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Abstract: In this paper, we present new dynamical properties of the two-mode Caudrey–Dodd–
Gibbon (TMCDG) equation. This equation describes the propagation of dual waves in the same
direction with different phase velocities, dispersion parameters, and nonlinearity. This study takes a
full advantage of the Kudryashov method and of the exponential expansion method. For the first
time, dual-wave solutions are obtained for arbitrary values of the nonlinearity and dispersive factors.
Graphs of the novel solutions are included in order to show the waves’ propagation, as well as the
influence of the involved parameters.

Keywords: two-mode Caudrey–Dodd–Gibbon equation; Kudryashov method; exponential expansion
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1. Introduction

Two-mode nonlinear partial differential equations (NPDEs) represent extensions of
the usual NPDEs. Both types of NPDEs, standard and two-mode, play a considerable
role in explaining nonlinear phenomena appearing in nature [1]. Two-mode equations
describe the interaction of solitons in gravitation, or the slow–fast propagation of waves in
hydrodynamics. They can also model dynamical phenomena in variable magnetic fields
appearing in plasma physics.

Standard evolutionary NPDEs involve a first-order partial derivative with respect to
time, and describe the unidirectional motion of a single wave. Dual/two-mode equations
are NPDEs of a second order in time, and govern the evolution of two-wave modes,
propagating in the same direction and with the same dispersion relation, while the phase
velocity and the linear and nonlinear parameters are different. The current investigations
of the two-mode waves mainly use the method proposed by Korsunsky [2]. It shows
that to derive the two-mode PDEs, it is necessary to collect, as two distinct components,
the nonlinear terms N(u, uxu, . . .) and the linear terms L(uqx, q ≥ 2), other than ut. in
the last period of time, many authors considered topics related to two-mode PDEs [3–6].
The dynamics of the two-mode KdV equation associated with the standard-mode third
-order KdV equation was studied by various analytical methods, including reductive
perturbation [7], the Hamiltonian system [8], or Bell polynomials [9]. In [10], it was
shown that the two modes are solitons that continue to propagate separately, without
shape and velocity changes, and with the only effect of their collision consisting of some
phase shifts. Rather similar methods to what we will apply in our paper, namely the
Kudryashov and exponential expansion methods, were used in [11] for the two-mode
Sawada–Kotera equation. Bright, dark, periodic, and singular-periodic dual-wave solutions
were constructed using a slight different auxiliary equation, as we will consider here.
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In [12] a dual-mode version of the nonlinear Schrödinger equation was studied, and its
solution was expressed as a finite series of tanh-sech functions. More exactly, dual-mode
dark and singular soliton solutions were obtained. The tanh expansion method and
Kudryashov technique were used in [13] with the dual-mode Kadomtsev–Petviashvili
equation to find the necessary constraint conditions that guarantee the existence of soliton
solutions. Multiple kink solutions were pointed out in [14] for the two-mode Sharma–Tasso–
Olver equation, as well as for the two-mode fourth-order Burgers equation by using the
Cole–Hopf transformation combined with the simplified Hirota method. Three different
techniques, including the Kudryashov expansion method that will be used here, were
applied in [15] in order to study the dynamic behaviors for a dual-mode generalized
Hirota–Satsuma coupled KdV system.

The contributions of this work are twofold. First, we find explicit dual-wave solu-
tions for the dual/two-mode Caudrey–Dodd–Gibbon (TMCDG) equation for arbitrary
nonlinearity and dispersion parameters, α and β. Previously, only the case α = β = ±1
was considered in [16], using the Hirota method. The same method was applied in [17]
on a more general form of TMCDG. Second, we study the influence of the mentioned
parameters, as well as of s, which stands for phase velocity, on the wave propagations,
showing how the dual-wave propagation depends on them.

The paper is organized as follows: After the Introduction, in Section 2, an overview
on the general form of the TMCDG equation is provided. In Section 3 we present basic
facts on the Kudryashov method [18,19] and the exponential expansion method [20]. The
findings of our investigation, where the previous methods were applied to the TMCDG
equation, are pointed out in Section 4. The analytical results were obtained using the Maple
program. Some graphical representations of the solutions are included and discussed in
Section 5. Section 6 is dedicated to some conclusions and final remarks.

2. Two-Mode Equations
2.1. Generic Two-Mode Equations

Korsunsky proposed in [2] a two-mode equation of the following form:

u2t − s2u2x +

(
∂

∂t
− αs

∂

∂x

)
N(u, uxu, . . .) +

(
∂

∂t
− βs

∂

∂x

)
L(uqx, q ≥ 2) = 0. (1)

The starting point for obtaining Equation (1) is an evolutionary equation of the form
ut + N(u, uxu, . . .) + L(uqx, q ≥ 2) = 0. In Equation (1), u(x, t) is the field function, s > 0
is the interaction phase velocity, and |α| ≤ 1, |β| ≤ 1 represent parameters describing
the nonlinearity and the dispersion, while N(u, uxu, . . .) and L(uqx, q ≥ 2) represent the
nonlinear and linear parts, respectively. It is important to note that the existence of the
dispersion is essential for finding soliton solutions [21,22]. The way of generating a two-
mode equation used here for CDG could be also applied to other NPDs, for example, the
Eckhaus–Kundu equation [23] or the Kundu–Mukherjee–Naskar equation [24].

2.2. Two-Mode Caudrey–Dodd–Gibbon (TMCDG) Equation

In this paper, we use a standard-mode equation such as [25–27]:

Gt + aG2Gx + bGxG2x + mGG3x + G5x = 0, (2)

where a, b, m are positive parameters and G5x is the linear term, while the nonlinear one is
represented by aG2Gx + bGxG2x + mGG3x. It is used to describe various phenomena ap-
pearing in various fields, such as plasma physics, optics, hydrodynamics, and mathematical
biology, as well as gauge field theory.

For a = 180, b = m = 30, Equation (2) becomes the Caudrey–Dodd–Gibbon (CDG)
equation [28]:

Gt + 180G2Gx + 30GxG2x + 30GG3x + G5x = 0. (3)
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Based on the Korsunsky proposal scheme, the two-mode equation associated to
Equation (3) is under the following form:

G2t − s2G2x +

(
∂

∂t
− αs

∂

∂x

)
(180G2Gx + 30GxG2x + 30GG3x) +

(
∂

∂t
− βs

∂

∂x

)
G5x = 0.

(4)
A more general equation, starting from (2), was considered in [17]. In this paper,

multisoliton solutions were generated using the Hirota method, the same method used
in [16]. In our case, we chose a specific equation from the same class, but we pointed out
other types of solutions, for example, the rational ones that were not reported in either of
the mentioned papers.

For s = 0, the previous equation takes the form of an usual evolutionary equation of
the type (2). By expanding the previous equation, we arrive at the equivalent expression:

G2t − s2G2x + 30[12GGxGt + 6G2Gxt + GxtG2x + GxG(2x)t + GtG3x + GG(3x)t]−

30αs
[
12G(Gx)

2 + 6G2G2x + 30(G2x)
2 + 2GxG3x + GG4x

]
+ G(5x)t − βsG6x = 0.

(5)

In order to solve (5), we use the wave variable ξ = kx− ct, and therefore, we transform
it into the traveling wave equation of the following form:(

c2 − k2s2
)

G′′ − 30c[12kG(G′)2 + kG2G′′ + k3(G′′)2 + 2k3G′G(3) + k3GG(4)]−

30αk2s[12G(G′)2 + G2G′′ + k2(G′′)2 + 2k2G′G(3) + k2GG(4)]− k5(c + kβs)G(6) = 0.
(6)

In [16], a one-soliton solution was derived for (4) through the simplified Hirota method.
It is obtained if—and only if—α = β. In the next section, we will extend this result, showing
how the equation can be solved for arbitrary nonlinearity and dispersion parameters, α and
β. New dual-wave solutions of (4) will be reported for the first time, using two well-known
solving methods: the Kudryashov and the exponential expansion methods. These are two
of the methods for solving NPDEs based on the auxiliary equation techniques, but other
alternative approaches, for example, attached flow [29], the symmetry method [30–33], or
the BRST technique [34,35], could also be considered.

3. Brief Overview of The Applied Methods

In this section, we will take a brief review of the two methods applied later to the
TMCDG equation. They are effective analytical methods for finding the traveling wave
solutions of NPDEs with the generic form:

E(u, ut, ux, utt, uxx, . . .) = 0. (7)

When the wave transformation is applied:

u(t, x) = u(ξ), ξ = kx− ct, (8)

where k, c are constants, and Equation (7) becomes an ODE in u = u(ξ) and its derivatives
in respect to β:

F(u, u′, u′′, . . .) = 0. (9)

3.1. The Kudryashov Method (KM)

In this section, a brief overview of the KM method [36,37] is presented. Let us assume
that the solution of Equation (9) can be expressed as follows:

u(ξ) =
N

∑
j=0

ajQj(ξ), (10)
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where the arbitrary constants aj, j = 1, N, aN 6= 0, are determined later, and Q(ξ) is the
solution of the equation [38]:

Q′(ξ) = Q2(ξ)−Q(ξ). (11)

The positive integer N can be determined by applying the homogeneous balance technique to
Equation (9). The general solution of the auxiliary Equation (11) is:

Q(ξ) =
1

1± deξ
, ∀d = const. 6= 0. (12)

By substituting Equations (10) and (11) into Equation (9), we obtain a polynomial R(Q(ξ)),
which can generate a set of algebraic equations allowing us to explicitly determine the parameters aj,
k, c. Then, using the solutions in Equation (10), we obtain wave solutions for the master Equation (7).

3.2. The Exponential Expansion Method (EEM)
Let us consider now the EEM [39]. In this case, the solution of (9) has to be assumed of the

following form:

u(ξ) =
N

∑
j=0

ρjej f (ξ), (13)

where ρj, j = 1, N are arbitrary constants to be calculated, such that ρN 6= 0 and f (ξ) are the solution
of the following auxiliary equation:

f ′(ξ) = pe−2 f (ξ) + re2 f (ξ), (14)

where the parameters p, r appear.
The value of N can be established by making the balance between the highest dispersion and

nonlinearity in Equation (9). Inserting expansion (13) with the value of N along with the auxiliary
Equation (14) into Equation (9) yields a polynomial P(e f (ξ)).

Vanishing all the coefficients of P(e f (ξ)), we obtain a system of equations that allows us to
determine the parameters ρj, p, r, k, c, for which nontrivial wave solutions of Equation (7) exist.

4. Dual Wave Solutions of the TMCDG Equation
Let us apply now the two methods described above for finding wave solutions of the TMCDG

Equation (4).

4.1. Application of the Kudryashov Method
By applying (10) and (11) and imposing the balance between the most nonlinear term G2G′′

and the higher-order derivative G(6), the generic solution of Equation (6) is expressed as:

G(ξ) = a0 + a1Q(ξ) + a2[Q(ξ)]2. (15)

With (15) and (11), Equation (6) becomes an eight-degree polynomial in Q. If we solve the
system generated when the various coefficients of the powers Qj, j = 0, 8 are set to zero, we obtain
the following solutions:

Solution 1: ∀k, ∀s > 0, ∀|α| ≤ 1, and

a0 = − k2

9
, a1 = −a2 =

4k2

3
,

c1,2 = ±ks, β =
1 + 10α

9
, |β| ≤ 1;

(16)

Solution 2: ∀k, ∀s > 0, ∀|α| ≤ 1, ∀a2 and

a0 =
a2
12

, a1 = −a2,

c3,4 =

k
[

4k2a2 + 3a2
2 ±

√
16k4a2

2 + 24k2a3
2 + 9a4

2 + 64k2a2sα + 64s2 + 48a2
2sα

]
8

,

β =

{
±
√

E[a2
2 + 3k2a2 + 2k4]− 3a4

2 − 13k2a3
2 − 2a2

2[9k4 + 4sα]− 8k2a2[k4 + 3sα]
}

16sk4 ,

(17)
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with
E = 9a4

2 + 24k2a3
2 + 16a2

2(k
4 + 3sα) + 64k2a2sα + 64s2, |β| ≤ 1. (18)

Plugging (16) and (17) into Equation (15) and considering the solution of (11), we obtain the
following new dual-wave solutions:

G1,2(x, t) =
k2

3

[
1
3
+ 4

(
1

1 + de(kx−c1,2t)
−
(

1
1 + de(kx−c1,2t)

)2
)]

, ∀d (19)

G3,4(x, t) = a2

[
1

12
− 1

1 + de(kx−c3,4t)
+

(
1

1 + de(kx−c3,4t)

)2
]

, ∀d, (20)

where the waves’ velocities c1,2 and c3,4 are given by expressions (16) and (17).

4.2. Application of the Exponential Expansion Method (EEM)
To obtain the dual-wave solutions of the TMCDG equation through the EEM, the solution of

Equation (6) is derived as follows:

G(ξ) = ρ0 + ρ1e f (ξ) + ρ2e2 f (ξ). (21)

By plugging Equation (21) along with the auxiliary Equation (14) into the traveling wave
Equation (6), and equating the coefficients of various powers of exponential terms to zero, a set
of algebraic equations involving ρj, j = 0, 2, p, r, c, k is derived. Its solution is obtained with the help
of the Maple program, under the following form:

∀ρ0, ∀ρ2, ∀s > 0, ∀k, ∀p, ∀r, |α| = |β| = 1, ρ1 = 0, c = ±sk. (22)

Substituting relations (22) into Equation (21), we should look for other TMCDG solutions in the
following form:

G(ξ) = ρ0 + ρ2e2 f (ξ). (23)

For example, taking into account the solution of the auxiliary Equation (14) and considering
pr > 0, the dual-wave solution is derived as a periodic one:

G5,6(x, t) = ρ0 +
ρ2 p

r
tan[2

√
prk(x± st) + q], (24)

with ρ0, ρ2, k, p, r, q, s > 0 arbitrary constants.

5. Discussions on the Dual-Wave Solutions
Let us now analyze the dual-wave solutions obtained in the previous section. We will give here

their graphical representations that will describe the dynamical behavior of the model.
Let us start with solutions (19). Their 3D and 2D graphics are presented in Figure 1 for the

following values of the parameters d = 3, k = 2, and α = 0.8, β = 1 for different s. Subgraphs (a1–a3)
present the spatiotemporal variation of these solutions for s = 1, 3, 10, respectively. Subgraphs (b1–b3)
depict the 2D plots of (a1–a3) when x = 0.

We observe that during their interaction, the two waves G1(x, t) and G2(x, t) keep their ampli-
tudes unchanged, while their widths decrease when the phase velocity increases. These behaviors
are shown in the 2D plots given by subgraphs (b1–b3). The influences of the wave number k and
of the the interaction phase velocity s, on the motion of the waves (19) are shown, respectively, in
subgraphs (a), (b) in Figure 2 . It can be seen from subgraph (a) that the profiles of G1 and G2 are
stable for k ∈ [0, 1], while for k increasing from 1 to 5, they become different. This happens under
particular values x = 1, t = 1, s = 3, d = 3, α = 0.8, β = 1. On the other hand, the profile of G2 is
lower than that of G1, and their profiles become stable for phase velocity s > 6, when x = 1, t = 1,
k = 1, d = 3, α = 0.8, β = 1 are considered.

Moreover, in order to analyze the dynamical behavior of the novel dual-mode solution (20), the
3D and 2D graphics are presented in Figure 3, considering the particular values of the free parameters
as a2 = 0.1, d = 3, k = 2, α = 0.2, for various values of phase velocity s. Subgraphs (a1–a3) present the
physical structure of the dual waves G3(x, t) and G4(x, t) upon increasing s (s = 1, 3, 5), which are,
respectively, associated with the values of β = 0.881, 0.971, 0.997. The motion described by (20) looks
like singular dual kink waves, as is clearly shown in subgraphs (b1–b3), representing the 2D plots
of (a1–a3) for x = 0. The collision of the waves occurs for the phase velocity s = 5. The influence of
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parameters k, s, and α on the motion of dual waves (20) is illustrated in subgraphs (a–c) in Figure 4.
When increasing both the wave number k within [1, 3] and the phase velocity s inside the interval
of values smin = 6.8 and smax = 12, we observe that the profiles of G3(x, t) and G4(x, t) increase and
remain fixed for any values k > 3, s > 12.

Figure 1. The 3D plots of the dual-wave solutions G1(x, t) (red color) and G2 (blue color) given
by (19), for α = 0.8, β = 1, d = 3, k = 2, and (a1) s = 1, (a2) s = 3, (a3) s = 10. The 2D cross-sections
of (a1–a3) at x = 0 are plotted in (b1–b3).

Figure 2. (a) The dependence on k when s = 1, d = 3, α = 0.8, β = 1, (b) the dependence on s when
k = 1, d = 3, α = 0.8, β = 1 of the motion of the two-mode waves G1(x, t) (red color) and G2(x, t)
(blue color) given by (19) for x = 1, t = 1.

Next, we will analyze the remainder of the obtained solutions. The 3D and 2D graphical
configurations of the dual-mode solutions (24) are presented in Figure 5. Subgraphs (a1), (a2) show
the physical structure of the two-mode waves G5(x, t) and G6(x, t) upon increasing s (s = 0.3 and
s = 1, respectively ), for ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5, r = 2, q = 0, |α| = |β| = 1. Both waves have
a periodic evolution, following tan-shapes that collide with each other. For a fixed-phase velocity
parameter s, the periods of the dual waves are the same. As s increases, one can see from subgraphs
(b1) and (b2) that the periodicity increases for G5(x, t) and G6(x, t). The impacts of the parameters k,
s, on the motion of the two-mode waves (24), when x = 3, t = 3, ρ0 = 1, ρ2 = 4, p = 0.5, r = 2, q = 0,
|α| = |β| = 1, are presented in subgraphs (a)–(b) in Figure 6.
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Figure 3. (a) The 3D plots of the dual-wave solutions G3(x, t) (red color) and G4(x, t) (blue color)
given by (20) for a2 = 0.1, d = 3, k = 2, α = 0.2 and variable s. Three phase velocities were considered:
(a1) s = 1, (a2) s = 3, and (a3) s = 5. The 2D cross-sections of (a1–a3) at x = 0 are plotted in (b1–b3).

Figure 4. The effect on the motion of the two-mode waves G3(x, t) (red color) and G4(x, t) (blue color)
given by (20), at x = 3, t = 1, of (a) wave number k when s = 5, α = 0.2, a2 = 0.1, d = 3; (b) phase
velocity s when k = 2, α = 0.2, a2 = 0.1, d = 3; and (c) the nonlinearity parameter α when k = 2, s = 5,
a2 = 0.1, d = 3.

Figure 5. The 3D graphs of G5(x, t) (red color) and G6 (blue color) given by (24), with |α| = |β| = 1,
ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5, r = 2, q = 0, and the phase velocities: (a1) s = 0.3, (a2) s = 1. The 2D
graphs of (a1,a2) at x = 0 are plotted in (b1,b2).
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Figure 6. The effect on the motion of the two-mode waves G5(x, t) (red color) and G6(x, t) (blue
color) given by (24) at x = 3, t = 3, of (a) the wave number k when |α| = |β| = 1, s = 0.3, ρ0 = 1,
ρ2 = 4, p = 0.5, r = 2, q = 0; (b) the phase velocity parameter s when ρ0 = 1, ρ2 = 4, k = 0.1, p = 0.5,
r = 2, q = 0.

We discussed the TMCDG equation from the perspective of two solving methods: Kudryashov and
exponential expansion. We illustrated the reach of the model in dual-mode wave solutions, and chose
only a few of them. In the case of the Kudryashov method, we used the auxiliary equation in the form (11),
accepting the rational solution (12). In these circumstances, the obtained dual waves (19) and (20) also
had a rational form. When we applied the exponential expansion, we chose a periodic solution of the
auxiliary Equation (14), and by consequence, we obtained the periodic dual wave (24).

6. Conclusions
In this work, we investigated the two-mode Caudrey–Dodd–Gibbon (TMCDG) equation,

which reads:

G2t − s2G2x + 30
(

∂

∂t
− αs

∂

∂x

)
(6G2Gx + GxG2x + GG3x) +

(
∂

∂t
− βs

∂

∂x

)
G5x = 0.

The Kudryashov expansion and the exponential expansion methods were implemented in order
to construct new dual-wave solutions. Previously, in [16], soliton solutions for TMCDG were obtained
only in the case of unitary parameters, α = β = ±1.

In our article, novel dual-mode wave solutions given by (19), (20), and (24) are generated for
arbitrary values of the nonlinearity and dispersion parameters, α and β. To the best of our knowledge,
they are reported here for the first time. Some interesting properties of the dynamical behavior of
the TMCDG model were pointed out using graphical representations of the new acquired solutions.
They can be summarized as follows:

- The TMCDG equation admits all of the same classes of solutions—hyperbolic, harmonic, and
rational—as the unimodal Equation (3). As examples, we show that, using the Kudryashov
expansion method, the TMCDG waves move in dual-mode, bright, and kink-wave shapes,
while using the exponential expansion method, the motion could appear as having a dual
tan-periodic pattern. Of course, these are not the only solutions that can be generated; other
solutions appear for different values of p and r.

- All solutions depend on the involved parameters, but the dependence is different. We note,
for example, that the nonlinearity parameter β cannot take any value, but one depending on
α. For G1,2(x, t), the dependence is linear, while for G3,4(x, t), a more complicated relation (17)
appears. The periodic solution G5,6(x, t) asks for unitary values of the two parameters α and β,
as the relation (22) shows.

- The influence of the main parameters (phase velocity s, wave number k and nonlinearity α) is
explained using the graphic representation of the solutions. Depending on their values, the
parameters can increase or decrease the velocity of the dual waves.

The approach used here can be applied to any evolutionary NPDE of interest in mathematical
physics and engineering, in order to achieve new dual-wave equations and their associated solutions.
We will investigate in future work the possibility of extending the two-mode procedure to other
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higher-dimensional NPDEs or to integrodifferential systems [40], as well as trying to implement
alternative techniques [41,42].
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