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1. Introduction

The curvature properties of metrics play very important roles in Riemannian and
Finsler geometry. Riemannian curvature and Ricci curvature are the most important
Riemannian geometric quantities in Finsler geometry. In 1988, the concept of Ricci curvature
was first proposed by Akbar-Zadeh, and its tensor form can be naturally obtained [1]. In
recent years, many scholars have conducted a great deal of research on them. Cheng-
Shen-Tian proved that the polynomial («, 8)-metric is an Einstein metric if and only if
it is Ricci-flat [2]. Zhang-Shen gave the expression of Ricci curvature of Kropina metric.
Furthermore, they proved that a non-Riemannian Kropina metric with a constant Killing
form f is an Einstein metric if and only if « is also an Einstein metric [3]. By using navigation
date (h, W), they proved that n (>2)-dimensional Kropina metric is an Einstein metric if
and only if Riemann metric % is an Einstein metric and W is a Killing vector field with
respect to h. Xia gave the expression for the Riemannian curvature of Kropina metrics
and proved that a Kropina metric is an Einstein metric if and only if it has non-negative
constant flag curvature [4]. Cheng-Ma-Shen studied and characterized projective Ricci-flat
Kropina metrics and obtained its equivalent characterization Equation [5].

Unlike the notion of Riemannian curvature, there is no unified definition of scalar
curvature in Finsler geometry, although several geometers have offered several versions
of the definition of the Ricci curvature tensor [1,6—8]. In 2015, Li-Shen introduced a new
definition of the Ricci curvature tensor [6]. This tensor is symmetric. They proved that
a Finsler metric F has isotropic Ricci curvature tensor if and only if it has isotropic Ricci
curvature and y-curvature tensor satisfies x; = fij(x)yj , where f;; + f;; = 0. It was further
proven that for Randers metrics, they are isotropic Ricci curvature tensors if and only if
they are of isotropic Ricci curvature.

In Finsler geometry, there are several versions of the definition of scalar curvature. We
used Akbar-Zadeh's definition [1] of the scalar curvature, based on Li-Shen’s definition
of the (symmetric) Ricci curvature tensor [6]. For a Finsler metric F on an n-dimensional
manifold M, the scalar curvature R of F is defined as R := g/ Ric;;. Tayebi studied general
fourth-root metrics [9]. They characterized general fourth-root metrics with isotropic
scalar curvature and also for general fourth-root metrics with isotropic scalar curvature
under conformal variation. Finally, they characterized Bryant metric with isotropic scalar
curvature. Chen—Xia studied a conformally flat («, )-metric with weakly isotropic scalar
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curvature [10]. They proved that if conformally flat polynomial («, )-metrics have weakly
isotropic scalar curvature R, then R vanishes.

In this paper, we obtain a characterization of Kropina metrics with isotropic scalar
curvature and have the following results.

Theorem 1. Let F be a Kropina metric on an n (>3)-dimensional manifold M. Then, F is of
isotropic scalar curvature if and only if

-2
= (—gucz + c2B% + cBsg — b*cop),
roo = c(x)a?,

(28"s — bzs"ﬁn)zxz = (n—1)(cBso + 53 — bZSO‘O),

) n
*Ric =

1)
3(n+1 6(n+1 . 3(n—1)(n+1 n3n+5
i = [ _ZUR_( n(_z)blbkbl Riey + LN D 2 10045) T
3n? +4n —4 3(n—1 1
+ [(n_l_bzn)s’gsm —3(n+1)s%, + %cso B+2(n—1)s"ysmo,

where b = ||B||a, g, 1, ¢2, co are expressed by (15), (23), (26), (27), respectively. In this case, scalar
curvature is

1 1—b? 2(3n+2

t
B B s"sm + (3n +4)s's m} .

2. Preliminaries

Let M be an n-dimensional C* manifold. A Finsler structure of M is a function
F:TM — [0,00)

with the following properties:

(1) Regularity: F is C* on the slit tangent bundle TM\{0};
(2) Positive homogeneity: F(x, Ay) = AF(x,y), VA > 0;
(8) Strong convexity:
1 9*F? 1, ,
8ij(x%,y) := Ew(%y) = E(F )yiyi

is positive-definite at every point of TM\{0}.

Let (M, F) be an n-dimensional Finsler manifold. Suppose that x € M. The geodesics
of a Finsler metric F = F(x,y) on M are classified by the following ODEs:

d>x! o dx
W +2G (X,dt> = 0,

o =4[, (7))

(§7) = (gi]‘)fl. The local functions G! = Gi(x,y) are called geodesic coefficients (or
spray coefficients). Then, the S curvature with respect to a volume form dV = o(x)dx is
defined by

where

aG" . 3lnc
5= ayn Y gam
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For x € M and y € TyM\{0}, Riemann curvature R, := Rik(x,y)% ® dx* is de-
fined by ' ‘ ‘ o
oG ;i 9G! j oG dG' 9G/

k axk Y dxioyk ayjayk oyl ayk

The trace of Riemann curvature is called Ricci curvature of F, i.e., Ric := Rkk.
Riemann curvature tensor is defined by

. 1[ Ry, 9’R|,
R == —%— - 5.
TH3 ) aylayl  aykayi

Let Ricjj := R, %, and
. 1 T =S
chi]- = 5 {RlCl’j + RZC]‘i}
is called a Ricci curvature tensor. The scalar curvature R of F is defined by
R := g'Ric;;.

Let x(x) be a scalar function on M, 0 := 6;(x)y’ be a 1-form on M. If

R=n(n-1) {z —I—K(x)},

then it is said that F is of weak isotropic scalar curvature. Especially when 6 = 0, i.e,,
R = n(n —1)x(x), it is said that F is of isotropic scalar curvature.

Let F be a Finsler metric on M. If F = %’ where & = /a;;(x)y'y/ is a Riemannian

metric, B = bi‘(x)yi is a 1-form; then, F is a Kropina metric. Its fundamental tensor
g = gijdx' ® dx! is given by [4]

F 3F 4 iy
8ij = ﬁ{Zaij + ?bibj - B(biyj + b]yi> + 0412]}'

where y; 1= ai]-yj . Moreover,

IJZE y_ _— (b4 J1/t [ . A
J 2F{” b2 +b2F(by+by)+2< b2F> a2 [

where (') := (aij)_l, b= aijbj.
Let VB =b; jyidxj denote the covariant derivative of p with respect to a. Set
1 1 iy j i
rij = §<bi|j + bj|i)/ Sij = 5 (bi|j - bj\i), roo = rijy'y!, ri = brij, ro =iy,
= aijrj, r= biri, sio = aijsjkyk, S; = bjsji, So = siyi, s = aijs]-.
The Ricci curvature of Kropina metrics is given by the following.
Lemma 1 ([3]). Let F be a Kropina metric on M. Then, the Ricci curvature of F is given by
Ric = *Ric+ T,

where * Ric is the Ricci curvature of «, and
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3(7/1—1) 2 -1 4(71_1) 2(1’1—1) .
T :birooﬁ b2 2 T’OO\Oﬁ W?’OOTOIB + W”OOSO,B _ ﬁrOO
k
1 1 2(2n -3 -2
b 4 sk bt o — o0 — 2o sy + 2y
b b2 b2 b4 B2 b )
n—2 , 1 k2 ko2 1, o1,
b4 50 bzﬁrkos % bzﬁrks 0 X IBrSOa + b ﬁr ksozx + B ———5 5,
1. 1 L 1,
~ o+ gt - 4[%25 o = s

Lemma 2 ([4]). Let F be a Kropina metric on n-dimensional M. Then, the followings are equivalent:
(i) F has an isotropic S curvature, ie., S = (n+ 1)cF;

(ii)  ro0 = oa?;

(iii) S=0;

(iv) B is a conformal form with respect to a,

where ¢ = c(x) and o = o(x) are functions on M.

3. Ricci Curvature Tensor and Scalar Curvature Tensor of Kropina Metrics

By the definition of Ricci curvature tensor and Lemma 1, we obtain the Ricci curvature
tensor of Kropina metrics.

Proposition 1. Let F be a Kropina metric on an n-dimensional manifold M. Then, the Ricci
curvature tensor of F is given by

-5 2 1 3n+2
Ricy = *Ricyy + sz{ (b4F3)r%0 + Wfoo(so —2rg) + B2z oo + ( 2F )Srgfmo
(Bn+4) s3 Solo . s'gsmo 1 rS0
T apE "0 T 3piE T aE T g T apr (T ms0 TSm0 = Sorm = 3y

v? 1
—U?sT 0" S0 — ?Fs”fstm — Fs"sp) + 02 [Sn —2—-(1- bz)zﬁ} s Osm}

3(n—5) 4 2 (Bn+2) ,
+ F.kl:.l{ bAF4 7%0 = roo(s0 — 2ro) — WrOO\O 3h2F2 2 S OrmO

(3n+4) S% SO‘O 1 mt (1 _bz) 1 m
T aparz 0% i T ez T 5SS m T qppep S 0Sm T g om
1[6(n—-3 n—7 n—3 2

- b‘*[ (pa )rOO_ ( F2 )70+( 72 )So] (F.krIO"'F‘lrkO)+@(F‘krlo|0

n—1 8(n—2
ﬁ (PkrOOll + F.lroouc) + %rkoﬁo o2 (Exmt + Eir)s™

(Bn+2) (3n—5)
6b2F b*F

+ Firoo) —

(3n+2)

62F (Fxrim + Eq7m)s’0 + (Fs"f + F1s")rmo —

(ko7

(n—3) 2 (n—1)
+7’lork)+b47F(”k051+7105k) bzprkl|0+ b2F (Tk0|z+710\k) sz(FkSHO

+ Fiskj0) + 6sz (Pksou + FzSo|k) b Tl + b4 Tk — sz (Fxs'| + Eis'e)rm
a [4(n—2)re0  2(n—3) 2(” -1 2 (n—1)
7 [ 2 =" + %0 + (b =) | + T(s”ﬁmk

3n — 1
+ 8% m1) — (ZT)(SIJZ +8irk) — 559 (Tku + Tuk> 38 =2 (FxsT + Fis't)smo
1—b?)F 1
(szﬁg(F.kbl + F1by)s'osm — 5 (Pk5nl1|m + F.lS"Z\m) 352 (bes'] + bys')smo
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ZFbkbl 1 n—2
BTN Sosmo + o2 { -5-(1- bz)zﬁ (Fis'} + Fis'{)sm T)Sksl
n—2 b
+ % (Sk\l + Sl\k) 2 (FxStjm + Fi1Skjm),

where *Ricy; denotes the Ricci curvature tensor of .

Contracting the Ricci curvature tensor with gkl , we can obtain the expression of the
scalar curvature R of Kropina metrics as following.

Proposition 2. Let F be a Kropina metric on an n-dimensional manifold M. Then, the scalar
curvature of F is given by

24(n—2) ~1)(n-8 8(n—2
R =- ;EZF5 750B + F4{—(n ;),gn )750+ (';6 Lroo (570 — 50)8
4(n—2
- ('24 )700|0,3} %{—— “Ricp — )r00(2r0—50)+( )7’00\0
— 2y, bt "1;3>er00[3+ md ormoﬁ+h4sormoﬁ+ L
_ 7(n-2)

-2 2) 2
7 Li2p+ ° he 2 rs0B + (nb4 )70\05 + nbe S8 — (n S0|05}
-l—%{"‘ch + h—zbkyl *Ricyp + ﬁ(r’fnbz —7)rgo + 7(3" +on=3) gm 0rmo + hizbm7’00|m

3b2
2 (3n2+13n—21 1 2(2n-3 ” n—5
ot — T)roso — 32700 — 38 )( —bs |0) -~ B )7%70,5

+(nb41)r S0P — n742) rormp — b4705m5+ nzl) m0|m5— blzﬂfn\oﬁ
+(nh4 St + o (o _50>ﬁ+ 2 slismp — 72) b" (Tojm —SO\m):B}

—i—%{l (“R - M “Ricy ) 3ﬁ D gm OSmo + (2b2 L (sor™, — $"Fpo — s"rm
3n2+n—7 2 —1
P+ "sgp — b7 S'om) + = o Lss, + 515 (Fmb* =) "B+ (sz)rkmsmkﬁ
(3116
*WMW\5+%”’Wﬁ E4hm%ﬁ—ﬁﬂmﬁ—§ﬁﬂﬁ+ﬁwmmﬁ

B (n2 2) gm n_om m gt n(1-b%) m
~ g — S sm o g ST, B | — s — §5'1sh — iz Shom,

@

where *R denotes the scalar curvature of «.

4. The Proof of Main Theorem
In this section, we will prove Theorem 1.

Proof. “Necessity”. Assume Kropina metric F is of isotropic scalar curvature, i.e., R =
n(n — 1)x(x). Substituting (2) into R = n(n — 1)x(x) yields

a'%To 4 a1y 4 a®T5 + a*T3 + a4 +T5 = 0, @)

where

1 1,4 n(1—b?)
ro = —n |:(7’1 — 1)K(x) + @Smsm —+ ESTS m:| ‘B — WSH(/)[SW[,

1 bkbl ) 1 ' 2 (Tl — 1) 5 (Tl — 1)
1_,1 _ 2 ( R — ? D‘Rlckl) + ﬁ(” b ) + 2b2 + ﬁf’ Tm — b4 Smrm
k1,l
Lo B, (=2, (n=2),  (1=2Psy]
2br+ 552 k|m—@rm_275 Sm + 2bh2 Sm 2b* p
3n2 +n—7 n+1 s
n [(6})2)5"5% + (T)z)(r",;so = 5" 1m0 = S5 = 3+ 0" o - bzsrgm)] p
(n—1)

+ Ts"&smoﬁ,
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+ %;42)5"6%/3 + 4(nb722) r(ro —s0)B — lr “joP T ( ) "omP — u 2) bromp
g 6D L
{ [ 4(1;1)70070 . 2("1;1)?0050 . (nb—zl)roo‘ﬁ(”b;f)ﬂgmoﬁ
—702_2)05%—602;2%h%ﬁ4‘;ﬂbw5+( 2) 2 OB__( 2)%0ﬁ}ﬁ
I's = *Mrgoﬁz

By (3), we have that a? divides I's. Thus, there exists a scalar function ¢ = c(x) such
that rg9 = ca?, which is the second formula of (1). Thus, we deduce that
Tij = Caij; Tio = C€Yi; Tijjm = CmAij; Tiojm = CmYi; Tiojo = CoYis
roo‘k = deéz,' 1’00|0 = C()OCZ,' T’kk = nc, T’kk|0 = ncy, ri = Cb,‘;
ro =cp; i = cjbi + csij + Czal-]-; r=cb% Tijo = cobi + csig + czyi;
rolj = ¢jp +csoj + czyj; rojo = cop + 2o rk‘k = cp +nc?,

where ¢; = aa—;, cp = cibl, cp = ciyi.
Substituting the above equations into (3) yields

a®Ag + a*A 4 a?Ay + A3 =0, @)
where
1 I n(1—b?)
Ay = —n [(n —1Dx(x) + @smsm + Zs"fs B— Ws’gsm,
A = 2%4{172(172 “R— b0 “Ricy) + (n+1)b?[(n — 2)c* + ¢y
— (1 —2)(25™sy, — b%s ‘m)}/%3
Ay = ("b%z)( 2B+ {szbkyl “Ricy MCSO + (n—2)[2b%cq

1 . 2(2n — 3
+ 0" gy — '05m] }ﬁ4 + W [“ch + 221 -3) 3 ) (b250|0 —s3)| 8%,

As = %{fb‘1 “Ric + (n —2)[c*B? + (2cs0 — b2c)B + (55 — b?s00)]}B°.
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By (4), we have that a? divides A3, i.e., there exists a scalar function f = f(x) such that
fa? = —b* “Ric+ (n — 2)[c*B* + (2csp — b?co) B + (s§ — bso)0)]- (5)
Differentiating the above equation with respect to y'y/ yields
2fa;; = — 2b* *Ricij + (n — 2)[2c%b;bj + 2c(sib; + 5;b;) — b*(cib; + ¢;by)
+2s;5; — bz(siU + 1))
Contracting this formula with bibi or all yields, respectively,
f=—b*'D “Ricij + (n — 2)b%c? — (n —2)b%cy, — (n — 2)s"sy,
nf=—b**R+ (n—2)b*c* — (n —2)b%cy, + (n —2)(s"sp — b25”|1m).

Combining the above two formulas, we obtain

2 . —
f= nli 1 (blbf “Ric;j — b? ”‘R) + %(ZSmsm — bzs”fm) (6)
and
1 P 1
Sl = —m(b2 “R —nb'b “Ricjj) + (n —1)(cp — )+ (nb%)smsm. 7)
Substituting (5)—(7) into (4), we obtain
0'@y +a’@; + @, =0, 8)
where
1 1 4 n(1—1b?%)
@0 = —n |:(Tl — 1)K(x) + @Smsm + ZS"ZS m:| ‘B — Wsmos;fn,
2pk,l
0, = é [n(Sn +5) (i b_bz *Ricy +s"sm + bzcb> — anzczl B
1[ 6(n+1 , 3n% +4n — 4 n
te {—(z)bkyl “Ricy + Ts’gsm = 3(n+ 1) (s, — p2Cs0 + co) | B?

+2(n —1)s"smopf,

_n bt 202 2 3
®2_3b4<_n—2 Ric+c*p*+cPso — b coﬁ>/3.

By (8), we have that a? divides ®,. Then, there exists a scalar function g = g¢(x)

such that

4
gzxz = _ b 3 *Ric + 62,52 +cBsg — bzcoﬁ/ ©)

which is the first formula of (1). Differentiating the above equation with respect to y' or
Y'Yy, respectively, we obtain
2b*
28y; = )
bt ,
> aRIC,‘]' + ZCzbib]' + C(bl’S]‘ + b]'SZ') —? (Cib]‘ + C/'bi). (11)

yl “Ricj + 2c?Bb; 4 cbisy — b>cob; + cBs; — bPc;B, (10)

Zgai]' = —
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Contracting (10) with b’ yields

2
296 = — vt bly’ “Ricy; + b*(2c* — cp) B + bPesy — btcg. (12)

Contracting (11) with b'b/ or a, respectively, we obtain

2

g= _%bzb] “RiCi]' + bZ(CZ - Cb)/ (13)
bt 2/ 2

ngz_n—leR_H?(C —Cp)- (9

Comparing (13) and (14) yields

b2

-z injaps... 12
8= =T (b bl “Ric;; — b R) (15)
and
1 .

_ 2 2ap ] €.

cp=c"+ CENCED) (b R —nb'b chl]). (16)
Substituting (15) and (16) into (12) yields
2b1 j 1 bibi n—1 c

cop = 7]/ aR + ﬁ 1 |: ) ’XR + ? IXR 1] + b2C2:| + ﬁso. (17)

Combining (5), (6), (9), and (15), we obtain the third formula of (1).
Substituting (9), (15)—(17) into (8) yields

2’y + 0 =0, (18)

where

1 3(n—|—1) 1 2 k1.l . 2 7’1(37’1 5) 2
O — « o + m
1= 6{ 2 |:( 2) (b R —2b"b chkl)+(n—1)c +7( 1)1725 Sm| B

1
+ 2 [(3112 +4n — 4)s"s,, — 3(n +1)b%s S0 +3(n—1)(n+ 1)cso} B

+2(n—1)s'ysmo }/3,

1 1 n(l—b?
Oy=-n {(n — Dx(x) + Zﬁsmsm + 45"[st B— %s"&sm.

By (18), we have that a? divides (). Then, there exists a scalar function & = h(x)
such that

ha? = 3(12_2'_1) [” 2(172 ®R — 2pkp! aRlel) + (Tl — 1)C + (fj:—li_?zs Sm} ;Bz
+ (32 + 41— 4)s — 3(n + PP, +3(n— ) (n+1)eso]p - 19

+2(n —1)stsmo,
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Whjch is the fourth formula of (1). Differentiating the above equation with respect to
y'y yields

2ha;; = ”+1 { (b *R — 2b%b! “Ricyy) + (n — 1) + ((:ZY)%S sm}bibj
[(3 2) (1 +2)sm(s"b; +57by) +3(n — 1) (n +1)c (]-bi+sibj)} (20)
1

3( +1)(s §"mbi + 87,5 ) +4(n —1)s"s;.

Contracting (20) with b'b/ or a, respectively, we have

3(n+1) (3n+2)

h= n2) [b2 “R — 2b'b/ “Ricl-]-] + s s 3+ 1)[(n — 1)+, +s'Ys'], (21)
nh :3((:_—'_21)) [bz “R —2b'b "‘Ric,-j] + (n ;;4) s +3(n+1)[(n—1)c* + sl + (n+ 5)s™st,. (22)

Comparing (21) and (22) yields

s™s
h= —2< bz'” +s™st, ) (23)
1 i 2 2 3n+4 3n+5 ¢
sy = m[Zble “Ricjj —b" “R] — (n = 1)c” — msmsm - ms"ﬁsm (24)
By (7) and (24), we obtain
1 [ivian. . 302+9+7 3n+5
- = J & B o rsr e om PP m ot
Cp — b’V “Ric;; + CESI s sm+3(n+1)stsm] (25)

Therefore, by (16), we have

2b'b/ “Ric;; — b* “R 1 302 1 9n 17

2 ] . m mt
CT T D2 3(n+1)(n_1)[ ) +(3n+5)stsm} (26)

Substituting (26) into (17) yields
. :B leibj “Rici]‘ B 1 31’12 +9n+7 " i
co = (n—1)02 (n—2) 30+ 1) ) s"sm + (3n +5)s'ts’,
2bl cs

y2 “Ricij + 73 (27)

Substituting (23) into (18) yields

n(l=»0* , 3142, 3nt+4 g

R:n(n—l)x(x):—w G S ST Ty St

“Sufficiency”. It is obviously true.
This completes the proof of Theorem 1. [

5. Other Related Results

In this section, we consider sg = 0 in Theorem 1.
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Corollary 1. Let F be a Kropina metric on an n(> 3)-dimensional manifold M. Assume sy = 0.
Then F is of isotropic scalar curvature if and only if

b* “Ric = %(b2 “R — b'Y “Ric;;) (b*a* — B?) — b'b/ “Ric;;p* — 2b*b'y/ “Ricy;PB,

roo = C(x)fxz,

3n+5
0=s"s", (24 — 3 B?) = 3(n +1)s%,,B +2(n — 1)sgsmo-
(28)
In this case, R = — 345t s,

Proof. Sufficiency is obviously true. Next we prove necessity. Assume that F is of isotropic
scalar curvature, i.e.,, R = n(n — 1)x(x). By Theorem 1, obviously, rog = c(x)a?, (5), (19),
(26) and (27) are true. When sy = 0, (26) and (27) can be simplified as

2bib “Ric.. — b2 &R
2 _( icjj ) (3n+5) gt o)
(n—=1)(n-2) 3(n+1)(n—1)
B nbivi *Ricjj G5 ey |2 e
v 7 B e T e ] B S (30)

Substituting sy = 0, (29) and (30) into (5), we obtain

- b2 *R+ (n — 2)b'b/ “Ric;

fa? = —b* “Ric — 20%b'y “Ric;;p — ( — 1) 182,

where f = (b’bf “Ric;j — b% *R). This is the first formula of (28).
Substltutmg sp=0 and (29) into (19), we obtain

3n+5
ha? = — nb;_ mst B> — 3(n+ 1)s'5,,B +2(n — 1)sGsmo,

where h = —2s"'s, . This is the third formula of (28).

By Theorem 1, in this case, R = — 3444t s O

Corollary 2. Let F be a Kropina metric on an n(> 3)-dimensional compact manifold M. Then F
is of isotropic scalar curvature if and only if

b* *Ric = %(bZ “R —b'V “Ricyj) (V*a* — B?) — b'b/ “Ric;;p* — 2b*b'y/ “Ricy;PB,

ro0 = C(x)l’éz,
2 3n+5

0= (2« B2)s'Ysly — 3(n +1)s, B+ 2(n — 1)ssmo-
In this case, R = 3’$4st s,

Proof. Sufficiency is obviously true. Next we prove necessity. Assume that F is of isotropic
scalar curvature, i.e.,, R = n(n — 1)x(x). By Theorem 1, (24) and (26) are true. Substituting
(26) into (24), we obtain

m n+1 .,
S\m_ b2

"5y,

Using the divergence theorem, when M is a compact manifold, sy = 0. By Corollary 1,
Corollary 2 is true. [

Based on Lemma 2 and Theorem 1, we obtain the following result.
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Theorem 2. Let a Kropina metric F be of isotropic scalar curvature. Then, F is of isotropic S
curvature if and only if S = 0.

Proof. Assume that F is of isotropic scalar curvature. By Theorem 1, we know that
ro0 = ca’. By Lemma 2, the result is obviously true. [

Lemma 3 ([6]). For a Finsler metric or a spray on a manifold M, Ri%j = Rj”fni if and only if
xi = 0.

Remark 1. Li-Shen defined x = y;dx' with the S curvature in [11], where x; := %{S.i‘mym —=Sjit-
Based on Theorem 2, we know that ); for a K@ina metric with isotropic scalar curvature vanishes,
ie, R .= R .. This means that Ric;; = Ricjj.

i mj jmi

6. Conclusions

In this paper, we study the Kropina metric with isotropic scalar curvature. Firstly,
we obtain the expressions of Ricci curvature tensor and scalar curvature. Based on these,
we characterize Kropina metrics with isotropic scalar curvature by tensor analysis in
Theorem 1. In Corollary 2, we discuss the case of a compact manifold. Kropina metrics
with isotropic scalar curvature deserve further study by the navigation method.
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