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1. Introduction

Let [x, 0]y, == {x,x+1,k+2,---,0} (6 —x € N1), where Ny := {x,x + 1,k +2,--- }.
In the current work, we shall discuss the solvability of the fractional difference boundary
value problem

chedck for
updates
—AY t)y=g(t+ov—-1L¢y(t+v—-1)), te|0,b+2|N,,
Citation: Lv, Z.; Wu, C.; O'Regan, D.; v_3¢( ) g( lIJ( )) [ ]NO (1)
Xu, J. Solvability of a Boundary Value lP(Z} — 3) = [Ag_a,l)b(t)] |t:071x72 = [Agﬁglp(t)} ‘t:v+b+27ﬁ =0,

Problem Involving Fractional

]ljzifzgnf Equaﬁ;m_& AXiiZZ;:;S’ wherev € (2,3], € (1,2),v— B € (1,+00),a € (0,1),b € (3,+00)(b € N),and AY_,isa
/0% hitps://dotorg/ 103390/ discrete fractional-order operator defined by

axioms12070650
oo . t+v
Academic Editors: Azhar Ali Zafar 1 —v—1
T t—s—1)""=¢(s), N-1<v<N
and Nehad Ali Shah AVp(t) == { T X )==(s), ,
ANy(t), v=N,

Received: 8 June 2023
Revised: 25 June 2023

where N € Nwith 0 < N —1 < v < N. Asin [1], this definition is equivalent to (2) in
Accepted: 28 June 2023

; Section 2.
Published: 29 June 2023 The theory of fractional calculus has been widely used in modern mathematics for
) more than 300 years, and the study of solutions of fractional differential (difference) equa-
tions arises in real-world problems in the field of physics, mechanics, chemistry, and

Copyright: © 2023 by the authors. €ngineering. For example, in [2], the authors extended the variational approach to the
Licensee MDPI, Basel, Switzerland.  fractional discrete case and introduced the Gompertz fractional difference equation
This article is an open access article

distributed under the terms and Ag In g(t —a+ 1) = (b - 1) lng(t> +a,

conditions of the Creative Commons . . . . . .
Attribution (CC BY) license (https:/ / which can be used to describe tumor growth, a special relationship between tumor size and

creativecommons.org,/ licenses/by/ time, and is of special interest since growth estimation is very critical in clinical practice.
40/). Here, a,b are parameters and a € (0, 1]. One can also find some other applications for the

Axioms 2023, 12, 650. https:/ /doi.org/10.3390/axioms12070650 https:/ /www.mdpi.com/journal/axioms


https://doi.org/10.3390/axioms12070650
https://doi.org/10.3390/axioms12070650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-6537-4167
https://doi.org/10.3390/axioms12070650
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12070650?type=check_update&version=1

Axioms 2023, 12, 650

20f16

Gompertz fractional difference equation in [1]. In [3], the authors introduced the following
discrete logistic map and investigated the chaotic behavior:

{CAZW) —pp(t+o—1)(1—p(t+v—1)),t €Ny ,0<0 <1,
Pla) =c,

where CA? is the left Caputo-like delta difference defined by

1 t—(m—v)
Y. (t—s—1)"=IALY(s),

s=a

Cav
Ay(t) = T(m—0)
where t € Nyyy—y,m = [v] + 1.

We note that in [4], the author mentioned that discretization is inevitable for fractional
differential equations. To date, they are only used as the starting point for approximate
solution calculations, and there is no special research on fractional difference equations.
Therefore, from the perspective of theory and application, this is a big gap. Many devel-
opments in the theory are now taking place, and two books [5,6] are sources for mathe-
maticians who are interested in this area. However, we still note that most works focus
on fractional-order differential equations, while the research on fractional-order difference
equations is quite small (we refer the reader to [5-26]). In [7], the authors investigated
positive solutions for the discrete fractional boundary value problems

—A L x() =F(t+v—1x(t+0-1)),1<v<2,
x(v—2)=A"1x(0+N) =0,

where t € [0,N + 1]y, and F : [o — 1,0+ N]y, , x R = R¥ satisfies some superlinear or
sublinear conditions. In [8], the authors utilized fixed-point methods to investigate the
solvability of a fractional difference equation with a p-Laplacian operator

APl (A X)) (1) + Fa+B+t—1,x(a+Bp+t—1)) =0,t € [0,b]y,,
A%(B—2) = A*X(B+1b) =0,
xa+pB—4)=x(a+p+b)=0,

where F @ [a+p—4a+p+ by, ,
¢p(z) = |z|[P72z,p > 1,z € R. In [9], the authors utilized the fixed point index to consider
the solvability of the system of fractional-order difference boundary value problems

x R — R satisfies a Lipschitz condition, and

Axi(t) = Ft+v—1Lx1(t+v—1),x2(t+v—1)),t € [0, Tz,
Axr(t) =Fa(t+o—1Lx1(t+v—1),x2(t +v—1)),t €[0,Tz,
x1(v=1)=x1(v+T),x2(v—1) = x2(v+ T),
where F;(i = 1,2) are semipositone nonlinearities.
We note that usually one expresses the solutions of fractional-order equations by a

Green’s function. However, not all fractional-order difference equations can be obtained in
this way, for example, in [10], the authors studied the problem

{ Ax(t) =F(t+a—1,x(t+a—1)), te[0, Ty, o € (1,2],
x(a=2)=0,x(a+T)=APx(C+B), ¢ € Naaayr-1,8>0,

and showed it is equivalent to
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a—1 C s— . .
X0 =~ 61y |1y B L+~ o) 6 o@) T FG H a1 1)
i(T+zx—a( ) 7}'(s+1x—1 x(s+a—1)) it_ 7]:(S+t¥—1)((s+1x—1))
s=0 s—0

@f‘fz C+B-s—a+1EAT(+a—1) CT(e+T+1)
= I'(B)I'(s) I(T+2)

Clearly, the integral form is very complicated and cannot be formulated via some
suitable Green’s function.

Inspired by the aforementioned works, in this paper, via a Green’s function, we use
the topological degree and fixed point theorems to consider the existence, uniqueness, and
multiplicity of solutions to (1). Furthermore, we present some examples to illustrate our
main results.

2. Preliminary

In this section, we first offer some basic materials for discrete fractional calculus;
see [5-26] and the references therein.

Definition 1. Let
. I(t+1)
= THi-0)’

Vo e R Ift+1—wvisapoleof T'(-) and t + 1 is not a pole, then t* = Q.

Definition 2. For v > 0, a function F’s v-th fractional sum is defined by

t—

2 (t—s—1)TLF(s), t € Nopo.

<:.‘

1
A°F [
F

F's v-th fractional difference is defined by
AT (t) = ANATNF(E), t € Noyno, @)

where N e Nwith0 < N—-—1< v <N.
Let x : [v—1,b4+v + 1]y, , — R bea given function. Then, we consider the problem

347( ) =x(t+v—1) t€[0,b+ 2]y,
{ [ -3 ] ‘t:vfa72 = [Ag—slp(t)} ’ _ =0, ®)

t=v+b+2-p8

where v,a, B, b can be founded in (1).

Lemma 1 (see [11]). Problem (3) has a unique solution

b2
=) G(ts)x(s+v—-1), telo—-1Lb+ov+1]y,
s=0

where G is the Green’s function given by

v— A v—p—1
. *ﬁ(v”:b"_ﬁi;)j}gf C(t—s—1)2l0<s<t-v+1<b42,

RO @
r(v) P=L(p+b—p—s+1)°=F1 B
(0+b—p+2)2=F~1 O0<t—-v+1<s<b+2

Lemma 2 (see [11]). The Green’s function (4) has the properties
(G1) G(t,s) >0,(t,s) € [v—=1,b+v+1]y, , x [0,b+2]y,,
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v—p—1

PG (b+v+1,s) =L (v+b—B—s+1)
0 :32;}(b+v+1V1 < G(ts) < T(v)(o+b—p+2)2=F=L ’
X 7 + NO’

(G3) q(t)G(b+v+1,5) < G(t,s) < G(b+v+1,s),4(t)
1Lb+ov+1]y, , x[0,6+ 2]y,

(t,s) € [p—=1,b+0v+ 1]y,

1

=1

Lemma 3 (see [11]). Let (s +v—1) = G(b+v+1,s), s € [0,b + 2], Then, the following
inequalities hold:

b+o+1 b+o+1
Y. G(t,s)e(t) <mg(s+v—1),k0= Y  ¢(t),s€[0,b+2]y, (5)
t=v—1 t=v-1
and
b+2 b+2
Y G(ts)q(s+v—1) >xq(t),x1 = Y Go+v+1s)q(s+v—1),t€fo—-1b+v+1]y, . (6)
5=0 s=0

Let E be a set of all maps from [v — 3,b + v + 1]y, , to R, and
¥l = maxe(p_3p4o41]y \ |¢(t)|. Then, E is a Banach space. Moreover, define a set

P={ypecE:¢(t)>0,te[v-1,b+0v+1]n, ,}. Then, Pisaconeon E. Lemma 3 enables us
to obtain that (1) is equivalent to the sum equation
b+2
Pp(t) =) G(ts)g(s+v—Ly(s+ov—1)):=(By)(t), tev—1b+0v+1]y,,,
s=0

where G is defined in Lemma 3. Obviously, ¢ € E\{0} is a solution for (1) when ¢ € E\{0} isa
fixed point of B.

Lemma 4. Let Py = {peP:y(t)=qt)|pl,Vte[v-1b+0v+1)y, ,}.  Then,
L(P) C Py, where

b+2
(Ly)(t) =Y G(t,s)p(s+v—1), tefo—1b+v+1]y, .
5=0
Lemma 5 (see [27] Theorem A.3.3). Let E be a Banach space, () C E a bounded open set, and
T : Q — E be a continuous compact operator. If there is an o € E\{0} such that
£ —Tr # pro, Ve € 00, > 0,
then deg(I — T,Q,0) = 0, where deg denotes the topological degree.

Lemma 6 (see [27] Lemma 2.5.1). Let E be a Banach space, Q) C E a bounded open set with
0€ Q,and T : QO — E be a continuous compact operator. If

Tr# pr,VeeoQ,u>1,

then deg(I —7,Q,0) = 1.

Lemma 7 (see [28,29]). Let X be a Banach space and P be a cone on X. Define functionals as
follows: a,7y : P — R are continuous increasing and B : P — R is continuous. Moreover, there
exists M > 0,0 < a < ¢ such that

a(0) <a,v(xr) < B(r) <alr)and [[tl| < My(x), Ve € P(7,¢) :=={r € P:y(r) <c}.

Furthermore, there is a completely continuous operator T : P(y,¢) — P and a constant b>0
with 0 < a < b < ¢ such that B(Ax) < AB(x) for A € (0,1], x € 0P(B,b), and
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(E1) ¥(Tx) < ¢ Ve € 9P(7,0);
(E2) B(Tx) > b, Vr € 9P(B,b);
(E3) a(Tx) < & Vi € 3P(a, )

Then, T has at least three fixed points r1, 12,13 € P(7y,€) such that

0 <a(rr) <@ <a(r)Blr2) <b<prs)rs) <c

In the following, we present some lemmas involving the theory of mixed monotone operators.
Let (E, || - ||) be a real Banach space which is partially ordered by a cone P C E, i.e., x < y <
y—x € P.Ifx <yand x # y, then we mean that x < y or y > x. Moreover, for a fixed h > 0,
we define P, = {x € E | x ~ h}, in which ~ is an equivalence relation, i.e., x ~ y implies that
there are A, u > 0 such that Ax >y > ux,Vx,y € E.

Definition 3 (see [30,31]). If u;, v;(i = 1,2) € P,u; < up, 01 > vy imply A(ug,07) <
A(ug,vy), then A : P x P — P is called a mixed monotone operator.

Definition 4 (see [30,31]). If A(tx) > tAx, Vt € (0,1),r € P, then A : P — P is said to be
sub-homogeneous.

Lemma 8 (see [30,31]). Let B : P — P bean increasing sub-homogeneous operator, A : P x P — P
a mixed monotone operator and satisfy

At ) = A ), ba e (0,1)5n € P. )

If

(C1) There is a by € Py such that A(bo, ho) € Py and Bhy € Py;

(C2) There is a constant 8y > 0 such that A(x,v) > doBr, Ve, n € P.

Then,

(D])Aph XP() — Pb,Biph — Ph,'

(D2) There are uy, vy € Py and r € (0,1) such that rog < uy < vg, ug < A(ug, vg) + Buy <
A(vo, u9) + B(vg) < vo;

(D3) Az, ) + Br = x has a unique solution ¢* in Py;

(D4) For any initial values vo,vo € Py, the sequences tn = A(tn—1,9n—1) + Btn—1, 9 =
A(vy-1,8n-1) + B, —1 converge to ¢* as n — oo.

3. Main Results

In the section, we will state our main theorems and give their proof. In the first
theorem, we obtain an existence result on nontrivial solutions for (1) when the nonlinearity
can change sign.

Theorem 1. Suppose that the following assumptions hold:

(H1) g(t,¢) : [v =1, b+ v+ 1]y, , x R = Ris a continuous function;

(H2) There are nonnegative continuous functions 1 (t), y2(t) and M () with y,(t) # 0,
telv—1,b+v+1]y, , such that

gt ) > —71(t) — (M), (t, ) €[v-1Lb+ov+ 1]y, , xR;

M(yp)

(H4) liminfyy % > Kfl, uniformly int € [v —1,b+0v+ 1]y,
(H5) lim infy, o+ % < K;l, uniformly int € [v—1,b+v+ 1]y, ;.

Then, (1) has one nontrivial solution.
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Proof. From (H3), for any given ¢ > 0, there exists Yy > 0 such that M(y) < ¢|y| for
[$| > Yo. Let M* = max|y|c(o,y,] M (). Then, we have

M(p) <elp| + M", p € R. ®)

By (H4), there exist 6; > 0and Y; > Yy such that g(t, ) > (! + 1) || for || > Y3
andt € [v—1,b+v+ 1]y, ,. Furthermore, let C; = MaX ¢, p)efo-1b+o+1ly, | x[01] lg(t, ).
Then, we obtain

gt ) > (k] +01)|p| —Cq, t € [v—1Lb+0+ 1]y, ,p €R.
Note that é; can be greater than ||y, ||; then, from (H2) and (H3) and (8), we have
gt ) > (i7" + 61 —e|nal) [yl = n(H) = Cg, t€o—Lb+v+ 1y, ,pER, (9

where Cg = Cq + |72/ M*. Let

® {Kzumn flalMe +g) Uil + 2l M +Co) (RS + (" + 81 — el A } 10)
> ’

Lmealnl " el (1= e|lvall) — ellv2llNG (6 + 61 — el 2l)
where
N, — b+2 (v+b—ﬁ—r+1)%_
=0 (v+b—B+2)2FI1(v)
We prove that
¥ — By # uq, Y € 0Bg, u >0, (11)

where g is given in Lemma 4, and

Br ={¢ € E:[[¢| <R}, 9Br ={p € E: [[y| = R}.

Proof by contradiction. Then, there are 1y € 0By, it > 0 such that

Y — By = ug. (12)

Note that if 4 = 0 and ¢ € dBg is a nontrivial solution to (1), the theorem has been
obtained. So, we only consider the case y > 0. Moreover, we also find that

g e by
In order to prove our theorem, we need to define a function ¢ as follows:
b+2

P(t) =Y G(ts)[nls+v—1)+1(s+ov-1)M@s+0v—-1)+Ce|,t € [v—1,b+v+1]y,_,, ¢ € 0Bg.
s=0

Then, we get the following claims:
Claim i. Note that 1 + M (¢) + C; € P, and Lemma 6 implies that
Jen. (13)

Claim ii. From (12), we find

P(t) + (1) = (B)(t) +9(t) + pq(t)
= bizG(tIS) [g+v—Lp(s+o-1)+n(s+o—-1) +7(+o-DM(Y(s +v—1)) + Ce] +uq(t),
5=0
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forallt € [v —1,b+ v+ 1]y, ,. Note that g+ 91 +72M + Cg € P and q € Py, and we
have
Y+9 € Py (14)

Claim iii. From (8) and (10), we have

. b+2
19l < Y Go+v+18) (7]l + 2l el gl + M*) + Cq]
s=0

=©2[[lnll + 2l ellgl + M*) + C]
< R.

From Claim ii and (9), we have

(By)( %Gts[ (s+o—1L9p(s+v—1)+m(s+v—1)+7(s+o—-1)M(P(s +v—1))+ C4]

b+2
> ZG(t,s)[g(s—i—v—l,tp(s—l-v—l))+71(S+v—1)+Cg]

b+2
> Y Glts) [ + 01— ellmal)[p(s + 0= )] = (s +0-1) = Cg+71(s +0 — 1) + g
- b (15)
+2
> (k' + 61 —elln2ll) Y Gt s)p(s +o—1)
s=0
b-+2 B b+2
= 40 —elln2)| Y. Gts)[pis+o—1)+¢(s +v—1)] — ZGts s+v—1)]
b+ _
> Y Gs) [p(s+o—1)+9(s+v—1)].
The last inequality in (15) holds if
b+2 B b+2
(@1 —ellral) Yo Gts) [p(s+o—1) + s +o—1)] = (k' + 01 —elr2]) Y Gts)P(s +0-1) >0,  (16)
5=0 5=0

fort € [v—1,b+v+1]y, ,. Inwhat follows, we prove (16). Indeed, from Claim ii we have
p(t) +9(t) = q)lp +¢ll = q®)(lll — [I¢l).t € [v—1,b+ 0+ 1]y, ,. Therefore, from

(4) and (10), we obtain
b42 b+2
(61 —¢|l721D) Z [p(s+v—1)+P(s+v—1)] — (k' + 1 — |12 Z P(s+o-1)
I B )
> (61 —ellr2l) Y G(ts)g(s +o =1 ([gl — [¢1)
s=0
b+2 b+2
— (kg Ly é —el72l) Z ZGs+v—1,r)['yl(r+v—1)+72(T+U—1)M(¢(T+v—1))+Cg}
s=0 =0
b2
_ (so—pe=t
> (01 €||72||)S§)G(t/5)(b+v+1) < (lwll = [l9l)
b+2 b+2 v—1 v—p—1
el s G(t, (s+v—-1)2=(v+b—-B—1+1)L—= M) 4 C
(k1" +01 8H’rz||)s;0 (t S)T;o (016 p 127 Tr(0) Uvall + vzl Cellgll + M™) 4 Cg]
> Y 6t 5) s o — 1=t | L=l il R 4 M)+ C)
= (b +o+1)2L 2L+ 72 g

042 (y 4 p— BT 41)7 Pt
e SR + R + M*) + Cq] (v+
(1 1—ellv2ll) [l + vzl € P T;) (06 p 12 P r()
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This implies that (15) holds, as required. Consequently, we have
(BY)() + (1) = LI+ P) () € =T o+ 0+ 1y, -
Using (12), we obtain

Y+ P =ByY+¢+puq>x  Lp+9)+pq > pq, € 0B, p > 0.

Define
po=sup{p>0:9+¢>puq}
Note that u* > yand ¢ + ¢ > u*g, and from (6), we have

P+ 2 L) g = Lg g = (1 + g,
which contradicts the definition of y*. Hence, (11) holds, and Lemma 7 enables us to find
deg(I — B,Bg,0) = 0. (17)
From (H5), there exist d, € (0,x, ) and r > 0 such that
()| < (" = &)l [yl €[0,r]tefo-1Lb+0+1]y, . (18)
For this r, we prove that

By # up,p € 0B, u > 1. (19)

Proof by contradiction. Then, there are ¢ € 9B,, 4 > 1 such that

1
By =pp = Iyl = 1Byl < |Byl

This, together with (18), implies that

b+2 b+2
()] < ZOGU,S)Ig(SH— Lp(s+v-1)| < (15" =) ;JG(t,s)lt/J(erv— 1l (20)

Multiplying by ¢(t) on the both sides of (20) and summing over [v —1,b + v + 1], then
(5) implies that

b+ov+1 b+v+1b6+2

lew(t)lqo(t) ) Zl Y G(t,s)p(t)|p(s +v—1)|
t=v— t=v s=
b+2
< (Kz’l—éz)Kz;)Illﬂ(erv—l)\qv(erv—l)
b—_i-v-i-l
= (k' = 02)r2 7271 [p(t)]g(t).

b+ou+
This implies that Y |IP( )@(t) =0, and thus ¢(t) = 0,t € [v—1,b+0v + 1]y
el

Clearly, this is contradictory to ¢ € 9B,. Hence, Lemma 8 shows that

o—1"

deg(I — B, B;,0) = 1. (21)
Equations (17) and (21) enable us to obtain

deg(I — B, Bz \B;,0) = deg(I — B, Bg,0) — deg(I — B, B,,0) = —1.
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This implies that 13 has a fixed point in Bg \ By, and (1) has a nontrivial solution. [

In the following theorem, using the generalized Avery-Henderson fixed point theorem

(Lemma 9), we obtain triple positive solutions for (1) when the nonlinearity satisfies some
bounded conditions.

Theorem 2. Suppose that there exist positive constants a,b¢ with a < b < G
V2 G lb+o+1,s)

:> o (r is a fixed point in (v —1,b +v + 1)y, _,) such that
Y. G(b+ov+1t—v+1)

t=r
(H6) g(t, ) : [v— 1,6+ v+ 1]y, , x Rt — R* is a continuous function, and g(t,0) # 0,
tefo—1b+o+1y,
(H7) g(t, ) < ———— fort € [o—-1,b+0v+ 1]N071,1,b € [O,Eqaz];
q0 ;0 G(b+v+1,s)

(H8) g(t, ) > —5 b forter,b+o+1]y, ¢ € [E,Eqaz];
qgo L G(b+o+1t—v+1)

t=r

(H9) g(t,¢) < g5—2——fort € [p—1,b+0+1]y, ., ¢ € [0,a].
Y G(b+o+1s)

s=0
Then, (1) has at least three positive solutions v1, v and v3 satisfying
0 <a(n) <@ <aln) ln2) <b < Plos) 7(ns) <&

Proof. Note that if g0 = miney_1,p40+1) X g(t) > 0, then from Lemma 6 and (H6) we
have

B(P) C P.

Let a(y) = MaXie[p—1,b+o+1ly,_, ¥(t), B(y) = MiNyc b 4oty $(t) and
Y($) = qomaxicy_1,, ) P(t). We easily know that o,y : P — R are continuous, in-
creasing functionals with #(0) =0, Vt € [v —1,b+ v+ 1]y, , ¥ € Pand B(Ayp) = AB(¥).
Moreover, for i € Py, we have
1(¥) = q0 max p(t) < qollpll < min p() < min - p(t) = () < a(y),

telo-1rln, tefo-1b+o+ly, o telnbtotlly,

and
Y(@) = q0  min  p(t) > qo

te[v—1,r]n

v(t) > gdllyll,

min
-1 tE[U*l,b+U+1]NU71

ie., .
7o
(i) For ¢ € 9P(7,¢), we have

=) > glvl,

which implies that
0<y(t)<egy® tefo—1b+v+1]y

v—-1"
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By (H7), we find

b+2
y(By) =g9 max i@(t,s)g(s—kv—l,lp(s—i—v—l))

te [U—l,r]NU71 5=0

b+42

< max G(t,s)g(s+v—1,p(s+v—1
= 40 tefv—Lb+o+1]N, , S;) ( )g( l’b( ))

il b+2
<5 9 ) G(b+ov+1,s)
qgo Y G(b+ov+1,5) 570
s=0

(ii) For ¢ € dP(B, b), we have

_ 1 1 b
b= = i 1 < < = < = - —
B(¥) te[nbﬂﬂmv,l P(t) < |[lyll < q%’r(lP) < q%ﬁ(lp) po
This implies that
b<y(t) < :z,w €oP(B,b),t € [r,b+0v+1]y, |-
0

This, combined with (HS8), enables us to obtain

b+2
By) = i G(t, -1 -1
BB = min LGl ko Lyt 1)
b+2
> min g)Gb+v+1,s)g(s+v—1,¢(s+v—1))
o telrbrotily,
b+42
> min gt)Gb+v+1,5)g(s+v—1,¢(s+v—1))
o telo—1b+o+1]y,
b+2
=q0 ) Gb+o+1s)g(s+v-1¢(s+v-1))
s=0
b+ov+1
=q0 Y, G(b+o+1t—ov+1)g(ty(t))
t=v-1
b-+o+1

>q0 Y. Go+ov+1,t—v+1)g(ty(t))

t=r
E b+ou+1
b0l g Y. Glb+ov+1t—v+1)

g0 ¥ G+o+1Lt—o+1) =

t=r

=b.

(iii) For ¢ € oP(«,a), we have

0< = v
< [X(lp) te[vfl,lg:»av)il]Nv_l 4)( ) a

and
0<y(t)<a pcoP(wa),tcv-1b+v+1]y, .
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This, together with (H9), implies that

b2
By) = G(t, -1, -1
w(By) = max G +v=19(+o—1)
i b+2
<53 Y G(b+0v+1,s)
Y G(b4+ov+1,s) 570
5=0
=a.

Now, we have established that all the conditions in Lemma 9 hold, and note that
B0 # 0, so we conclude that (1) has at least three positive solutions y; € P\{0} such that

0<a(n) <a<a(mn)Bmn) <b<pms), v <c O

In what follows, we study the problem

{ A _p(t) =f(t+o—1Lypt+o-1),¢9(t+v—-1))+g(t+v—-1¢(t+v—-1)), tec[0,b+2]y,
(22)

Yo =3) = [85 90|y o= [A0_s9(0)]| —0,

t=0+b+2—P

where v, a, B, b are founded in (1). By Lemma 3, (22) is equivalent to the following equation

b+2
p(t) =Y Gts)[f(s+v—Lyp(s+v—1),p(s+ov—1))+gls+v—-1L¢(s+0v—-1)), tev—-1Lb+ov+1]y,_,,
s=0
andlet A: P x P — Pand B: P x P — P be defined by
b+2 b+2
A(n,r)(t) = 2 G(t,s)f(s+v—1,9(s+v—1),z(s+v—1)), (By)(t) = Z G(t,s)g(s+v—1,9(s +v—1)).
s=0 s=0

Obviously, y* is a solution of (1) when n* = A(y*,»*) + By*. In the following theorem,
we study the operators A, BB to help us to obtain the existence of solutions to (22). Moreover,
the positive solution is unique, and it can be uniformly approximated by two appropriate
iterative sequences.

Now, we list some assumptions for our nonlinearities f, g as follows:

(H10) f(t,wo) : [o—1Lb+0v+1]y,_, x RT xRt — RT,g(tu) : p—1,b+0v+
1]y, , x Rt — R™ are continuous functions;

(H11) f(t,u,0) is increasing about u € R* for fixed t € [v —1,b + v+ 1]y, , and
v € R" and decreasing about v € R™ for fixedt € [v—1,b+ v+ 1]y, ,andu € R*, and
g(t,u) is increasing about u € R* for fixed t € [v —1,b+ v+ 1]y, ;

(H12) For every t € [v—1,b+0v+1]y,_,,7 € (0,1),u,0 € RT, there is a constant
¢ € (0,1) such that f(t,yu, v v) > 45 f(t,u,0) and g(t, yu) > vg(t u);

(H13) Forevery t € [v—1,b+ v+ 1]y, , andu,0 € R, there is a constant &y > 0 such
that f(t,u,0) > dpg(t,u).

Theorem 3. Suppose that (H10)—(H13) hold. Then, we get
(T1) There are vy, vo € Py and r € (0,1) such that rrg < ng < 1o,

b+2

no(t) < G(ts)[f(s+v—1Lyo(s+v—1),r0(s+v—1))+g(s+v—1n(s+v—-1))],
s=0

and
b+2

ro(t) = ), Gts)[f(s+o—Lx(s+v—1),n0(s+0v—-1)) +g(s+v—Lr(s+0v-1))],

[9)
i
o
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where h(t) = t2=1
(T2) (22) has a unique positive solution n* € Py;
(T3) For each initial value xo, 1o € Py, the sequences

= bizG(t,s)[f(s+v—1,;n_1(s+v—1),nn_1(s+v—1))+g(s+v—1,gn_1(s+v—1))],

b+2
= Z G(t,s)[f(s+v—19,1(s+v—=1),1p-1(s+v—-1))+g(s+v—1,9,_1(s+v—1))],

converge to y* as n — oo.

Proof. From (H10) and (H11), we know that A : P x P — P is a mixed monotone operator
and B : P — P is an increasing operator. Using (H12), for all v € (0,1) and t,y € P, we

obtain o2
A,y Te)( Z(Gts fs+v—1,m6E+o—-1),7 t(s+v—1))
b+2
> ¢ Y. G(t,s)f(s+v—Ly(s+v—1),z(s +v—1))
s=0
= C A, 0)(t),

and hence A satisfies (7) in Lemma 12. In addition, for any y € P and y € (0,1) we find

b+2

(Byw)(t ZGts (s+v—1,m(s+v—-1))
b+2
>y 2 G(t,s)g(s+v—1n(s+v—1))
s=0
= 7(By)(t).

Thus, B is a sub-homogeneous operator.
Let hy = h = t2=1, . From Lemma 4, we have

b+2
ho,ho ZGts s+v—1,(s+z;_1)v—1

(s +0v—1)2L)

b+2tu(v+b—ﬁ—s+1)” A1

SSO r( )(v+b_ﬁ+2)vﬁ1 f(5+071(5+071) (S+Z)71)ﬂ)
<bi:2fv 1(U+b—ﬁ—s—|—1)v—/5_ f(s-f—v_l,(b-l-v—&—l)v—l, )

)(o+b—p+2)2FL
v+bfﬁfs+1)vfﬁ71
ST (v+b—p+2)2F1

f(s+v—1,(b+v+1)ﬂ,o)-bo,

and

b+42
Albobo)(t) = 3, Cts)f(s 01, (s o -1, (s o - 1))

02 12=1G(b + v+ 1,5)
5 (bt+o+1)2t
b+2 tZJ 1G(b+’0+1 S)

- ;0 (b+v+1)2=L

f(ervf1,(s+vfl)ﬂ,(s+vfl)ﬂ)

f(s4+v—1,0,(b+0+1)2=L)

b+2 b—|—'0+1 )

- o-ly.
—Z b+v+1)” (s +0-1,0,(b+0+1)21) - by,
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6+2 G(b+o+1s) v—1 _ %2 (otbpost1)?
Let!] = Zo Wf(s+v 1,0,(6+v+1)=),L = s§0 T(o) (ot b2 ﬁ 1f(s+

v—1,(b+v+1)?=1,0). Then, we have Ihy < A(ho,hg) < Lho, i.e, A(ho,bo) € Pp,.
Similarly, from (H11), we have

b+2
b+v+1s)
v-1
_— -1,0
Z 6o+ 18t to10
b2
< (Bho)( ZGts (s+ov—1,(s+0v—1)21)

b—p—s+1)2F1
v+v+f—;j—2))” = 18(s+v— 1,(b4v+1)2=0).

i

Thus, we obtain Bhg € Py,. Therefore, (C1) in Lemma 12 holds.
Finally, for every r, 9 € P, from (H13) we have

b+2
= ;}G(t,s)f(s—i—v— Ly(s+ov—1),r(s+0v—1))

b+2
> 60 Y G(ts)g(s +v—Ly(s+v—1))
5=0

= do(By)(t).
Thus, (C2) in Lemma 12 holds. Then, our conclusions are true from Lemma 12. O

4. Examples
In this section, we will provide some examples to verify our main results.

Example 1. Let g(t, ) = alp| — bM (), M(¢) = In(Jyp|+1),p € Rt € [v—1,b+
v+ 1]Nv—l’ where a € (Kl_l,Jroo) and b € (a,a+1<2_1). Then, limw,Hﬂ,o % = 0, and

lim|¢‘%+mw =a > K}, lim|¢|_>0+‘aw'_+‘w(lp)l = |a—b| < x;'. Therefore,

(H1)-(H5) hold.

Example 2. Let b = 4,0 = 25,0 = 058 = 14. Then, [v-1L,b+o+ 1]y, , =
{1.5,2.5,3.5,4.5,5.5,6.5, 75} 0,6 + 2y, = {0,1,2,3,4,5,6}, 4o

= minep, q ooy, | 515 = 0.068, and if r = 6.5 we also obtain

6 6 0.
(6.1 —5)0L 15
Y G(7.5,5) ZW‘“’ =112.26,
s=0 s=0
b+ov+1 b+2 6
Y, Go+o+Lt—ov+1)= ) Gb+ov+11t) =) G(751) =19.86.
t=r t=r+1—v t=5
Letd =1,b =4, =24, and
0.008, ¥ €0,1],
gt ) =< —0992, e [l,4],
3.008, P € [4,+).

Then, g satisfies N
Dgt, ) < —gm———=3144, fort € [v—-1,b+ov+ 1]y, ,, ¢ € [0,5190.3];
q0 ; G(b+v+1,s)
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(I g(t, v) > b =296fort € [r,b+v+ 1y, ¢ € [4,865.1);

b+o+1
g0 Y G(b+v+1t—0+1)

t=r
(ID g(t, ) < g5—"——=0.009fort € [v—1,b+v+ 1]y, ,, ¥ €[0,1].
Y G(b+v+1s)

s=0
Therefore, (H6)—(H9) hold.

Example 3. Let f(t,u,0) = (b+v+1— t)’%t’%u% + U’%,g(t,u) =(b+ov+1-— t)*%t*%u%,
(tuv) € [v—1,b4+0v+1]y, , x RT x RY. Then, f is increasing about w and decreasing about
v, and g is increasing about u. For any <y € (0,1),u,0 € RY, taking ¢ = 1, then 4% € (,1) and

we obtain )
f(t,vuxf%) = (b+o+1—1t) 3t 3 (qu)d + (7*10) §
1 1 2 1 1
:73( +v+1—t) 3¢ 3u3+750 5
>qtl(b+o+1-1) ét—%uéﬂa—é}
=2 f(tu,0),
and L .
g(t,yu) = (b+ov+1—1t)"3t 3(yu)3

— 3 (b+o+1—1) 3t 5

Wl

2 1
t_§u§:|

—

>ql(b+ov+1—1)"
= 78(tu).
Moreover, it is easy to see that f(t,u,0) > g(t,u) for (t,u,0) € [v—1,b4+v+ 1]y, , X
R* x R*. Therefore, (H10)-(H13) hold.

Example 4. In [31], the authors consider nonlinearities like:

at)+c—d, (tbuv) €o—1Lb+o+1]y,_, x R" xRY,

F(tu,0) = ut 4 [0 +273 +b() 4, g(tw) =

where a,b : [v—1,b+ v+ 1]Ny71 — R* witha # 0, and c,d are positive constants with
c > d > 0. Note that f is increasing about u and decreasing about v, and g is increasing about u.
Moreover, for vy € (0,1),t € [v —1,b+ v+ 1]y, ,u,0s. € R, we have

Yu
1+qu

g(t) = 1 a(t) e —d > Ta() + (e —d) = 1g(t,w),

and

Furthermore, we note that

f(bu0)>d= d <)+C_d><< max a(t)—l—c—d)

MaXiefp-1,6+o+1ly, , A tefo-1b+o+1]y,
d ( u
> X a(t) +c— d)
MaXtefo—1,b+o+1)y, , a(t)+c—d 14+u
= 08g(tu), (bwv) € v—1b+0v+1]y _, x RT x RT.

Therefore, (H10)—(H13) hold.
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5. Conclusions

Fractional-order difference equations are a new form of differential equation that have
wider applications compared to traditional integer-order differential equations. They are
generalized differential equations whose derivative index can be a decimal or a fraction,
rather than an integer. This form of differential equation has wide applications in fields
such as physics, engineering, and finance. Therefore, the importance of studying fractional
difference equations is now becoming apparent. In this paper, we consider a boundary
value problem with a fractional-order difference equation and use Green'’s function to
express its solution. Moreover, we obtain some existence theorems for the considered
problem, i.e., when the nonlinearities satisfy some appropriate conditions, we study the
existence, uniqueness, and multiplicity of solutions via the topological degree and fixed
point theorems. Finally, we provide some examples to verify our main results.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L., C.W., D.O. and ].X.; validation,
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