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1. Introduction

The curvature properties of metrics play very important roles in Riemannian and
Finsler geometry. Riemannian curvature and Ricci curvature are the most important
Riemannian geometric quantities in Finsler geometry. In 1988, the concept of Ricci curvature
was first proposed by Akbar-Zadeh, and its tensor form can be naturally obtained [1]. In
recent years, many scholars have conducted a great deal of research on them. Cheng-
Shen-Tian proved that the polynomial (α, β)-metric is an Einstein metric if and only if
it is Ricci-flat [2]. Zhang-Shen gave the expression of Ricci curvature of Kropina metric.
Furthermore, they proved that a non-Riemannian Kropina metric with a constant Killing
form β is an Einstein metric if and only if α is also an Einstein metric [3]. By using navigation
date (h, W), they proved that n (≥2)-dimensional Kropina metric is an Einstein metric if
and only if Riemann metric h is an Einstein metric and W is a Killing vector field with
respect to h. Xia gave the expression for the Riemannian curvature of Kropina metrics
and proved that a Kropina metric is an Einstein metric if and only if it has non-negative
constant flag curvature [4]. Cheng-Ma-Shen studied and characterized projective Ricci-flat
Kropina metrics and obtained its equivalent characterization Equation [5].

Unlike the notion of Riemannian curvature, there is no unified definition of scalar
curvature in Finsler geometry, although several geometers have offered several versions
of the definition of the Ricci curvature tensor [1,6–8]. In 2015, Li–Shen introduced a new
definition of the Ricci curvature tensor [6]. This tensor is symmetric. They proved that
a Finsler metric F has isotropic Ricci curvature tensor if and only if it has isotropic Ricci
curvature and χ-curvature tensor satisfies χi = fij(x)yj, where fij + f ji = 0. It was further
proven that for Randers metrics, they are isotropic Ricci curvature tensors if and only if
they are of isotropic Ricci curvature.

In Finsler geometry, there are several versions of the definition of scalar curvature. We
used Akbar-Zadeh’s definition [1] of the scalar curvature, based on Li–Shen’s definition
of the (symmetric) Ricci curvature tensor [6]. For a Finsler metric F on an n-dimensional
manifold M, the scalar curvature R of F is defined as R := gijRicij. Tayebi studied general
fourth-root metrics [9]. They characterized general fourth-root metrics with isotropic
scalar curvature and also for general fourth-root metrics with isotropic scalar curvature
under conformal variation. Finally, they characterized Bryant metric with isotropic scalar
curvature. Chen–Xia studied a conformally flat (α, β)-metric with weakly isotropic scalar
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curvature [10]. They proved that if conformally flat polynomial (α, β)-metrics have weakly
isotropic scalar curvature R, then R vanishes.

In this paper, we obtain a characterization of Kropina metrics with isotropic scalar
curvature and have the following results.

Theorem 1. Let F be a Kropina metric on an n (≥3)-dimensional manifold M. Then, F is of
isotropic scalar curvature if and only if

αRic =
n− 2

b4 (−gα2 + c2β2 + cβs0 − b2c0β),

r00 = c(x)α2,

(2smsm − b2sm
|m)α

2 = (n− 1)(cβs0 + s2
0 − b2s0|0),

hα2 =

[
3(n + 1)

n− 2
αR− 6(n + 1)

(n− 2)b2 bkbl αRickl +
3(n− 1)(n + 1)

b2 c2 +
n(3n + 5)

b4 smsm

]
β2

+

[
(3n2 + 4n− 4)

b2 sm
0sm − 3(n + 1)sm

0|m +
3(n− 1)(n + 1)

b2 cs0

]
β + 2(n− 1)sm

0sm0,

(1)

where b = ||β||α, g, h, c2, c0 are expressed by (15), (23), (26), (27), respectively. In this case, scalar
curvature is

R = − 1
12

[
n(1− b2)

b2β
sm

0sm +
2(3n + 2)

b2 smsm + (3n + 4)sm
t st

m

]
.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. A Finsler structure of M is a function

F : TM→ [0, ∞)

with the following properties:

(1) Regularity: F is C∞ on the slit tangent bundle TM\{0};
(2) Positive homogeneity: F(x, λy) = λF(x, y), ∀λ > 0;
(3) Strong convexity:

gij(x, y) :=
1
2

∂2F2

∂yi∂yj (x, y) =
1
2
(F2)yiyj

is positive-definite at every point of TM\{0}.
Let (M, F) be an n-dimensional Finsler manifold. Suppose that x ∈ M. The geodesics

of a Finsler metric F = F(x, y) on M are classified by the following ODEs:

d2xi

dt2 + 2Gi
(

x,
dx
dt

)
= 0,

where

Gi :=
1
4

gik
[(

F2
)

xjyk
yj −

(
F2
)

xk

]
,

(
gij) :=

(
gij
)−1. The local functions Gi = Gi(x, y) are called geodesic coefficients (or

spray coefficients). Then, the S curvature with respect to a volume form dV = σ(x)dx is
defined by

S =
∂Gm

∂ym − ym ∂ ln σ

∂xm .
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For x ∈ M and y ∈ Tx M\{0}, Riemann curvature Ry := Ri
k(x, y) ∂

∂xi ⊗ dxk is de-
fined by

Ri
k := 2

∂Gi

∂xk − yj ∂Gi

∂xj∂yk + 2Gj ∂Gi

∂yj∂yk −
∂Gi

∂yj
∂Gj

∂yk .

The trace of Riemann curvature is called Ricci curvature of F, i.e., Ric := Rk
k.

Riemann curvature tensor is defined by

R i
j kl =

1
3

{
∂2Ri

k
∂yl∂yj −

∂2Ri
l

∂yk∂yj

}
.

Let Ricij := R k
j kl , and

Ricij :=
1
2
{

Ricij + Ricji
}

is called a Ricci curvature tensor. The scalar curvature R of F is defined by

R := gijRicij.

Let κ(x) be a scalar function on M, θ := θi(x)yi be a 1-form on M. If

R = n(n− 1)
[

θ

F
+ κ(x)

]
,

then it is said that F is of weak isotropic scalar curvature. Especially when θ = 0, i.e.,
R = n(n− 1)κ(x), it is said that F is of isotropic scalar curvature.

Let F be a Finsler metric on M. If F = α2

β , where α =
√

aij(x)yiyj is a Riemannian

metric, β = bi(x)yi is a 1-form; then, F is a Kropina metric. Its fundamental tensor
g = gijdxi ⊗ dxj is given by [4]

gij =
F
β

{
2aij +

3F
β

bibj −
4
β
(biyj + bjyi) +

4yiyj

α2

}
,

where yi := aijyj. Moreover,

gij =
β

2F

{
aij − bibj

b2 +
2

b2F
(biyj + bjyi) + 2

(
1− 2β

b2F

)
yiyj

α2

}
,

where (aij) := (aij)
−1, bi := aijbj.

Let ∇β = bi|jyidxj denote the covariant derivative of β with respect to α. Set

rij =
1
2

(
bi|j + bj|i

)
, sij =

1
2

(
bi|j − bj|i

)
, r00 = rijyiyj, ri = bjrij, r0 = riyi,

ri = aijrj, r = biri, si
0 = aijsjkyk, si = bjsji, s0 = siyi, si = aijsj.

The Ricci curvature of Kropina metrics is given by the following.

Lemma 1 ([3]). Let F be a Kropina metric on M. Then, the Ricci curvature of F is given by

Ric = αRic + T,

where αRic is the Ricci curvature of α, and
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T =
3(n− 1)

b4α4 r2
00β2 +

n− 1
b2α2 r00|0β− 4(n− 1)

b4α2 r00r0β +
2(n− 1)

b4α2 r00s0β− r
b4 r00

+
rk

k
b2 r00 +

2n
b2 rk0sk

0 +
1
b2 bkr00|k +

1
b4 r2

0 −
1
b2 r0|0 −

2(2n− 3)
b4 r0s0 +

n− 2
b2 s0|0

− n− 2
b4 s2

0 −
1

b2β
rk0skα2 − 1

b2β
rksk

0α2 − 1
b4β

rs0α2 +
1

b2β
rk

ks0α2 +
n− 1
b2β

sk
0skα2

− 1
β

sk
0|kα2 +

1
b2β

bks0|kα2 − 1
4β2 sj

ksk
jα

4 − 1
2b2β2 skskα4.

Lemma 2 ([4]). Let F be a Kropina metric on n-dimensional M. Then, the followings are equivalent:

(i) F has an isotropic S curvature, i.e., S = (n + 1)cF;
(ii) r00 = σα2;
(iii) S = 0;
(iv) β is a conformal form with respect to α,

where c = c(x) and σ = σ(x) are functions on M.

3. Ricci Curvature Tensor and Scalar Curvature Tensor of Kropina Metrics

By the definition of Ricci curvature tensor and Lemma 1, we obtain the Ricci curvature
tensor of Kropina metrics.

Proposition 1. Let F be a Kropina metric on an n-dimensional manifold M. Then, the Ricci
curvature tensor of F is given by

Rickl =
αRickl + F.k.l

{
− (n− 5)

b4F3 r2
00 +

2
b4F2 r00(s0 − 2r0) +

1
b2F2 r00|0 +

(3n + 2)
3b2F

sm
0rm0

− (3n + 4)
3b4F

r0s0 −
s2

0
3b4F

+
s0|0

3b2F
+

sm
0sm0

3β
+

1
2b2 (r

m
ms0 − smrm0 − sm

0rm −
rs0

b2

−b2sm
0|m + bms0|m −

b2

2
Fsm

t st
m − Fsmsm) +

1
6b2

[
3n− 2− (1− b2)

F
2β

]
sm

0sm

}
+ F.kF.l

{
3(n− 5)

b4F4 r2
00 −

4
b4F3 r00(s0 − 2r0)−

2
b2F3 r00|0 −

(3n + 2)
3b2F2 sm

0rm0

+
(3n + 4)

3b4F2 r0s0 +
s2

0
3b4F2 −

s0|0
3b2F2 −

1
4

sm
t st

m −
(1− b2)

12b2β
sm

0sm −
1

2b2 smsm

}

− 1
b4

[
6(n− 3)

F3 r00 −
(n− 7)

F2 r0 +
(n− 3)

F2 s0

]
(F.krl0 + F.lrk0) +

2
b2F2 (F.krl0|0

+ F.lrk0|0)−
(n− 1)
2b2F2

(
F.kr00|l + F.lr00|k

)
+

8(n− 2)
b4F2 rk0rl0 −

1
2b2 (F.krml + F.lrmk)sm

+
(3n + 2)

6b2F
(F.krlm + F.lrkm)sm

0 +
(3n + 2)

6b2F
(F.ksm

l + F.lsm
k)rm0 −

(3n− 5)
b4F

(rk0rl

+ rl0rk) +
(n− 3)

b4F
(rk0sl + rl0sk)−

2
b2F

rkl|0 +
(n− 1)

b2F

(
rk0|l + rl0|k

)
+

1
6b2F

(F·ksl|0

+ F.lsk|0) +
1

6b2F

(
F·ks0|l + F.ls0|k

)
+

1
b2 bmrkl|m +

1
b4 rkrl −

1
2b2 (F.ksm

l + F.lsm
k)rm

+
rkl
b4

[
4(n− 2)r00

F2 − 2(n− 3)
F

r0 +
2(n− 1)

F
s0 + (b2rm

m − r)
]
+

(n− 1)
2b2 (sm

l rmk

+ sm
krml)−

(3n− 7)
2b4 (skrl + slrk)−

1
2b2

(
rk|l + rl|k

)
+

1
3β

(F.ksm
l + F.lsm

k)sm0

+
(1− b2)F

24b2β2 (F.kbl + F.lbk)sm
0sm −

1
2

(
F.ksm

l|m + F.lsm
k|m

)
+

F
3β2 (bksm

l + blsm
k)sm0
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− 2Fbkbl
3β3 sm

0sm0 +
1

12b2

[
6n− 5− (1− b2)

F
2β

]
(F.ksm

l + F.lsm
k)sm −

(n− 2)
b4 sksl

+
(n− 2)

2b2

(
sk|l + sl|k

)
+

bm

2b2 (F.ksl|m + F.lsk|m),

where αRickl denotes the Ricci curvature tensor of α.

Contracting the Ricci curvature tensor with gkl , we can obtain the expression of the
scalar curvature R of Kropina metrics as following.

Proposition 2. Let F be a Kropina metric on an n-dimensional manifold M. Then, the scalar
curvature of F is given by

R = − 24(n−2)
b6F5 r2

00β + 1
F4

{
− (n−1)(n−8)

b4 r2
00 +

8(n−2)
b6 r00(5r0 − s0)β

− 4(n−2)
b4 r00|0β

}
+ 2

F3

{
− 1

b2
αRicβ− 2(n−1)

b4 r00(2r0 − s0) +
(n−1)

b2 r00|0

− 4(n−2)
b6 r00rβ + (n−3)

b4 rm
mr00β + (n−1)

b4 rm
0rm0β + 4

b4 sm
0rm0β + (n−2)

b4 bmr00|mβ

− 7(n−2)
b6 r2

0β + 6(n−2)
b6 r0s0β + (n−2)

b4 r0|0β + (n−2)
b6 s2

0β− (n−2)
b4 s0|0β

}
+ 1

F2

{
αRic + 2

b2 bkyl αRickl β + 1
b4 (rm

mb2 − r)r00 +
(3n2+5n−3)

3b2 sm
0rm0 +

1
b2 bmr00|m

+
r2

0
b4 −

(3n2+13n−21)
3b4 r0s0 − 1

b2 r0|0 −
2(2n−3)

3b4 (s2
0 − b2s0|0)−

(n−5)
b4 rm

mr0β

+ (n−1)
b4 rm

ms0β− 4(n−2)
b4 rm

0rmβ− 3
b4 rm

0smβ + (n−1)
b2 rm

0|mβ− 1
b2 rm

m|0β

+ (n−1)
b4 sm

0rmβ + 4(n−2)
b6 r(r0 − s0)β + (n−2)

b4 sm
0smβ− (n−2)

b4 bm(r0|m − s0|m)β
}

+ 1
F

{
1
2

(
αR− bkbl

b2
αRickl

)
β + (n−1)

3β sm
0sm0 +

(n+1)
2b2 (s0rm

m − smrm0 − sm
0rm

− rs0
b2 + bms0|m − b2sm

0|m) +
(3n2+n−7)

6b2 sm
0sm + 1

2b6

(
rm

mb2 − r
)2

β + (n−1)
2b2 rk

msm
k β

+ bm

2b2 rk
k|mβ + 1

2b4 rmrmβ− (3n−16)
2b4 smrmβ− 1

2b2 rm
|mβ− 1

2b6 r2β + 1
2b4 bmr|mβ

− β

2b4 rmr|m −
(n−2)

b4 smsmβ + (n−2)
2b2 sm

|mβ
}
− n

2b2 smsm − n
4 sm

t st
m −

n(1−b2)
12b2β

sm
0sm,

(2)

where αR denotes the scalar curvature of α.

4. The Proof of Main Theorem

In this section, we will prove Theorem 1.

Proof. “Necessity”. Assume Kropina metric F is of isotropic scalar curvature, i.e., R =
n(n− 1)κ(x). Substituting (2) into R = n(n− 1)κ(x) yields

α10Γ0 + α8Γ1 + α6Γ2 + α4Γ3 + α2Γ4 + Γ5 = 0, (3)

where

Γ0 = −n
[
(n− 1)κ(x) +

1
2b2 smsm +

1
4

sm
t st

m

]
β− n(1− b2)

12b2 sm
0sm,

Γ1 =

[
1
2

(
αR− bkbl

b2
αRickl

)
+

1
2b6

(
rm

mb2 − r
)2

+
(n− 1)

2b2 rk
msm

k +
5

2b4 rmrm −
(n− 1)

b4 smrm

− 1
2b6 r2 +

bm

2b2 rk
k|m −

1
2b2 rm

|m −
(n− 2)

2b4 smsm +
(n− 2)

2b2 sm
|m −

(n− 2)bkblsk|l
2b4

]
β3

+

[
(3n2 + n− 7)

6b2 sm
0sm +

(n + 1)
2b2 (rm

ms0 − smrm0 − sm
0rm −

rs0

b2 + bms0|m − b2sm
0|m)

]
β2

+
(n− 1)

3
sm

0sm0β,
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Γ2 =

{
αRic +

2
b2 bkyl αRickl β +

1
b4 (r

m
mb2 − r)r00 +

1
b2 bmr00|m +

(3n2 + 5n− 3)
3b2 sm

0rm0

+
r2

0
b4 −

(3n2 + 13n− 21)
3b4 r0s0 −

2(2n− 3)
3b4 s2

0 −
1
b2 r0|0 +

2(2n− 3)
3b2 s0|0

− (n− 5)
b4 rm

mr0β +
(n− 1)

b4 rm
ms0β− (2n− 1)

b4 rmrm0β− (2n− 3)
b4 smrm0β

+
(n− 2)

b4 sm
0rmβ +

4(n− 2)
b6 r(r0 − s0)β− 1

b2 rm
m|0β +

(n− 1)
b2 rm

0|mβ− (n− 2)
b4 bmr0|mβ

− (n− 2)
b4 sm

0smβ +
(n− 2)

b4 bms0|mβ

}
β3,

Γ3 =

{
− 1

b2
αRicβ− 4(n− 1)

b4 r00r0 +
2(n− 1)

b4 r00s0 +
(n− 1)

b2 r00|0 +
(n− 3)

b4 rm
mr00β

+
(n− 1)

b4 rm
0rm0β− 2(n− 2)

b4 sm
0rm0β− 4(n− 2)

b6 r00rβ +
(n− 2)

b4 bmr00|mβ

−7(n− 2)
b6 r2

0β +
6(n− 2)

b6 r0s0β +
1
b4 r0|0β +

(n− 2)
b6 s2

0β− (n− 2)
b4 s0|0β

}
β4,

Γ4 =

[
− (n− 1)(n− 8)

b4 r2
00 +

40(n− 2)
b6 r00r0β− 8(n− 2)

b6 r00s0β− 4(n− 2)
b4 r00|0β

]
β5,

Γ5 = −24(n− 2)
b6 r2

00β7.

By (3), we have that α2 divides Γ5. Thus, there exists a scalar function c = c(x) such
that r00 = cα2, which is the second formula of (1). Thus, we deduce that

rij = caij; ri0 = cyi; rij|m = cmaij; ri0|m = cmyi; ri0|0 = c0yi;

r00|k = ckα2; r00|0 = c0α2; rk
k = nc; rk

k|0 = nc0; ri = cbi;

r0 = cβ; ri|j = cjbi + csij + c2aij; r = cb2; ri|0 = c0bi + csi0 + c2yi;

r0|j = cjβ + cs0j + c2yj; r0|0 = c0β + c2α2; rk
|k = cb + nc2,

where ci =
∂c
∂xi , cb = cibi, c0 = ciyi.

Substituting the above equations into (3) yields

α6∆0 + α4∆1 + α2∆2 + ∆3 = 0, (4)

where

∆0 = −n
[
(n− 1)κ(x) +

1
2b2 smsm +

1
4

sm
t st

m

]
β− n(1− b2)

12b2 sm
0sm,

∆1 =
1

2b4 {b
2(b2 αR− bkbl αRickl) + (n + 1)b2[(n− 2)c2 + cb]

− (n− 2)(2smsm − b2sm
|m)}β

3,

∆2 =
(n− 2)

b4 (cb − c2)β5 +
1
b4

{
2b2bkyl αRickl −

2(8n− 15)
3

cs0 + (n− 2)[2b2c0

+ bms0|m − sm
0sm]

}
β4 +

1
b4

[
αRic +

2(2n− 3)
3

(b2s0|0 − s2
0)

]
β3,

∆3 =
2
b6 {−b4 αRic + (n− 2)[c2β2 + (2cs0 − b2c0)β + (s2

0 − b2s0|0)]}β5.
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By (4), we have that α2 divides ∆3, i.e., there exists a scalar function f = f (x) such that

f α2 = −b4 αRic + (n− 2)[c2β2 + (2cs0 − b2c0)β + (s2
0 − b2s0|0)]. (5)

Differentiating the above equation with respect to yiyj yields

2 f aij =− 2b4 αRicij + (n− 2)[2c2bibj + 2c(sibj + sjbi)− b2(cibj + cjbi)

+ 2sisj − b2(si|j + si|j)].

Contracting this formula with bibj or aij yields, respectively,

f = −b2bibj αRicij + (n− 2)b2c2 − (n− 2)b2cb − (n− 2)smsm,

n f = −b4 αR + (n− 2)b2c2 − (n− 2)b2cb + (n− 2)(smsm − b2sm
|m).

Combining the above two formulas, we obtain

f =
b2

n− 1

(
bibj αRicij − b2 αR

)
+

n− 2
n− 1

(2smsm − b2sm
|m) (6)

and

sm
|m = − 1

n− 2
(b2 αR− nbibj αRicij) + (n− 1)(cb − c2) +

(n + 1)
b2 smsm. (7)

Substituting (5)–(7) into (4), we obtain

α4Θ0 + α2Θ1 + Θ2 = 0, (8)

where

Θ0 = −n
[
(n− 1)κ(x) +

1
2b2 smsm +

1
4

sm
t st

m

]
β− n(1− b2)

12b2 sm
0sm,

Θ1 =
1

6b4

[
n(3n + 5)

(
b2bkbl

n− 2
αRickl + smsm + b2cb

)
− 2nb2c2

]
β3

+
1
6

[
−6(n + 1)

n− 2
bkyl αRickl +

3n2 + 4n− 4
b2 sm

0sm − 3(n + 1)(sm
0|m −

n
b2 cs0 + c0)

]
β2

+ 2(n− 1)sm
0sm0β,

Θ2 =
n

3b4

(
− b4

n− 2
αRic + c2β2 + cβs0 − b2c0β

)
β3.

By (8), we have that α2 divides Θ2. Then, there exists a scalar function g = g(x)
such that

gα2 = − b4

n− 2
αRic + c2β2 + cβs0 − b2c0β, (9)

which is the first formula of (1). Differentiating the above equation with respect to yi or
yiyj, respectively, we obtain

2gyi = −
2b4

n− 2
yl αRicil + 2c2βbi + cbis0 − b2c0bi + cβsi − b2ciβ, (10)

2gaij = −
2b4

n− 2
αRicij + 2c2bibj + c(bisj + bjsi)− b2(cibj + cjbi). (11)



Axioms 2023, 12, 611 8 of 11

Contracting (10) with bi yields

2gβ = − 2b4

n− 2
biyl αRicil + b2(2c2 − cb)β + b2cs0 − b4c0. (12)

Contracting (11) with bibj or aij, respectively, we obtain

g = − b2

n− 2
bibj αRicij + b2(c2 − cb), (13)

ng = − b4

n− 2
αR + b2(c2 − cb). (14)

Comparing (13) and (14) yields

g =
b2

(n− 1)(n− 2)

(
bibj αRicij − b2 αR

)
(15)

and

cb = c2 +
1

(n− 1)(n− 2)

(
b2 αR− nbibj αRicij

)
. (16)

Substituting (15) and (16) into (12) yields

c0 = − 2biyj

n− 2
αRicij +

β

n− 1

[
1

n− 2
αR +

bibj

b2
αRicij +

n− 1
b2 c2

]
+

c
b2 s0. (17)

Combining (5), (6), (9), and (15), we obtain the third formula of (1).
Substituting (9), (15)–(17) into (8) yields

α2Ω0 + Ω1 = 0, (18)

where

Ω1 =
1
6

{
3(n + 1)

b2

[
1

(n− 2)
(b2 αR− 2bkbl αRickl) + (n− 1)c2 +

n(3n + 5)
3(n + 1)b2 smsm

]
β2

+
1
b2

[
(3n2 + 4n− 4)sm

0sm − 3(n + 1)b2sm
0|m + 3(n− 1)(n + 1)cs0

]
β

+ 2(n− 1)sm
0sm0

}
β,

Ω0 = −n
[
(n− 1)κ(x) +

1
2b2 smsm +

1
4

sm
t st

m

]
β− n(1− b2)

12b2 sm
0sm.

By (18), we have that α2 divides Ω1. Then, there exists a scalar function h = h(x)
such that

hα2 = 3(n+1)
b2

[
1

n−2 (b
2 αR− 2bkbl αRickl) + (n− 1)c2 + n(3n+5)

3(n+1)b2 smsm

]
β2

+ 1
b2

[
(3n2 + 4n− 4)sm

0sm − 3(n + 1)b2sm
0|m + 3(n− 1)(n + 1)cs0

]
β

+2(n− 1)sm
0sm0,

(19)
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which is the fourth formula of (1). Differentiating the above equation with respect to
yiyj yields

2haij =
6(n+1)

b2

[
1

n−2 (b
2 αR− 2bkbl αRickl) + (n− 1)c2 + n(3n+5)

3(n+1)b2 smsm

]
bibj

+ 1
b2

[
(3n− 2)(n + 2)sm(sm

j bi + sm
i bj) + 3(n− 1)(n + 1)c(sjbi + sibj)

]
−3(n + 1)(sm

j|mbi + sm
i|mbj) + 4(n− 1)sm

i smj.

(20)

Contracting (20) with bibj or aij, respectively, we have

h =
3(n + 1)
(n− 2)

[
b2 αR− 2bibj αRicij

]
+

(3n + 2)
b2 smsm + 3(n + 1)[(n− 1)c2 + sm

|m + sm
t st

m], (21)

nh =
3(n + 1)
(n− 2)

[
b2 αR− 2bibj αRicij

]
+

(n + 4)
b2 smsm + 3(n + 1)[(n− 1)c2 + sm

|m] + (n + 5)sm
t st

m. (22)

Comparing (21) and (22) yields

h = −2
(

smsm

b2 + sm
t st

m

)
, (23)

sm
|m =

1
n− 2

[2bibj αRicij − b2 αR]− (n− 1)c2 − 3n + 4
3(n + 1)b2 smsm −

3n + 5
3(n + 1)

sm
t st

m. (24)

By (7) and (24), we obtain

cb = − 1
n− 1

[
bibj αRicij +

3n2 + 9n + 7
3(n + 1)b2 smsm +

3n + 5
3(n + 1)

sm
t st

m

]
. (25)

Therefore, by (16), we have

c2 =
2bibj αRicij − b2 αR

(n− 1)(n− 2)
− 1

3(n + 1)(n− 1)

[
3n2 + 9n + 7

b2 smsm + (3n + 5)sm
t st

m

]
. (26)

Substituting (26) into (17) yields

c0 =
β

(n− 1)b2

{
nbibj αRicij

(n− 2)
− 1

3(n + 1)

[
3n2 + 9n + 7

b2 smsm + (3n + 5)sm
t st

m

]}

− 2biyj

n− 2
αRicij +

cs0

b2 . (27)

Substituting (23) into (18) yields

R = n(n− 1)κ(x) = −n(1− b2)

12b2β
sm

0sm −
3n + 2

6b2 smsm −
3n + 4

12
sm

t st
m.

“Sufficiency”. It is obviously true.
This completes the proof of Theorem 1.

5. Other Related Results

In this section, we consider s0 = 0 in Theorem 1.
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Corollary 1. Let F be a Kropina metric on an n(≥ 3)-dimensional manifold M. Assume s0 = 0.
Then F is of isotropic scalar curvature if and only if

b4 αRic =
1

n− 1
(b2 αR− bibj αRicij)(b2α2 − β2)− bibj αRicijβ

2 − 2b2biyj αRicijβ,

r00 = c(x)α2,

0 = sm
t st

m(2α2 − 3n + 5
b2 β2)− 3(n + 1)sm

0|mβ + 2(n− 1)sm
0sm0.

(28)
In this case, R = − 3n+4

12 st
msm

t .

Proof. Sufficiency is obviously true. Next we prove necessity. Assume that F is of isotropic
scalar curvature, i.e., R = n(n− 1)κ(x). By Theorem 1, obviously, r00 = c(x)α2, (5), (19),
(26) and (27) are true. When s0 = 0, (26) and (27) can be simplified as

c2 =
(2bibj αRicij − b2 αR)

(n− 1)(n− 2)
− (3n + 5)

3(n + 1)(n− 1)
sm

t st
m, (29)

c0 =
β

(n− 1)b2

[
nbibj αRicij

(n− 2)
− (3n + 5)

3(n + 1)
sm

t st
m

]
− 2

n− 2
biyj αRicij. (30)

Substituting s0 = 0, (29) and (30) into (5), we obtain

f α2 = −b4 αRic− 2b2biyj αRicijβ−
b2 αR + (n− 2)bibj αRicij

n− 1
β2,

where f = b2

n−1 (b
ibj αRicij − b2 αR). This is the first formula of (28).

Substituting s0 = 0 and (29) into (19), we obtain

hα2 = −3n + 5
b2 sm

t st
mβ2 − 3(n + 1)sm

0|mβ + 2(n− 1)sm
0sm0,

where h = −2sm
t st

m. This is the third formula of (28).
By Theorem 1, in this case, R = − 3n+4

12 st
msm

t .

Corollary 2. Let F be a Kropina metric on an n(≥ 3)-dimensional compact manifold M. Then F
is of isotropic scalar curvature if and only if

b4 αRic =
1

n− 1
(b2 αR− bibj αRicij)(b2α2 − β2)− bibj αRicijβ

2 − 2b2biyj αRicijβ,

r00 = c(x)α2,

0 = (2α2 − 3n + 5
b2 β2)sm

t st
m − 3(n + 1)sm

0|mβ + 2(n− 1)sm
0sm0.

In this case, R = − 3n+4
12 st

msm
t .

Proof. Sufficiency is obviously true. Next we prove necessity. Assume that F is of isotropic
scalar curvature, i.e., R = n(n− 1)κ(x). By Theorem 1, (24) and (26) are true. Substituting
(26) into (24), we obtain

sm
|m =

n + 1
b2 smsm.

Using the divergence theorem, when M is a compact manifold, s0 = 0. By Corollary 1,
Corollary 2 is true.

Based on Lemma 2 and Theorem 1, we obtain the following result.
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Theorem 2. Let a Kropina metric F be of isotropic scalar curvature. Then, F is of isotropic S
curvature if and only if S = 0.

Proof. Assume that F is of isotropic scalar curvature. By Theorem 1, we know that
r00 = cα2. By Lemma 2, the result is obviously true.

Lemma 3 ([6]). For a Finsler metric or a spray on a manifold M, R m
i mj = R m

j mi if and only if
χi = 0.

Remark 1. Li–Shen defined χ = χidxi with the S curvature in [11], where χi := 1
2{S.i|mym−S|i}.

Based on Theorem 2, we know that χi for a Kropina metric with isotropic scalar curvature vanishes,
i.e., Rm

i mj = Rm
j mi. This means that Ricij = Ricij.

6. Conclusions

In this paper, we study the Kropina metric with isotropic scalar curvature. Firstly,
we obtain the expressions of Ricci curvature tensor and scalar curvature. Based on these,
we characterize Kropina metrics with isotropic scalar curvature by tensor analysis in
Theorem 1. In Corollary 2, we discuss the case of a compact manifold. Kropina metrics
with isotropic scalar curvature deserve further study by the navigation method.
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