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Abstract: The new Laplace variational iterative method is used in this research for solving the (2+1)-D
and (3+1)-D Burgers equations. This technique relies on the modified variational iteration method
and the Laplace transform. To apply this approach, the differential problem is first transformed into
an algebraic form using the Laplace transform, and then the algebraic equations are iteratively solved
using the modified variational iterative approach. By utilizing this technique, the Burgers equations
can be solved both numerically and analytically. The study demonstrates the effectiveness of the new
Laplace variational iterative approach through three specific examples.

Keywords: partial differential equations; partial derivatives; (2+1)-D Burgers’s equation; (3+1)-D
Burgers’s equation; system of two-dimensional Burgers’s equation

MSC: 44A10; 35E15; 47]30

1. Introduction

The ].M. Burgers equation, also known as Burgers’s equation, is a significant and
commonly used non-linear PDE. It was first introduced by Bateman and later corrected by
Burgers, and is sometimes referred to as the Bateman—Burgers equation. This equation is
employed to simulate numerous physical phenomena, for example, acoustics, diffraction
water waves, heat conduction, shock waves, and turbulence issues, among others.

This research focuses on the analytical solutions of the two-dimensional and
three-dimensional Burgers equations. The new Laplace transform with the variational
iteration method (LVIM) is utilized for solving these equations. Approximate results ob-
tained using the LVIM approach are then compared with the analytical results of Burgers’s
equation, the numerical approximations of the Burgers equation obtained via the Laplace
Homotopy Perturbation method (LHPM) [1], and the numerical results of the Burgers
equation obtained via the EHPM [2]. To demonstrate the effectiveness of the proposed
method, a comparison study is given in Section 3.

In addition, the suggested strategy’s convergence is illustrated through graphs of both
precise and approximate solutions. Various partial differential equations with linear and
non-linear coefficients can be utilized to solve initial value and boundary value problems.
To find approximate solutions to Burgers equations, several numerical schemes have been
developed, including the spline FEM, ADM, Douglas FD scheme, exact explicit FDM,
VIM, and others [3-10]. However, only a few analytical methods, such as the LHPM [11],
Hopf—Cole Transformation [12], etc., have been developed to obtain the precise solution of
certain PDEs. Laplace transform-based methods are extensively employed in mathematics
to solve differential equations. Other techniques, such as the VIM and the HPM, can also
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o¢(a,B,z,T)

+pp(apz, 1) =

be combined with it to make it hybrid. By combining these approaches with the Laplace
Transform method, partial differential equations can be solved analytically. The VIM has
been used to solve various differential equations [13]. It has been demonstrated that the
VIM can also solve non-linear equations [14]. The Laplace Transformation and variational
iteration approach have been used to solve Smoluchowski’s coagulation equations [15]. A
new modified variational iterative approach has been proposed for the solution of boundary
value problems of higher order [16]. The variational iteration approach and Laplace
transformation have been combined in [17]. In [18], certain issues with the variational
iterative approach and how the Laplace transform method fixes them are detailed. Modified
fractional derivatives have a Laplace variational approach built into them [19]. A new
Laplace Transformation and variational iterative approach can solve non-linear PDEs [20].
The new Laplace and variational iterative approach has been used to solve numerous
equations [21-24].
Consider, the (2+1)-D non-linear Burgers’s equation can also be written as

o9 («, B, 09 («, B, %¢(a, B, %p(a, B,
qv(ﬂ;f T)—I—pgo(a,/%,’r) qo(ﬂgaﬁ 7) :y( qo(aizﬁ L fp(aaﬁzﬁ T))

)

with the initial conditions
(e, B,0) = h(e, p)
where u is the velocity component, y is the kinematic viscosity, p is any constant, and ¢ is

the time.
Similarly, the (3+1)-D Non-linear Burgers equation is

A b27) _ (PowpzT) | PoleprT) | P
—H a2 B2 922

with initial conditions
¢(a,B,2,0) = j(a, B, 2)

where u is the velocity component, y is the kinematic viscosity, p is any constant, and 7 is
the time.

Non-linear partial differential equations find wide application in the fields of engi-
neering, physics, and applied mathematics. Various approaches have been suggested in the
literature to solve the two-dimensional Burgers equations as well as the two-dimensional
and three-dimensional Burgers equations. The importance of discovering exact solutions to
PDEs for developing novel techniques to obtain precise or approximate solutions remains
a topic of great interest in mathematics, engineering, and physics, as evidenced by recent
publications [25-30].

2. Materials and Methods
2.1. New LVIM for Solving (2+1)-D Burgers’s Equation

Consider the following (2+1)-D Burgers equation:

dg(a, B, 9p(a, B, Po(a,p,7) P B,
(P(%Tﬁ Y 4 pg(a, B, 7) (P(Dgf ) :V( qo(;;zﬁ L 4)(80;2!3 T)) )
with given conditions as
(@, B,0) = h(a, p)
Rewriting Equation (2), we have
a 7P 82 7P 82 7P a it
P18, Pr o) :V( aGTAS “D(a‘;f T))—pqv(a,ﬁ,r)(p(”gf G
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By applying Laplace transformation on (3), we have

dg(a, B, Po(a, 1)  Poap, I (, B,
L{ (P(ﬂgTﬁ T)}:L{#< <P(ao;2/3 L fP(a";f T))_p(P(“,ﬁ,T) 90(055 T)} )

stio(ap o)) - ola 0 = (55 +58) —po32 ) ®)
sL{g(a, B, 7)} — h(w, p) = L{V<(§ aﬁ2> p(Pg:’Z} (6)
sL{g(w, p,7)} = h(a, B) +L{V al w) psvgff} )
Lot po) =B Ll (58 4 T0) - ] ®
By using inverse Laplace transformation on (8), we obtain
(e, p,7) = h(, p) + L7 [1L{V<gjg+gzl£> —qugff}] )

Now, by modifying VIM from Equation (9), we obtain

Pni1 = h(a,B) + L7 [1 L {ﬂ(a;;’;" + a;;@") - (pqvn aai") H (10)

Equation (10) represents the modified iteration formula of LVIM; the solution is given by

@ = lim ¢,

n—o0

2.2. The Convergence of LVIM for (2+1)-D Partial Differential Equations
Consider the two-dimensional differential equation

lop(ea, B, T) +nep(a,B,7) =ga, B, T) (11)

with the initial conditions
@(a, B,0) = h(a, B) (12)

where I, n, and g are a linear operator of the first order, a non-linear operator, and a
non-homogeneous term, respectively.
The iteration formula of the new LVIM is

P (0,6,7) = G0 ) + L | LL{ngun, )}

Now, define the operator A[g] as

Alg) =1 | Llnguln )} 13
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define the components v, m = 0,1,2,3... as

0p = Up,
v1 = Alv],
Uy = A[Ul],
. (14)
Omt1 = AlOm]
Hence,
p(a,B,7) = lim gp(a,B,7) (15)

For the analysis of convergence of new LVIM, let us discuss the following theorem.

Theorem 1. Let A, as defined in (14), be an operator from Hilbert space H to H; the solution, as
defined in (16), converges if there exists 0 < v < 1 such that

[AOm ]l < vl Afowlll - (e lomeall < vloml)

forallm € NU{0}.

Proof. Define the sequence {S,},"_; as

(16)

S = G(a, B) + om

Now, we will show that sequence {S, },,_; is a Cauchy sequence in the Hilbert space H.
Consider

I1Smt1 = Smll = omi1 = vmll < Ylloml| < Pllom-all < ... < A" ool
For every m,n € N,m > n, we have

[Sm = Sull = [[(Sm 1)+ (Sm—1—=Sm—2) + ...+ (Sps1 — S|l
< ||(5m— m— 1)||+||( m—1—Sm-2)| + ..+ [[(Sn+1 = Sn)l
< y™lvoll + 4™ ool + ... + " |vo|
ﬂ 41 g |
1+ v 0

Since 0 < v < 1, therefore,

lim HSm Sull =0 (17)

mmn—

Hence, {S,},_; is a Cauchy sequence in the Hilbert space H and it implies that the
series solution (16) converges. [

2.3. New LVIM for Solving (3+1)-D Burgers’s Equation
Consider the following (3+1)-D Burgers equation:
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op(a,B,T,2) o09(a,B,z,7)  (9(a,B,z,1) | P9(aB,z1) , Pp(a,p,z7T)
A P R T T A (1)

with given conditions as
¢(a p,z,0) = j(a, p,2)

Rewriting Equation (18), we have

o¢(a,B,z,T P¢(a,B,z,1) 9 Bz1) O (apzT 9¢(a, Bz, T
(P(“aiz ):y< qv(vgaﬁzz ) 4 @(gﬁﬁzz ) 4 qv(vgzliz ))_W(“/ﬁ/ZIT) sv(txaiz ) (19)

By applying Laplace transformation on (19), we have

{5

(20)

Po(a,p,2,7) | Pola,pz1)  Pol Bz, dg(a, B,2,
_L{V< ¢(”;a’iZT)+ ¢(ﬂéﬁﬁzﬂ)+ (”(”;Z/i”))—p(p(a,ﬁ,z,r) q)(waiﬂ)}

02 02 d
stio(e bz} - olwpn0 = t{u(35+ 52+ 58) o0} n

9p2
stola im0} - p2) = L{n(55+ 52+ 52) -] @
stiotw bz o) = japa+t{u(5L+ 32+ 50) ) @
Loapzr) = LB 10 (200 20, 00) %)y

By using inverse Laplace transformation on (24), we obtain

oo i) = a2 + 17 L {n(58+ 52+ T8) 0 22h ] o)

Now, by modifying VIM from Equation (25), we obtain
) _1]1 P, g, ¢ ¢
v =it )+ [ (G0 + T 2) - (e )f] e

Equation (26) represents the modified iteration formula of LVIM; the solution is given by

¢ = lim ¢, (27)

n—oo

2.4. The Convergence of LVIM for (3+1)-D Partial Differential Equations

Consider the three-dimensional differential equation

lop(a, B,z,7) +ng(a, B, 7) = g(a, B, 7) (28)
with the initial conditions
¢(a,B,0) = h(a,p) (29)

where I, n, and g are a linear operator of the first order, a non-linear operator, and a
non-homogeneous term, respectively.
The iteration formula of the new LVIM is

Pu1(@,B,2) = Gla B) + L7 | Lingm(a p,2,7))



Axioms 2023, 12, 647 60f 13
Now, define the operator A[¢] as
111
Algl = L7 | - L{ngm(a, f,2,7)} (30)
define the components v, m = 0,1,2,3... as
Op = Uo,
v1 = Alvy),
Up = A[Ul],
. (31)
Om+1 = A[vm}
Hence,
9o, B2, 7) = lim g (a7, 7) (32)

For the analysis of convergence of new LVIM, let us discuss the following theorem.

Theorem 2. Let A, as defined in (30), be an operator from Hilbert space H to H; the solution, as
defined in (32), converges if there exists 0 < v < 1 such that

[Avmlll < vl Afowlll - G lomell < vloml)

forallm e NU{0}.

Proof. Define the sequence {S,} . ; as

51 G(zx,ﬁ,z) + 01
S =G(a,B,z)+ vy,
S3 = G(a,B,z) + v3

(33)

Sm=G(a,B,z)+ v

Now, we will show that sequence {S, };;_; is a Cauchy sequence in the Hilbert space H.
Consider

1Sm+1 = Smll = loms1 = vmll < YVllomll < Vllom-all < ... <" ool

For every m,n € N,m > n, we have

1Sm = Sull = [|(Sm 1)+ (Sm-1=Sm—2) + -+ (Sutr1 = Sn)l
< [[(Sm m1\|+||(m1—mz\|+ -4 [1Snga = Sa)
Sv’”llvole’” Hooll + .. 4+ 2" ool
1 ’Y n+1
= 7" ool

Since 0 < 7y < 1, therefore,

lim [[Sy —Sul| =0 (34)

m,n—00

Hence, {S,}, _; is a Cauchy sequence in the Hilbert space H and it implies that the
series solution (32) converges. []
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L{g(a,B,7)} =

3. Numerical Examples

Examples are provided in this part to illustrate the effectiveness and precision of the
suggested Laplace variational iterative method.

Example 1. Consider the following Two-Dimensional Burgers Equation

dp(a, p,T) _ 1 Ip(a, p,7) , Pola,pT)  Po(a,p7)
o = g BT T T e e 22 (35)
with conditions given as
¢(a,B,0) = A(a+ B)

By applying the LT on (35), we have

L{W} { oo, 1) “"ﬁ” Polwpr) o

oT on?

¢ B, 1)
el B

op(a, B, T) n 92

2
0w p,7) 9
Jdun

on?

sL{p(a,B,7)} - pla, B,0) = L{iqo(a, 8,7) p(af, r)}

a2

2 2
sLip(e 7)) — A+ By = L (o pr) 22T TP | TRCLT
2 2
w +Z L{ o(a,B,7) ((Xf ,T) n d (p(aazzﬁ,r) n 0 (p(aa;f,f)} )

By applying the inverse Laplace transformation on (37), we get

9w, B,1) 9w, p, 1) 0
o2 T

o= A+ [ 1] o b b e

ap?
Using the proposed variational method from (38), we obtain

1 1 o 02 02
_ -1t = Pm Pm Pm
Pm+1 —A(OC+/3)+L |:S L{A(Pm du 8042 + a‘BZ }:| (39)
From (39), we obtain
@0 =Aa+pB),
¢1=Aa+p)(1+71),

3
¢2=A(a+ B) (1 +T+T+ 3),
2t 0 1f
P3= A(zx+ﬁ)(1+r+r2+r3+3+3+9+
Similarly, we can find the fourth, fifth, and other iterations.

The solution can be found as

T

7
)

@ = lim @y

m—o0

After simplification, we obtain

(p:A(tx+ﬁ)(1+r+r2+T3+T4+T5...),
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This implies
¢=Al+p)(1-1)"

" _Aa+p)
1—7)

This series solution is valid only if |T| < 1.

(40)

Table 1 shows the comparison study of solutions obtained by new Laplace variation
iteration method (up to fourth term), variational homotopy perturbation method (up to
fourth term (as discussed in [1])), and the exact solutions fora = 0.1, B =0.1and A =2
of Example 1. Table 2 shows the comparison of absolute errors obtained by new Laplace
variation iteration method (up to fourth term) and variational homotopy perturbation
method (up to fourth term (as discussed in [1])) for « = 0.1, p = 0.1 and A =2 of
Example 1. Table 3 shows the comparison of absolute errors obtained by new Laplace
variation iteration method (up to fourth term) for different value of 7. Figure 1 shows the
physical behavior of solutions for T = 0.2 at different domain of « and S.

Table 1. The comparison study of new LVIM (up to fourth term), VHPM (up to fourth term (as
mentioned in [1])), and the exact solution for («, f) = (0.1, 0.1) and A = 2.

T Exact LVIM VHPM [1]
0.01 0.40404040 0.40404040 0.40404040
0.02 0.40816326 0.40816324 0.40816320
0.03 0.41237113 0.41237101 0.41237080
0.04 0.41666666 0.41666629 0.41666560
0.05 0.42105263 0.42105170 0.42105000
0.06 0.42553191 0.42552996 0.42552640
0.07 0.43010752 0.43010383 0.43009720
0.08 0.43478260 0.43477617 0.43476480
0.09 0.43956043 0.43954990 0.43953160
0.10 0.44444444 0.44442804 0.44440000

Table 2. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for («, B) = (0.1,0.1) and A =2.

T |Pexact—@Lvim| |@exact—@vapMm]| [1]
0.01 1.3604 x 10~° 4.0404 x 10~°
0.02 22210 x 1078 6.5306 x 1078
0.03 1.1475 x 107 3.3402 x 1077
0.04 3.7016 x 1077 1.0667 x 1076
0.05 9.2255 x 1077 26316 x 107°
0.06 1.9531 x 107 5.5149 x 10~°
0.07 3.6948 x 10~° 1.0327 x 107
0.08 6.4373 x 10~° 1.7809 x 1075
0.09 1.0532 x 107 2.8840 x 107°
0.10 1.6399 x 107> 44444 x 1072
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Table 3. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM

2 at different 7.

(up to fourth term (as mentioned in [1])) for (&, B) = (0.1, 0.1) and A

|(Pexuct_(PVHPM| [1]

‘("exuct _(PLVIM‘
32774 x 104

Exact Solutions

8.0000 x 10~4

0.50000000
0.57142857
0.66666666
0.80000000
1.00000000

0.2
0.3
0.4
0.5
0.6

4.6286 x 1073

2.1108 x 1073

1.7067 x 102

8.6822 x 1073

5.0000 x 102

2.8423 x 1072

1.2960 x 10~1

8.2421 x 1072

S5
SRS
SRS

RO
ﬁ..«

KKK

KRS

oot
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X

uonnos

0.2.

Figure 1. Description of solutions of Example 1 for T

Example 2. Consider the following (3+1)-D Burgers equation

(41)

0z2

ap?

on?

with the initial conditions

¢(a,B,2,0) = B(a + B+ 2)

, we obtain

By using the Laplace transformation on (41)

?p(a,B,z,7)

«,B,z,7)

(

)

«,B,z,T)
on?

(

)} — (e, B,2,0)

)

,0,2,T)

o
0

(

d¢

072

P2

o

)

L{;q)(oc,ﬁ,z,T

Z,7T) }

dg(a, B,

T

4

Po(a,b,%,7)
972

azgo(oc, B,z,7)
0p?

on?

z,

7

T
Pp(a,p,z,7)

sL{g(a, B

ox

9¢(x,B,2,7)

¢, p,2,7)

— |

4

—~~~
N
N
——
— —N
= —~
-~ —_-~
Z ~
N N
Q| N
N <y,
< Ol
() ol
i}
+ +
—
= -
N W
B/,W.H Q [y
~ g T I
N ~—~ N—
NS N S
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+ » +
+ o t -
8 R|
~ o ~— ~
Y SR
}Brza || B;.Za
SR e
«Q N ©
g + < +
s — 2 o
S0 &N
w ~
gz = Muwm
a’ S—
s &
= &
7~/ 7~/
S o
s —Im
— |
~ — | n

By the inverse Laplace transformation on (42), we obtain

(43)

=)

Po(a, p

+

Po(a,p,z,7)
B

+

azqo(zx, B,z,7)
ox2

+

o«

o¢(a,B,z,T)

29, Bz7)

E

1

B(a+ B +z)+
g

-

?
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Using the modified variational iteration method from Equation (43), we obtain

1 0 92 92 92
— -1 Pm Pm Pm Pm
¢m+1 =Bla+B+2z)+L L L{(pm By + 522 + Y + 5.2 H (44)

From (44), we obtain
o =B(a+p+2),

91 =Bla+B+2)(1+1),

3
Pr= B(w+ﬂ+z)(1+T+T2+;>,

2t 5 0 7
—B 1 2 3
?3 (oc+/3+z)< TTHT AT+t oty +63>'

The solution can be obtained by
¢ = Hm fm

Now, after simplification, we obtain
o= B(a+[3+z)<1+r+r2+r3+r4+r5...)
This implies

= B(szL,B—i-z)(l—T)_1

or
B(a+ B +2)
=

This series solution is valid only if |T| < 1.

Table 4 shows the comparison study of solutions obtained by new Laplace variation
iteration method (up to fourth term), variational homotopy perturbation method (up to
fourth term (as discussed in [1])), and the exact solutions for « = 0.1, p = 0.1, z = 0.1
and B = 3 of Example 2. Table 5 shows the comparison of absolute errors obtained by
new Laplace variation iteration method (up to fourth term) and variational homotopy
perturbation method (up to fourth term (as discussed in [1])) for particular values of
variables « = 0.1, p = 0.1, z = 0.1 and B = 3 of Example 3. Table 6 shows the comparison
of absolute errors obtained by new Laplace variation iteration method (up to fourth term)
for different value of 7. Figure 2 shows the physical behavior of solutions for T = 0.1 at
different domain of «, f and z.

Table 4. The comparison of new LVIM (up to fourth term), VHPM (up to fourth term (as mentioned
in [1])), and exact solution for («, B, z) = (0.1,0.1,0.1) and B = 3.

T Exact NLVIM VHPM [1]
0.01 0.90909090 0.90909090 0.90909090
0.02 0.91836734 0.91836729 0.91836720
0.03 0.92783505 0.92783479 0.92783430
0.04 0.93750000 0.93749916 0.93749760
0.05 0.94736842 0.94736634 0.94736250
0.06 0.95744680 0.95744241 0.95743440

0.07 0.96774193 0.96773362 0.96771870
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Table 4. Cont.

T Exact NLVIM VHPM [1]
0.08 0.97826086 0.97824638 0.97822080
0.09 0.98901098 0.98898729 0.98894610
0.10 1.00000000 0.99996310 0.99990000

Table 5. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM
(up to fourth term (as mentioned in [1])) for («, B, z) = (0.1, 0.1, 0.1) and B = 3.

T |Pexact—@rLvim| |@exact—@vapm]| [1]
0.01 3.0608 x 10~° 9.0909 x 10~
0.02 49972 x 1078 1.4694 x 1077
0.03 25818 x 1077 7.5155 x 1077
0.04 8.3287 x 1077 2.4000 x 10~°
0.05 2.0757 x 10~° 5.9211 x 107°
0.06 4.3945 x 107° 1.2409 x 10~
0.07 8.3134 x 10~° 23235 x 107°
0.08 1.4484 x 107> 4.0070 x 1075
0.09 23698 x 107° 6.4889 x 107°
0.10 3.6899 x 10~° 1.0000 x 1074

Table 6. The comparison of absolute errors obtained by new LVIM (up to fourth term) and VHPM

(up to fourth term (as mentioned in [1])) for («, B, z) = (0.1, 0.1, 0.1) and B = 3 at different 7.

T Exact Solutions |Pexact—@LVIM| | exact—@vapm]| [1]
0.2 1.12500000 7.3742 x 1074 1.8000 x 103
0.3 1.28571428 4.7493 x 1073 1.0414 x 1072
0.4 1.50000000 1.9535 x 1072 3.8400 x 1072
0.5 1.80000000 6.3951 x 1072 1.1250 x 101
0.6 2.25000000 1.8545 x 1071 29160 x 1071

100

50

Solutions

Figure 2. Description of solutions of Example 2 for z = 0.2 and 7 = 0.1.
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4. Conclusions

Based on the preceding discussion and experiments, the combination of the Laplace
transforms, and the variational iteration technique presents an effective approach to solve
the (2+1)-D and (3+1)-D Burgers equations. Compared to the variational homotopy pertur-
bation technique (VHPM), the new Laplace variational iteration method (LVIM) is more
effective in obtaining an approximate solution that closely approximates the actual one. It
is possible that this technique may be utilized in the future to solve the three-dimensional
Burgers equation system.
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