ω(β1+ε2ω)
Ri e−kix.

(58)

For determining the displacement, u, we insert Equation (45) into Equations (33) and
(37) to obtain

(D2 − a2 − β2ω2 − β2αβ1ω+β2Ω2)u =
(

β2D + iak0
)
θ

− β2αβ1
2E2 −

(
β2 − 1

)
De,

(59)

E2(x) =
1

β1 + ε2ω

(
ωu− Dh +

iak0

β2 αβ1
θ

)
. (60)
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By removing E2(x) between Equations (59) and (60) and employing Equations (55)
and (58), we obtain the differential equation

(D2 −m2)u(x) = ∑3
i=1

[ (
−2− β2( (1+τ0ω)ε1ω2

(ω+β2)(k2
i−a2)−(1+τ0ω)ω2

+ αβ1
2ω

(β1+ε2ω)(k2
i−a2−ω(β1+ε2ω))

)
ki +

Iak0(1+τ0ω)ε1ε2ω3

(ω+β2)(k2
i−a2)−(1+τ0ω)ω2

]
Ri e−kix,

(61)

where m2 = a2 + β2ω2 − β2Ω2 + β2αβ1ε2ω2

β1+ε2ω .
Equation (61) can be simplified as

(D2 −m2)u(x) = ∑3
i=1(ik0 A2i − A1iki)Ri e−kix, (62)

where

A1i = 1−
β2
[
ω2(β1 + ε2ω + ε2αβ1)−Ω2(β1 + ε2ω)

]
(β1 + ε2ω)

(
k2

i − a2
) , A2i =

a(1 + τ0ω)ε1ε2ω3

(ω + β2)
(
k2

i − a2
)
− (1 + τ0ω)ω2

(63)

The bounded solution of Equation (62) is given by

u(x) = G e−mx + ∑3
i=1

ik0 A2i − A1iki

k2
i −m2

Ri e−kix (64)

where G = G(a, ω) is a coefficient, depending on ω and a.
In terms of Equation (45), we can obtain

v(x) = − i
a
(e−Du). (65)

Substituting (55) and (64) into Equation (65) yields

v(x) = − i
a

[
mG e−mx + ∑3

i=1(1 +
ki(ik0 A2i − A1iki)

k2
i −m2

)
Ri e−kix]. (66)

By putting the numbers from Equations (66) and (73) into Equation (68), we obtain

E2(x) = ω
β1+ε2ω

[
G e−mx + ∑3

i=1 A3iRi e−kix
]
, (67)

where A3i =
ik0 A2i

β2 αβ1ε2ω2 +
ik0 A2i−A1iki

k2
i−m2 + ki

k2
i−a2−ω(β1+ε2ω)

.

When we combine Equations (36) and (45), we obtain

E1(x) =
1

β1 + ε2w

(
iah(x)−ωv(x) +

k0

β2 αβ1
Dθ(x)

)
. (68)

By combining Equations (58) and (54), Equation (68) may be written as

E1(x) = iω
a(β1+ε2ω)

[
mG e−mx + ∑3

i=1 A4iRi e−kix
]
, (69)

where A4i = 1 + ki(ik0 A2i−A1iki)

k2
i−m2 + ik0ki A2i

β2 αβ1ε2ω2 +
a2

k2
i−a2−ω(β1+ε2ω)

.

The thermal stress components can be determined as follows:

σxx = −2mG e−mx + ∑3
i=1

[
β2 − 2− β2 A2i

aε2ω
− 2ki(ik0 A2i − A1iki)

k2
i −m2

]
Ri e−kix, (70)
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σyy = 2mG e−mx −∑3
i=1

[
β2 − β2 A2i

aε2ω
+

2ki(ik0 A2i − A1iki)

k2
i −m2

]
Ri e−kix, (71)

σxy =
i
a

[
(m2 + a2) Ge−mx + ∑3

i=1

[
ki +

(
k2

i + a2)(ik0 A2i − A1iki)

k2
i −m2

]
Ri e−kix

]
. (72)

We denote the electric and magnetic field intensities in free space (x ≤ 0) by E10,
E20, and h0, respectively. The following dimensionless equations make sense when these
variables are used

∂h0
∂y = ε2

∂E10
∂t ,

∂h0
∂x = −ε2

∂E20
∂t ,

∂h0
∂t = ∂E10

∂y −
∂E20
∂x .

(73)

Solutions to the above equations can be written in the following forms

h0 = F enx, E10 =
ia

ε2w
enx, E20 = − n

ε2w
F enx. (74)

where n =
√

a2 + ε2ω2 and F(a, w) are parameters, depending on w and a.

6. Boundary Conditions

To calculate the integration constants G, F, and Ri, (i = 1, 2, 3), it is imperative that
the boundary conditions at surface x = 0 are taken into consideration. For the purpose of
analysis, the following boundary conditions are considered for the problem at hand:

θ(x, y, t) = f (y, t) at x = 0, (75)

σxx(x, y, t) = 0 = σxy(0, y, t) at x = 0, (76)

E2(x, y, t) = 0 = E20(0, y, t) at x = 0, (77)

h(x, y, t) = 0 = h0(0, y, t) at x = 0. (78)

It is assumed that the thermal shock effect on the surface of the medium takes the
following form

f (y, t) = θ0H(L− |y|) exp(−bt) (79)

where H(L− |y|) represents the Heaviside function and θ0 represents a fixed value. This
means that, in order to maintain a constant temperature within the medium (θ0), heat is
supplied to its boundaries in the form of a narrow band of 2L centered on the y-axis.

When the expressions of the respective functions are substituted into the above bound-
ary conditions, we obtain unknown constants as follows:

G =
−1

m2 + a2 ∑3
i=1

(
ki +

(
k2

i + a2)(ik0 A2i − A1iki)

k2
i −m2

)
Ri, (80)

F = ∑3
i=1

ω

k2
i − a2 −ω(β1 + ε2ω)

Ri, (81)

R1 =
M2N3 −M3N2

S1(M2N3 −M3N2) + S2(M3N1 −M1N3) + S3(M1N2 −M2N1)
f , (82)
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R2 = − M1N3 −M3N1

S1(M2N3 −M3N2) + S2(M3N1 −M1N3) + S3(M1N2 −M2N1)
f , (83)

R3 =
M1N2 −M2N1

S1(M2N3 −M3N2) + S2(M3N1 −M1N3) + S3(M1N2 −M2N1)
f , (84)

where

Mi = β2 − 2− β2 A2i
aε2ω −

2ki(ik0 A2i−A1iki)

k2
i−m2 + 2m

m2+a2

(
ki +

(k2
i +a2)(ik0 A2i−A1iki)

k2
i−m2

)
,

Ni = A3 − 1
m2+a2

(
ki +

(k2
i +a2)(ik0 A2i−A1iki)

k2
i−m2

)
+ n(β1+ε2ω)

ε2ω(k2
i−a2−w(β1+ε2ω))

,

Si =
(1+τ0ω)ε1ω2

(ω+β2)(k2
i−a2)−(1+τ0ω)ω2 .

(85)

7. The Calculated Values and Explanation

The material of choice for the numerical calculations is magnesium, and reference [50]
lists magnesium’s relevant thermal and mechanical properties. For numerical calculation,
the following physical values, expressed in SI units, are taken into account [51,52]:

λ = 9.4× 1010
(

Nm−2
)

, µ = 4× 1010
(

Nm−2
)

, T0 = 293(K), ρ = 1740
(

kgm−3
)

,

µ0 = 4π × 10−7
(

Nm−2
)

, ε0 =
10−9

36π

(
Fm−1

)
, σ0 = 9.36× 107

(
Col2Cal−1m−1 sec−1

)
,

K = 2.51
(

Jm−1 sec−1 K−1
)

, K∗ = 170
(

Jm−1 sec−2 K−1
)

, CE = 9.623× 102
(

Jkg−1K−1
)

,

τ0 = 0.02, H0 = 107/4π
(

Jm−1nb−1
)

, γ = 0.854× 107
(

Nm−2
)

.

We take L = 4, θ0 = 1, b = 1, ω = 0.3 + 0.1i, and a = 2 as the remaining set of
constants related to the problem. The real part of the physical variables under study is
calculated numerically in two dimensions with the x-axis rotation, and three groups are
taken into account. The numerical findings for various physical variables over a distance x
are displayed in Figures 2–19.

7.1. Comparison of Thermoelastic Models

To avoid the physically impossible contradiction of thermal signals at infinite velocities
in linked thermoelasticity, the present model of generalized thermoelasticity is constructed.
This subsection of the discussion is devoted to the study of the distributions of different
physical fields for different models of thermal elasticity, both conventional and generalized,
which can be obtained as special cases of the current Moore–Gibson–Thompson thermoe-
lastic model (MGTE). It can be seen that at τ0 = 0 = K∗, the coupled thermoelasticity (CTE)
model can be derived, while at K∗ = 0, the Lord–Shulman (LS) model can be derived
from the proposed model. Also, when τ0 = 0 = K, a system of equations for the Green
and Naghdi model (GN-II) can be obtained. Finally, equations of the Green and Naghdi
model (GN-III) can be obtained from the present model when the relaxation time parameter
is neglected (τ0 = 0). The numerical results of the quantities of the studied fields are
represented in Figures 2–7 when the non-dimensional values Ω = 0.8, t = 0.2, y = 0.1, and
k0 = 0.25× 103 are taken into account.
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In Figure 2, the curves depicting the numerical results for the thermal field show that
the temperature distribution is prominently near the surface of the half-space due to the
presence of the heat source. Moving away from the source, it is seen that the amount of
heat decreases with an increasing distance, x, inside the medium. Figures 3 and 6 show
the change in the displacement component, u, and the induced magnetic field, h, with
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changing distance, x, and in the case of several different thermoelastic models. It can
be seen from the two figures that the behavior of each of the displacement, u, and the
induced magnetic field, h, is somewhat similar to the behavior of the thermal field, with
different magnitudes and starting points. In Figures 4, 5 and 7, comparisons were made
between different thermoelasticity models for each of the thermal stresses (σxx and σxy)
and the induced electric field component (E2). It is noted from these figures that these three
domains fulfil the boundary conditions imposed on the problem, as these domains vanish
from the free surface of the mediator. Not only that, but it also has the same compressed
behavior with different amounts.

The most important results from the numerical results and the different figures can be
summarized as follows:

• It has been shown that the behavior of the field quantum distributions is quite sensitive
to changing the values of the thermodynamic parameters, τ0 and K∗

• Compared to other extended theories (MGT, LS, GN-II, and GN-III), the coupled
theory curves (CTE) are found to be higher than their counterparts are.

• Although Biot’s theory (CTE) was applied to many thermoelasticity problems, it
produces unacceptable results in situations involving short-range temperatures, such
as thermal shocks and laser material interactions.

• Extended models contradict the coupled theory, which suggests that heat waves may
move at an infinite speed.

• The results converged for the two modified generalized theories LS and MGTE. Ac-
cording to the two overarching ideas, a thermoelastic reaction has a “cool-down”
period. When the two generalized theories were modified, heat diffusion assumed
the appearance of a wave phenomenon rather than the diffusion phenomenon usually
associated with the second acoustic effect. The propagation velocity of the heat wave is
found to be constrained after modifying the Fourier formula for thermal conductivity
in the two theories.

• The results demonstrate that the behavior of the various distributions is more pro-
nounced in the case of thermoelastic theory, GN-III, than it is in the case of thermoelas-
tic type, GN-II. One possible explanation is that there is no energy loss in the second
form.

• The numerical findings distinguish between the Green and Naghdi GN-III theories
and the novel MGTE model, as well as other generalized thermal models. The GN-
III model relies more on the classic theory of thermoelasticity and shows a greater
temperature change than the MGTE model does. This result confirms the validity of
the current model, which suggests that the GN-III model follows the behavior of the
traditional theory that predicts infinite velocities for heat waves.

• Since the relaxation time, τ0, is factored into the heat equation, the solutions converge
in both the MGTE and LS models. This means that the presence of relaxation time
leads to a reduction in the propagation of thermal and mechanical waves in accordance
with the experimental results.

• In reality, the strain and stress fields are affected by the fluctuating core body temper-
ature, and the reverse is also true. Force loads, as well as temperature stresses, are
common conditions for many structural parts. The material might crack under these
forces or under the combined mechanical and thermal stresses resulting from external
loads. The amount and distribution of thermal stresses must be determined for a
comprehensive strength study of structures. Because of this, professionals from a wide
range of areas focus their attention on problems related to calculating temperature
fields and thermal stresses.

7.2. Effect of the Angular Velocity on Variables of the Problem

A lot of research has been conducted on the topic of the propagation of elastic waves
in rotating bodies. However, the amount of research on rotating thermoelastic materials
within a magnetic field is minimal. If the coordinate system is assumed to be fixed in a
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rotating medium, then the equations of motion must include the effects of Coriolis gravity
and acceleration. As a result of including centripetal and Coriolis accelerations into the
equations of motion with regard to a rotating frame of reference, the medium takes on the
properties of a dispersive and anisotropic medium.

This theoretical paper considers wave propagation in a linear, homogeneous, isotropic
thermoelastic medium, where the entire elastic material is assumed to rotate at the same
angular velocity, Ω. This subsection investigates how the behavior of the investigated
physical fields changes as the value of the regulated angular velocity, Ω, changes. The
numerical values of non-dimensional fields over a wide range of x are computed when the
values k0 = 0.25× 103, t = 0.2 and y = 0.1 are taken. Also, the Moore–Gibson–Thompson
extended thermoelastic is will only be taken into account when the three curves shown in
Figures 8–13 are plotted. Three different values of the angular velocity of rotation Ω = 0.0,
Ω = 0.7, and Ω = 0.8 are taken into account. It is noted that when there is no effect of
rotation, Ω = 0.0 is set. The rotation of astronomical entities and the moon are examples
of the numerous real-world challenges that benefit from understanding how plane waves
propagate in a rotating medium.

From the figures, the most important conclusions can be summarized as follows:

• It has been shown that rotation has a significant effect on the variance of all physical
fields considered in the studied problem.

• The initial value of some system variables is the same and may be zero according to
the boundary criteria.

• The insights from the current theoretical conclusions may be useful to experimental
investigators, engineers, and seismologists who study the field of spinning bodies.

• Temperature, θ, travels through the medium in a wave pattern at finite speeds. With
increasing values of the angular velocity of rotation, Ω, the temperature distributions
increase.

• There is a significant difference in deformation in the presence and absence of rotation.
Both the deformation and the magnetic induction field increase significantly with the
increase in the constant angular velocity of rotation, Ω.

• The change in the angular velocity of the body’s rotation has a significant impact on
the thermal stresses inside the medium. The amount of compressive behavior of the
stresses increases with the increase in the amount of rotation.

• The proposed results may have significant technological applications, including de-
signing and constructing gyroscopes and other rotating sensors, because the rotational
change affects different domains in various ways.

• Investigating issues of thermoelasticity in rotating media makes more sense because
of the angular velocity of small objects that go into designing machines as well as
massive bodies such as the Earth, Moon, and other planets.
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Figure 13. Impact of rotational speed, Ω, on the induced electric component, E2, when t = 0.2,
Ω = 0.7, and k0 = 0.25× 103.

7.3. Effect of the Modified Ohm’s Law Coefficient on Variables of the Problem

Wave propagation in isotropic thermoelastic media has been extensively studied
in the literature in the presence of an acting magnetic field. Their potential use in the
non-destructive testing of composite structures used in aerospace, automobiles, and other
technical fields makes them interesting. Researchers have been looking at the electromag-
netic response in the thermomechanical behaviors of materials since the 18th century when
the concept of energy conversion was first introduced. Thermoelastic electromagnetic
materials have been shown to be naturally isotropic and couple with electric, magnetic, and
mechanical fields. In addition, these electromagnetic materials have many practical uses,
including in lasers, supersonic devices, microwave ovens, and even smart applications. The
current paper focuses on studies of the effect of a magnetic field on a thermoelastic medium
based on the MGTE model of thermoelasticity. These types of problems in the magnetic
field are essential to many dynamical systems. Because it has such wide-ranging impli-
cations, studies examining how the fundamental magnetic field affects thermoelasticity
theory have attracted the attention of many experts.

Ohm’s law has been changed by taking into account the effect of the temperature
gradient. The current strength at each site is inversely proportional to the voltage gradient.
In this sub-case of research, the effect of changing the Ohm’s law modulation coefficient,
k0, on the behavior of various fields is being investigated. The results of calculations for
the real part of various non-dimensional domains are represented in Figures 14–19 at the
plane, y = 0.1. It was also taken into account that the study was carried out in the case of
the modified Moore–Gibson–Thompson (MGTE) model of thermoelasticity with a single
relaxation period when t = 0.2 and Ω = 0.7.

When the time, t, and the initial magnetic field, H0, are constant, how the non-
dimensional temperature, displacement components, thermal stresses, and induced mag-
netic and electric fields with different values of Ohm’s law coefficient (k0) change in the
direction of the depth of the medium are studied. For two separate scenarios, numerical
computations are made: k0 = 0.0, k0 = 0.5 × 103 and k0 = 0.75 × 103. The different
figures indicate the coupled effects of electromagnetism and thermoelasticity on physical
quantities.

The following most important conclusions can also be summarized:

• To a large extent, the electromagnetic field affects the distributions of all studied
physical quantities, both with and without the electromagnetic field.

• Due to the influence of the magnetic field, the values of all physical variables become
zero as x increases, and all the functions examined have continuous curves.

• When the temperature gradient coefficient, k0, is increased, the modified Ohm’s law
leads to an increase in temperature change, θ. It is noted that the thermal diffusion
is much greater than it is in the case of neglecting this factor, k0. For this reason, this
effect must be taken into account in the design of some thermoelectric devices.
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• It is seen that the Seebeck modulus has a prominent effect on deformation. One of the
observations that must be taken into account is that deformation behavior in the case
of neglecting this parameter is the opposite of the behavior in the case of taking it into
account.

• The Seebeck coefficient has a compressive effect on the behavior of thermal stresses
and the induced electric field component. The higher the value of the temperature
gradient coefficient in the modified Ohm’s law is, the greater the magnitudes of these
quantities are.

• One of the many crucial elements in the effective operation of thermoelectric generators
and thermoelectric coolers is the use of materials with a high Ohm’s law coefficient
(Seebeck coefficient).
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Figure 18. Influence of the coefficient, k0, on the induced magnetic field, h, when t = 0.2, Ω = 0.7,
and y = 0.1.
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8. Conclusions

In this investigation, we considered how thermomechanical waves’ behavior is affected
in thermoelastic, isotropic, and fully conductive materials due to the propagation of elastic
thermo-electromagnetic waves on their surface. For this purpose, the Moore–Gibson–
Thompson thermoelasticity model was considered in addition to the modified Ohm’s
law.

From the discussion of the numerical results, it was found that the coupling behaviors
of thermoelastic electromagnetic materials and electric, magnetic, and mechanical fields are
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correlated. The results obtained can, therefore, be used in various applications, including
computers, microwave ovens, lasers, and other electromagnetic devices. It is also shown
by the experimental results that when thermal shock is applied, the thermal disturbance
appears quickly, and then dissipates far from the disturbance area. Also, the amount of
thermal deformation in the case of the GN-III model is greater than that in the case of the
MGT model, which means that it does not fade quickly inside the medium. This result
proves the importance of the model proposed in this article. Since the relaxation time, τ0, is
factored into the heat equation, the solutions converge in both the MGTE and LS models.
This means that the presence of relaxation time leads to a reduction in the propagation of
thermal and mechanical waves, which is in accordance with the experimental results.

There is a significant difference in deformation in the presence and absence of rotation.
Both the deformation and the magnetic induction fields increase significantly with the
increase in the constant angular velocity of rotation. The change in the angular velocity of
the body’s rotation has a significant impact on the thermal stresses inside the medium. The
amount of compressive behavior of the stresses increases with the increase in the amount of
rotation. The proposed results may have significant technological applications, including
designing and constructing gyroscopes and other rotating sensors, because rotational
change affects different domains in various ways.

Also, it was found that the coupling behaviors of thermoelastic electromagnetic mate-
rials and electric, magnetic, and mechanical fields are correlated. The Seebeck coefficient
has a compressive effect on the behavior of thermal stresses and the induced electric field
component. One of the crucial elements in the effective operation of thermoelectric gen-
erators and thermoelectric coolers is using materials with a high Ohm’s law coefficient
(Seebeck coefficient).

The results obtained can, therefore, be used in various applications, including comput-
ers, microwave ovens, lasers, and other electromagnetic devices. It is also shown by the
experimental results that when thermal shock is applied, the thermal disturbance appears
quickly, and then dissipates far from the disturbance area. In the future, the results pre-
sented in this paper can be generalised to include smart materials science and the design of
new heterogeneous materials and small, nanoscale devices.
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