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Abstract: The emergence of SARS-CoV-2 virus mutations is a pressing concern in the context of the
COVID-19 pandemic. In this paper, a Susceptible–Infected–Recovered (SIR) compartmental model
has been formulated in terms of cellular automata and ordinary differential equations to simulate the
transmission dynamics of a virus. This model accounts for the potential of new virus mutations to
create additional infections of a multi-strain disease while also considering the impact of vaccination
on disease control within a population. The basic reproduction number of the disease is derived, and
the effect of virus mutations and vaccination rates is evaluated on a population over five years. The
results of numerical simulations demonstrate the significant role of maintaining high vaccination
rates in controlling the spread of the virus, even when assuming that all variants have similar illness
characteristics and that a single shot of vaccine provides complete and lifelong protection against
all strains. The findings underscore the necessity for countries to implement a consistent and high-
level vaccination plan as soon as vaccines become available in order to mitigate the impact of a
pandemic effectively. In conclusion, this study highlights the importance of taking into account
the potential impact of virus mutations for controlling the COVID-19 pandemic. Furthermore, it
emphasizes the critical role of vaccination in limiting the spread of the virus, and emphasizes the
need to implement and maintain high vaccination rates as part of a comprehensive approach to
managing the ongoing pandemic.
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1. Introduction

The COVID-19 pandemic is an ongoing global public health crisis, which has been
further complicated by the emergence of several mutations in the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). These variants have distinct genetic profiles and
exhibit varying clinical and epidemiological features. In March 2020, the D614G muta-
tion, characterized by increased infectivity, became the predominant strain worldwide,
replacing the strain reported in Wuhan [1]. In September 2020, a new variant, known as
Cluster-5 or ∆FVI-spike, emerged from mink farms in Denmark, resulting in the culling of
approximately 17 million animals [2].

In December 2020, a variant of concern, SARS-CoV-2 VOC 202012/01, was identified
in the United Kingdom. Preliminary reports suggested that this variant had increased
transmissibility and mortality risk [3,4]. It has since been reported in over 62 countries [4].
In the same month, a new strain, 501Y.V2, was identified in South Africa, replacing the
original strain in some provinces. Studies have demonstrated that this variant has higher
viral loads, increased transmissibility, and reduced vaccine efficacy [3,5,6].

Another variant, named P.1, emerged in Brazil in November 2020, causing a second
wave of infections in the country [7]. Recently, the Omicron variant was identified, and it has
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quickly become the predominant strain globally [8]. Notably, several new mutations have
been detected in the spike protein of the virus, which is the primary target of current COVID-
19 vaccines. The Beta, Gamma, and Delta variants have shown increased transmissibility
and may be associated with higher rates of hospitalization and mortality [9].

The emergence and spread of these SARS-CoV-2 variants underscore the urgent need
for continued surveillance and research to understand their clinical and epidemiological
impact. Effective management of this pandemic requires a coordinated global response,
including widespread vaccination and public health measures, such as physical distancing,
wearing masks, and avoiding large gatherings. Furthermore, ongoing monitoring and
genomic sequencing of the virus will be crucial in identifying new variants and developing
strategies to combat their spread. Furthermore, without serious research on modelling
such crises, control strategies aimed at combating mutating viruses or variations would
inevitably fall short [10].

Hence, it is crucial for epidemiological modelling to account for novel variants of a
disease in order to comprehend the dynamics of disease spread and furnish comprehensive
solutions to public health officials. The necessity of a multidisciplinary approach for study-
ing and managing virus variants usually begins with the use of mathematical modeling and
differential equations, aiming to establish a framework for analyzing the interplay between
viral mutations, transmission dynamics, and their impact on population-level infection
patterns [11]. Within the ambit of this paper, we propose a disease transmission model that
involves viral infection via human contact. This model accommodates the spontaneous
emergence of new virus variants during the infection process, while also accounting for a
spectrum of vaccination rates as a measure of disease control.

Previous works presented multi-strain disease models for a variety of objectives. In
general, there is a need to assess the transmissibility of a new mutation, and whether
this new mutation will be the majority of cases, invading a population and becoming
endemic. Diseases transmitted both directly and environmentally [12], considering an age-
structured model [13], formulated for mean-field and pair approximation approaches [14],
and considering Malaria [15] and COVID-19 [16] are a few examples of multi-strain disease
studies. Consider two strains of the same pathogen. If one strain in a host population may
limit the growth or presence of another strain, we have competitive exclusion, which has also
been taken into account due to important implications for disease dynamics and control
strategies [15,17]. For example, if a highly infectious strain of a pathogen is introduced into
a population that is already infected with a less infectious strain of the same pathogen, the
highly infectious strain may outcompete the less infectious strain and become dominant.
This could result in a more severe disease outbreak and potentially make control efforts
more difficult.

In spite of the concerted efforts made by these models to generalize the outcomes
across multiple strains prevalent in a population, the complexity of mathematical anal-
ysis directly corresponds to the number of strains involved. In the study conducted by
Breban et al. [12], the stability of equilibria and the determination of the basic reproduction
number were derived for multiple strains; however, the discussion was limited to the con-
sideration of only two strains. Several other scholarly works have investigated scenarios
involving two [17–19] and three [20] strains. Furthermore, certain studies have focused on
evaluating the process by which the most successful strain would dominate the entire hu-
man population, thereby incorporating an evolutionary aspect into the investigation [13,15].
Consequently, there is a demand for a flexible model that accommodates the presence of any
necessary number of strains, while simultaneously enabling a comprehensive mathematical
analysis of the basic reproduction number.

The present model is constructed utilizing Probabilistic Cellular Automata (PCA)
and Ordinary Differential Equations (ODE) within the framework of the Susceptible–
Infected–Recovered (SIR) compartmental model. The use of cellular automata has been
documented in the literature as a viable tool for simulating COVID-19 [21–23], as well
as variations of compartmental models, particularly the Susceptible–Exposed–Infected–
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Recovered (SEIR) model, which accounts for an exposed state before infection [24–26].
Indeed, compartmental models have been tailored to meet specific research needs, such as
the investigation of the impact of the COVID-19 pandemic on healthcare systems utilizing
states related to hospitalized individuals [23,26]; the assessment of the influence of migrant-
exposed individuals in predicting COVID-19 trends [27]; the use of separate asymptomatic
and symptomatic infected states to study the effects of social isolation [22,23,28]; the
propagation of two SARS-CoV-2 strains, separating the respective exposed and infected
states [18]; and even the study of an elementary cellular automaton evolution for a visible
representation of important features of the protein of SARS-CoV-2 [29]. Furthermore,
PCA and ODE have been employed in tandem to compare the pairwise approach for
modelling the contact between individuals (PCA) to the mean-field concept of ODE, with
ODE representing a mean-field approximation for PCA [14,30,31].

In summary, cellular automata possess specific constraints that researchers must con-
sider. These models operate under the assumption of cellular homogeneity, neglecting
subtle variations and individual-level heterogeneity, thereby potentially compromising
their accuracy in capturing the intricate intricacies of real-world scenarios. Additionally,
they may encounter difficulties when incorporating evolving population structures and
behavioral adaptations during disease outbreaks. Nonetheless, despite these limitations,
which are also prevalent in alternative mathematical and computational methodologies, cel-
lular automata continue to hold significance in the study of disease propagation dynamics,
serving as valuable complements to other epidemiological modelling approaches.

A broad range of mutation and vaccination rates are taken into account, yielding nu-
merous scenarios. The compartmental model consists of three states: susceptible, infected,
and recovered (for the cases with zero viral mutations). During the process of infection, the
virus has a chance of µ to undergo a mutation, thus producing a new strain and a distinct
type of infected state. With the PCA and ODE models described, the basic reproduction
number is derived from ODE using the next-generation matrix process [32,33].

The model has been formulated based on specific assumptions, consisting of the
homogeneity of disease features across all viral variants, the probability of reinfection
among individuals who have already recuperated from the disease by contracting new
strains, the administration of single-dose vaccines that guarantee durable immunity against
all viral variants, immediate onset of immunity post-inoculation, and a consistent and
abundant supply of vaccines. Therefore, this paper presents a numerical exercise that
showcases the effectiveness of achieving elevated vaccination rates in mitigating disease
burden and preventing the emergence of forthcoming variants that may pose a significant
risk to public health.

In the next section, the model is fully described, with the results in Section 3. The
discussion is presented in Section 4.

2. Methods

The probabilistic cellular automaton is structured on a square lattice with side n. The
lattice consists of n× n = NL cells that represent individuals in one of the disease states. In
the context where only a single viral strain exists within the population, an individual in the
susceptible state may undergo infection with a probability of Pi per time step. Following
infection, the individual has a probability of recovering and transitioning to a recovered
state with a probability of PC, as well as a probability of experiencing fatality due to the
disease with a probability of PD per time step. Furthermore, a recovered individual may
experience natural death with a probability of PN . In the event of fatality, a susceptible
individual replaces the deceased member to ensure a constant population size.

The probability of individuals becoming infected is a function of their neighborhood.
Each individual is connected to C neighbors located within a Moore radius r per time step.
The neighborhood alters at each time step, with C connections being randomly established
using the following procedure. An individual has a likelihood of establishing a connection
to a cell in layer i, with the probability qi,r = 2(r + 1− i)/r(r + 1). By layer i, consider
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the cells that are at a Chebyshev distance of i. A random cell from this layer is selected,
and C connections are established. Subsequently, the number of infected neighbors vI
determines the probability of an individual being infected, given by Pi(vI) = 1− e−kvI ,
where k is a parameter associated with the disease’s infectivity. This approach has been
employed in several previous works, such as [22,23,31]. When multiple disease strains are
present in the population, the number of infected neighbors is counted separately, and the
likelihood of becoming infected with each disease type is determined randomly to prevent
any prioritization. It is assumed that an individual may only contract one strain of the
disease at a time.

The introduction of new mutations into a model leads to the addition of new states. For
example, in the case where two strains are circulating within a population, SX represents
the state of individuals susceptible to all strains, while SX−1 and SX−2 denote the states
of individuals susceptible to all strains except strain 1 and strain 2, respectively. These
states represent individuals who have previously recovered from either strain 1 or strain 2.
Infected individuals of strain 1 and strain 2 are denoted as I1 and I2, respectively. Recovered
individuals are represented by the state SX−1,2.

To illustrate the possible transitions between states, Figure 1 depicts a transition state
diagram for a single strain, shown in blue with dark arrows, as well as the possibilities
when three strains are present within the population, shown in light red with grey arrows.
For instance, individuals who have recovered from strain 1 may become infected with either
strain 2 or strain 3, and consequently, transition to either SX−1,2 or SX−1,3, respectively. In
the event of individual mortality, replacement occurs with individuals who are susceptible
to all strains and are represented by the state SX. This mechanism maintains a constant
population size.

Figure 1. Probabilistic state transition diagram. In blue, the case for a single strain of SARS-CoV-2
that confers immunity to this strain when cured. We have few examples of transitions in light red
with light grey lines, such as an individual recovered from strain 1 being infected by strains 2 or 3
with respective possibilities of cure and death.

When vaccination is implemented in the population, γ susceptible individuals of any
type are vaccinated per time step. Following vaccination, individuals become immune to
the disease and are henceforth impervious to infection. The only possible state transition
is the occurrence of natural death, whereby the decreased individual is replaced by an
individual of the susceptible state SX .

The model was implemented using the C programming language and is available
upon request to the author.



Axioms 2023, 12, 632 5 of 14

The ODE Model

Here, we propose an exercise to construct an ODE model from the PCA model in a
systematic manner. Subsequently, we derive the basic reproduction number for a few cases,
and extend it to the general scenario.

Let us begin by considering the case with a single variant. In this scenario, the ODE
model can be expressed as follows:

dS{X}(t)
dt

= −a1S{X}(t)I1(t) + cI1(t) + eS{X−{1}}(t) + eV(t)− pS{X}(t)

dI1(t)
dt

= a1S{X}(t)I1(t)− bI1(t)− cI1(t)

dS{X−{1}}(t)
dt

= bI1(t)− eS{X−{1}}(t)− pS{X−{1}}(t)

dV(t)
dt

= pS{X}(t) + pS{X−{1}}(t)− eV(t) (1)

where a1 is the infection rate constant; p is the vaccination rate constant; b is the recovering
rate constant; c is the death rate constant due to the disease; and e is the death rate constant
due to other causes.

As in the PCA model, here the total number of individuals is also constant, be-
cause dS{X}(t)/dt + dI1(t)/dt + dS{X−{1}}/dt + dV(t)/dt = 0, then S{X}(t) + I1(t) +
S{X−{1}}(t) + V(t) = N. Moreover, a1, p, b, c, e can be estimated from simulations, since
the ODE model is a mean-field approximation. Based on [31], the expressions that link
these models are

a1 '
∆I1(t)S{X}→I1

S{X}(t)I1(t)∆t

p '
∆V(t)S{X}→V + ∆V(t)S{X−{1}}→V

(S{X}(t) + S{X−{1}}(t))∆t

b '
∆S{X−{1}}(t)I1→S{X−{1}}

I1(t)∆t

c '
∆S{X}(t)I1→S{X}

I1(t)∆t

e '
∆S(t)S{X−{1}}→S{X} + ∆S(t)V→S{X}

(S{X−{1}}(t) + V(t))∆t
(2)

where

• ∆I1(t)S{X} → I1 is the increase in I1(t) due to new infection cases from S{X} per time
step;

• ∆V(t)S{X}→V and ∆V(t)S{X−{1}}→V are the increase in V due to vaccination of S{X}
and ∆S{X−{1}} per time step;

• ∆S{X−{1}}(t)I1→S{X−{1}} is the increase in S{X−{1}} due to recovering of I1 per time step;

• ∆S{X}(t)I1→S{X} is the increase in S{X} related to death by the disease of I1;

• ∆S(t)S{X−{1}}→S{X} and ∆S(t)V→S{X} are the increase in S{X} due to deaths from an-
other cause of S{X−{1}} and V per time step.

In this system, the disease-free equilibrium (DFE) corresponds to a stationary solution
satisfying S′ = I′1 = I′2 = S′X−{1} = S′X−{2} = dS′X−{1,2} = V′ = 0 represented by
(S∗X, I∗1 , S∗X−{1}, V∗) = (e/(p + e), 0, 0, p/(p + e)). This point in the state space is of a
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particular interest since it is used to calculate the basic reproduction number using the next-
generation matrix [33] method. From Equation (1), the infectious subsystem is given by{

dI1(t)
dt

= a1S{X}(t)I1(t)− bI1(t)− cI1(t) (3)

For this subsystem, the Jacobian matrix in the disease-free equilibrium (S∗X , I∗1 , S∗X−{1}, V∗)
= (e/(p + e), 0, 0, p/(p + e)) is

J(I1,I2)
=
[
a1e/(p + e)− (b + c)

]
(4)

Then, the Jacobian matrix is decomposed as T + Σ, where T is the transmission part,
containing the production of new infected, and Σ is the transition part, containing changes
in the states [32], only for the infected states. With these matrices, we calculate the dominant
eigenvalue (spectral radius) ρ of the matrix −TΣ−1. Therefore,

T =
[
a1e/(p + e)

]
(5)

and
Σ =

[
−(b + c)

]
(6)

The eingenvalue of −TΣ−1 is a1.e/(b + c).(p + e). Then, R0 is given by

R0 =
a1e

(b + c)(p + e)
(7)

as analyzed in [31] for the case p = 0. If R0 > 1, the disease is endemic, and thus present
in the permanent regime of the system; if R0 < 1, the disease is simply extinguished from
the population.

If we consider two variants in the population, the ODE system presented in Equation (1)
can be expanded to

dS{X}(t)
dt

= −a1S{X}(t)I1(t)− a2S{X}(t)I2(t) +

c(I1(t) + I2(t)) +

e(S{X−{1}}(t) + S{X−{2}}(t) + S{X−{1,2}}(t) + V(t))− pS{X}(t)

dI1(t)
dt

= a1S{X}(t)I1(t) + a12S{X−{2}}(t)I1(t)− (b + c)I1(t)

dI2(t)
dt

= a2S{X}(t)I2(t) + a21S{X−{1}}(t)I2(t)− (b + c)I2(t)

dS{X−{1}}(t)
dt

= −a21S{X−{1}}(t)I2(t) + b11 I1(t)− eS{X−{1}}(t)− pS{X−{1}}(t)

dS{X−{2}}(t)
dt

= −a12S{X−{2}}(t)I1(t) + b21 I2(t)− eS{X−{2}}(t)− pS{X−{2}}(t)

dS{X−{1,2}}(t)
dt

= b12 I1(t) + b22 I2(t)− eS{X−{1,2}}(t)− pS{X−{1,2}}(t)

dV(t)
dt

= p(S{X}(t) + S{X−{1}}(t) + S{X−{2}}(t))− eV(t) (8)

where the new constants are a12 as the infection rate of S{X−{1}}, generating an infected
individual I1, and a12 as the infection rate of S{X−{1}}, generating an infected individual
I1. The total number of individuals is also constant, because S′{X} + I′1 + I′2 + S′{X−{1}} +
S′{X−{2}} + V′ = 0, then S{X}(t) + I1(t) + I2(t) + S{X−{1}}(t) + S{X−{2}}(t) + V(t) = N.
Note that b11 + b12 = b and b21 + b22 = b. From the I1 individuals that are cured from the
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disease, part is recovered only for strain one, and part is recovered for both strains; the
same is true for I2 individuals. The new estimations of the constant rates from PCA are

a2 '
∆I2(t)S{X}→I2

S{X}(t)I1(t)∆t

a12 '
∆I1(t)S{X−{2}}→I1

S{X−{2}}(t)I1(t)∆t

a21 '
∆I2(t)S{X−{1}}→I2

S{X−{1}}(t)I2(t)∆t

p '
∆V(t)S{X}→V + ∆V(t)S{X−{1}}→V + ∆V(t)S{X−{2}}→V

(S{X}(t) + S{X−{1}}(t) + S{X−{2}}(t))∆t

b11 '
∆S{X−{1}}(t)I1→S{X−{1}}

I1(t)∆t

b12 '
∆S{X−{1,2}}(t)I1→S{X−{1,2}}

I1(t)∆t

b21 '
∆S{X−{2}}(t)I2→S{X−{2}}

I2(t)∆t

b22 '
∆S{X−{1,2}}(t)I2→S{X−{1,2}}

I2(t)∆t

c '
∆S{X}(t)I1→S{X} + S{X}(t)I2→S{X}

(I1(t) + I2(t))∆t

e '
∆S(t)S{X−{1}}→S{X} + ∆S(t)S{X−{2}}→S{X} + ∆S(t)V→S{X}

(S{X−{1}}(t) + S{X−{2}}(t) + V(t))∆t
(9)

with the new expressions being ∆I2(t)S{X} → I2 as the increase in I2(t) due to new infec-
tion cases from S{X} per time step; ∆I1(t)S{X−{2}} → I1 is the increase in I1(t) due to new
infection cases from S{X−{2}} per time step; ∆I2(t)S{X−{1}} → I2 is the increase in I2(t) due
to new infection cases from S{X−{1}} per time step; ∆V(t)S{X}→V

is the increase in V due
to vaccination of ∆S{X} per time step; ∆V(t)S{X−{1}}→V is the increase in V due to vaccina-
tion of ∆S{X−{1}} per time step; ∆V(t)S{X−{2}}→V is the increase in V due to vaccination
of ∆S{X−{2}} per time step; ∆S{X−{1,2}}(t)I1→S{X−{1,2}} is the increase in S{X−{1}} due to
recovering of I1 previously cured from strain two per time step; ∆S{X−{2}}(t)I2→S{X−{2}}
is the increase in S{X−{2}} due to recovering of I2 per time step; ∆S{X−{1,2}}(t)I2→S{X−{1,2}}
is the increase in S{X−{1,2}} due to recovering of I2 previously cured from strain one per
time step; ∆S{X}(t)I2→S{X} is the increase in S{X} related to death by the disease of I2; and
∆S(t)S{X−{2}}→S{X} is the increase in S{X} due to deaths from another cause of S{X−{2}} per
time step.

In this system with two variants, the disease-free equilibrium (DFE) corresponds to
a stationary solution satisfying S′X = I′1 = I′2 = S′X−{1} = S′X−{2} = S′X−{1,2} = V′ = 0
represented by (S∗X , I∗1 , I∗2 , S∗X−{1}, S∗X−{2}, S∗X−{1,2}, V∗) = (e/(p+ e), 0, 0, 0, 0, 0, p/(p+ e)).
From Equation (8), the infectious subsystem is given by

dI1(t)
dt

= a1S{X}(t)I1(t) + a12S{X−{2}}(t)I1(t)− (b + c)I1(t)

dI2(t)
dt

= a2S{X}(t)I2(t) + a21S{X−{1}}(t)I2(t)− (b + c)I2(t) (10)
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For this subsystem, the Jacobian matrix in the disease-free equilibrium (S∗X , I∗1 , I∗2 , S∗X−{1},
S∗X−{2}, S∗X−{1,2}, V∗) = (1, 0, 0, 0, 0, 0, 0), is

J(I1,I2)
=

[
a1e/(p + e)− (b + c) 0

0 a2e/(p + e)− (b + c)

]

Decomposing the Jacobian matrix as T + Σ,

T =

[
a1e/(p + e) 0

0 a2e/(p + e)

]

and

Σ =

[
−(b + c) 0

0 −(b + c)

]

The eingenvalues of −TΣ−1 are: a1e/(b + c)(p + e) and a2e/(b + c)(p + e). Then, R0
is given by

R0 = max
1≤i≤2

(
aie

(b + c)(p + e)

)
. (11)

Expanding the system to more than two strains can become laborious. However, due
to the R0 calculation by next-generation matrix, the basic reproduction number will always
have the form presented before. Therefore, considering σ strains in the population, we have

R0 = max
1≤i≤σ

(
aie

(b + c)(p + e)

)
. (12)

In the next section, the results are presented.

3. Results

The cellular automata is configured with a square lattice of size n = 1000, and
NL = 1,000,000 cells. At the beginning of the simulation, the states are homogeneously
distributed over the lattice. To compare PCA and ODE models with one variant, one sim-
ulation in PCA is run with S{X}(0) = 0.9998, I1(0) = 0.0002, k = 0.3, PC = 0.2, PD = 0.2,
PN = 0.1, and γ = 10, 000 vaccinations per time step (from time step t = 52). After the
system reaches the permanent regime, Equation (2) is used to estimate ODE constant rates.
Figure 2 contains the time evolution of the PCA and ODE approaches.

(a) PCA. (b) ODE.
Figure 2. PCA (a) and ODE (b) simulations for one variant.

For two variants, a PCA simulation is run with S{X}(0) = 0.9996, I1(0) = 0.0002,
I2(0) = 0.0002, k = 0.15, PC = 0.2, PD = 0.2, PN = 0.1, and γ = 5000 vaccinations per time
step (from time step t = 52). From PCA, the ODE approach with two variants is simulated
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using the constant rates from Equation (9). Figure 3 contains the time evolution of the PCA
and ODE approaches.

(a) PCA. (b) ODE.
Figure 3. PCA (a) and ODE (b) simulations for two variants.

Note that there is a good agreement between the approaches. Other parameters have
been tested, always returning such similar results for PCA and ODE.

If we assume that a single time step of the simulation corresponds to one week of
real time, and if the average duration during which an infected individual can spread
the virus is roughly three weeks, we can estimate the probability of cure as PC = 1/3.
Additionally, we consider the probability of an infected individual dying from COVID-
19 as 1%, denoted as PD = 0.01 [34–36]. Given the life expectancy of Brazil, which is
approximately 76.3 years [37], we assume Pn = 1/(76.3× 52). To achieve an R0 value
within the range of [1, 6], we adjust the values of C = 8, r = 16, and k = 0.15 [36,38,39].

A summary of the variables and parameters of the PCA and ODE models is presented
in Table 1.

Table 1. Description of variables and parameters used for PCA and ODE models. * Note that C,
r, and k were chosen to have an R0 value within the range of [1, 6]; we adjust the values to C = 8,
r = 16, and k = 0.15.

Variable/Parameter Description Value Reference

n lattice side 1000 -
NL total number of cells 1,000,000 -
Pi probability of infection - -
k infectivity parameter 0.15 * [36,38,39]
PC probability of cure 1/3 [34–36]
PD probability of dying due to disease 0.01 [34–36]
PN probability of dying due to other causes 1/(76.3× 52) [37]
C number of contacts per individual 8 * [36,38,39]
r maximum radius for contact in the lattice 16 * [36,38,39]

S{X}(t)
the number of individuals susceptible to - -all variants at time t

S{X−1}(t)
the number of individuals susceptible to - -all variants except one at time t

I1(t)
the number of infectious individuals at - -time t who were infected by strain 1

I2(t)
the number of infectious individuals at - -time t who were infected by strain 2

V(t) the number of vaccinated individuals at time t - -

Prior to analyzing the impact of mutations, Figure 4 presents the temporal evolution
of the normalized cumulative deaths resulting from the disease, as a function of two key
variables, k and vaccine efficacy ve (Figure 4a and Figure 4b, respectively). The vaccine
efficacy utilized in all subsequent simulations is fixed at 100%; nevertheless, this figure
enables consideration of two additional scenarios corresponding to lower vaccine efficacies.
It is noteworthy that as k increases, so does the total number of deaths. The increase in
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deaths from k = 0.0095 to k = 0.0100 highlights how even a minor increase in k may
significantly impact disease transmission as a result of increased mutational frequency. The
simulations were executed under the conditions of γ = 5000 vaccinations per time step,
ve = 1, µ = 1.5× 10−5, and k = 0.01, except where indicated otherwise.

(a) k. (b) ve.
Figure 4. Time evolution of the normalized accumulated number of deaths due to disease in function
of (a) k and (b) the vaccine efficacy ve.

Once the parameters have been defined, it becomes feasible to assess the mutation
and vaccination rates and generate simulation scenarios for the COVID-19 pandemic over
a period of five years. The model posits that the mutation leading to the emergence of a
new disease variant occurs during the infection process. In particular, when an individual
is infected, there exists a probability µ that a new strain and disease variations may arise.
Given that the vaccines were not immediately available, we assume that γ non-infected
individuals are vaccinated per time step after 52 time steps of the simulation have elapsed.
Consequently, it becomes possible to evaluate the impact of the values of µ and γ on the
course of the pandemic’s evolution.

In order to accomplish this objective, we have conducted ten simulations for a duration
of 260 time steps, encompassing all possible combinations of µ and γ within the range of
µ = 1× 10−6, 2× 10−6, . . . , 100× 10−6 and γ = 1000, 2000, . . . , 30,000, resulting in a
total of 12,000 simulations. Our analysis has primarily centered on five outputs, namely:

• The number of successful strains by the conclusion of the simulation. Specifically, those
strains that have caused more than 1000 cases will be considered in the final results.

• The average number of new infection cases per time step at the end of the five-year
simulation period will be calculated across all strains.

• The total number of deaths caused by all strains during the simulation.
• The duration of the pandemic, measured in weeks, specifically the time taken for zero

cases per time step to occur.
• The basic reproduction number at the conclusion of the five-year simulation period.

These results, in function of µ and γ, are graphically represented in Figure 5. Notably,
our findings underscore that a low vaccination rate coupled with a high mutation frequency
results in a significant increase in multiple epidemiological metrics, including the number
of successful mutations, the average count of new cases five years following the commence-
ment of the pandemic, the total mortality rate, and the time required for the disease to be
eradicated. However, it is pertinent to mention that the duration of the simulation was
limited to 260 time steps, and hence the plateau depicted in Figure 5d signifies that the
disease was not eradicated by the end of the simulation period.

The final result to be presented pertains to the basic reproduction number at the
culmination of the five-year period. As depicted in Figure 6, R0 is illustrated as a function
of the vaccination rate and mutation, utilizing the average value for the last ten temporal
steps. It is noteworthy that for a vaccination rate exceeding 5000 vaccinations per week,
the contagion will no longer disseminate within the population beyond a five-year span.
This is an important result, substantiating that persistent and uninterrupted vaccination
measures can culminate in the eradication of an epidemic.

In conclusion, our study underscores the importance of vaccination rates in controlling
the spread of disease, particularly in the context of high mutation frequency. The simulation
results highlight the significant impact of low vaccination rates and high mutation fre-
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quency on various epidemiological metrics, and the importance of maintaining sustained
vaccination efforts in controlling the spread of disease.

(a) Virus mutation. (b) New cases.

(c) Total deaths. (d) Time to have zero deaths.

Figure 5. Four variables in function of the mutation rate of the SARS-CoV-2 and vaccination rate: the
number of successful virus mutations; normalized average number of new infection cases per time
step after five years from the beginning of pandemic; total number of deaths in five years; and the
time, in weeks, to have zero deaths due to COVID-19 pandemic.

Figure 6. Basic reproduction number in function of the mutation rate and vaccination rate.

4. Discussion

In the present study, a novel model has been proposed that utilizes probabilistic cellular
automata and ordinary differential equations to simulate the transmission dynamics of a
virus that may generate several active strains within the host population due to mutations.
The basic reproduction number of the disease has been derived by employing the next-
generation matrix process. Moreover, a vaccination strategy has been evaluated to mitigate
the epidemic and confront the virus mutations over a period of five years. Although the
model entails some strong assumptions, the findings underscore the critical significance
of a consistent and comprehensive vaccination plan in curtailing the emergence of new
mutations and ultimately eradicating the pandemic.
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In this study, the COVID-19 pandemic served as a reference point for investigating a
novel multi-strain disease model. Notably, the PCA flexibility, which is endorsed by the
ODE approach, obviates the problem of high-dimensional analytical analysis commonly
encountered in other publications in the field, where typically two [17,19] or three [20]
strains are considered. The model presented herein is transferable to pathogenic diseases
exhibiting drug resistance [17,40]. Although the model assumes equal epidemiological
characteristics for all strains, the calculated basic reproduction number can be applied to
strains possessing diverse transmissibility, illness severity, and mortality.

The world has undergone a considerable experience in combating the COVID-19
pandemic. Since December 2019, numerous mutations of the SARS-CoV-2 virus have
dominated populations both locally and globally, exhibiting rapid dispersion, even during
periods of lower international travel. The results presented herein exhibit two positive
outcomes: vaccination reduces the number of successful SARS-CoV-2 mutations, and the in-
cidence of COVID-19 cases and deaths decreased within the considered period, irrespective
of the mutation rate. Additionally, Figure 5d illustrates a remarkable finding: regardless of
the virus’s mutation rate, vaccinating 30,000 individuals (in our lattice) per time step (week)
can end the pandemic within a year of vaccine availability. Since vaccination commenced
after one year in the simulation (52 weeks), the pandemic could be over by March 2022,
for all mutation rates. However, the pandemic’s end could be postponed by lower vaccine
efficacy, individuals refusing to vaccinate in some countries, and mutations that evade
vaccines. The significance of an early vaccination program has been substantiated in prior
studies [20]. Furthermore, multi-strain models that incorporate vaccination strategies,
assuming a two-dose regimen for achieving complete immunity, have demonstrated that
one strain tends to prevail, ultimately leading to disease eradication when a substantial
proportion of the population has received both vaccine shots, as outlined in the chosen
parameters [16].

According to a recent study conducted by Oliveira et al. [41], the pandemic in Brazil
could be effectively terminated within a year if a vaccination rate of 14 million individuals
per week was achieved from the vaccine availability. Notably, the study’s findings were
predicated upon the administration of a vaccine with a 50% efficacy rate, specifically Sinovac
Biotech’s Coronavac, which was initially employed in Brazil’s vaccination campaign. In
the current study, we have considered the use of a vaccine with a 100% efficacy rate,
and our calculations have been based on a weekly dose administration of 30,000, which
translates to 6 million doses for a population of approximately 200 million people in Brazil.
It is imperative to acknowledge that this difference in the efficacy of the vaccine and
the corresponding dose administration may affect the estimated timeline for terminating
the pandemic.
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