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Abstract: The dynamic behavior variation of the Benjamin–Bona–Mahony–Burger (BBM-Burger)
equation has been investigated in this paper. The modified auxiliary equation method (MAEM) and
Ricatti–Bernoulli (RB) sub-ODE method, two of the most reliable and useful analytical approaches,
are used to construct soliton solutions for the proposed model. We demonstrate some of the extracted
solutions using definitions of the β-derivative, conformable derivative (CD), and M-truncated deriva-
tives (M-TD) to understand their dynamic behavior. The hyperbolic and trigonometric functions are
used to derive the analytical solutions for the given model. As a consequence, dark, bell-shaped,
anti-bell, M-shaped, W-shaped, kink soliton, and solitary wave soliton solutions are obtained. We
observe the fractional parameter impact of the derivatives on physical phenomena. The BBM-Burger
equation is functional in describing the propagation of long unidirectional waves in many nonlinear
diffusive systems. The 2D and 3D graphs have been presented to confirm the behavior of analytical
wave solutions.

Keywords: BBM-Burger equation; modified auxiliary equation method (MAEM); Ricatti–Bernoulli
(RB) sub-ODE method; β-derivative; M-truncated derivative (M-TD); conformable derivative (CD);
soliton solutions

MSC: 39A12; 39B62; 33B10; 26A48; 26A51

1. Introduction

Nonlinear partial differential equations (NLPDEs) are frequently used in science and
engineering to model a variety of nonlinear problems that can occur in real-life applica-
tions [1]. These equations, for instance, can be applied to the modeling of fluid dynamical
issues, wave propagation in corrugated media, the study of earthquakes and seismic waves,
and the modeling of optical fibers, among other things. The field of fluid dynamics is
still important even if it is an older one that received a lot of attention. As an extension
of differential equations (DEs) [2] of integer order, there are fractional order differential
equations. Models of NLPDEs from physics and mathematics serve as essentials in theo-
retical sciences. Numerous practical fields, including meteorology, oceanography, and the
aerospace industry, depend on a grasp of these NLPDEs.

Fractional differential equations (FDEs) [3] are becoming more and more prevalent today
in a variety of disciplines, including dynamic systems and mathematics. Leibniz and L’Hôpital
introduced the first idea for FDEs in 1695. In mathematical models incorporating FDEs, the
nonlocal behavior of the fractional order derivatives provides the memory feature. Several
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researchers have been attracted to the flexibility of fractional theory and the numerous inter-
esting features of fractional calculus (FC) [4–9]. New definitions of fractional derivatives were
introduced by Caputo–Hadamard [10], Katugampola [11], Weyl [12], Riemann–Liouville [13],
and Erdélyi–Kober [14], which enabled fractional calculus to deal with challenging natural
phenomena. Throughout the past few decades, Caputo derivative [15] has been one of the most
frequently employed fractional derivatives (FDs) in numerous research.

The mathematical model for small-amplitude long wave propagation in nonlinear
dispersive media is described by the Benjamin–Bona–Mahony–Burger (BBM-Burger) equa-
tion [16]. The BBM equation has been proven to be preferable to the Korteweg–De Vries
(KdV) [17] equation. The wave-breaking models are essential to the BBM-Burger equation
and the KdV equation. The KdV equation was driven by water waves, and it was utilized
in many other physical systems as a model for long waves. Solitary wave solutions of the
BBM-Burger equation [18] reflect the dynamics of waves in the medium and are essential
to many fields such as physics and dispersive systems [19]. In this study, the BBM-Burger
equation is considered for analytical solutions in the sense of β-derivative, CD, and M-TD.
In β-derivative, the proposed model has the following form

Dσ
β,tw− Dσ

β,twzz + wz +

(
w2

2

)
z
= 0, (1)

where Dσ
β,t is β-derivative and σ is fractional parameter.

In M-TD, the proposed model has the following form

Dσ,β
j,t w− Dσ,β

j,t wzz + wz +

(
w2

2

)
z
= 0, (2)

where Dσ,β
j,t is M-TD and σ and β are fractional parameters.

In CD, the proposed model has the following form

Dσ
c,tw− Dσ

c,twzz + wz +

(
w2

2

)
z
= 0, (3)

where Dσ
c,t is CD and σ is fractional parameter.

The following is the BBM-Burger equation when β = 0 and σ = 1 are used.

wt − wzzt + wz +

(
w2

2

)
z
= 0. (4)

Atangana was the one who first introduced the fractional “β-derivative” [20,21]. The
recently introduced derivatives, which are used to depict various medical situations, meet
a number of requirements that were previously thought to be limits for the fractional
derivatives. Basic and satisfying most of the criteria for the classical integral derivative, the
conformable fractional derivative definition includes linearity, Rolle’s theorem, mean value
theorem [22], product rule, quotient rule, power rule, and chain rule. The M-TD [23,24],
which uses a Mittag–Leffler function with one parameter that satisfies several properties of
integer-order calculus, was introduced in 2017 by Sousa and Oliveira. M-TD also satisfies
the fundamental differential calculus mathematical principles, which stimulates additional
research utilizing these newly formed notions. On conformable and M-TD models in the
field of ocean engineering, there are some recent studies in the literature. The goal of these
investigations is to find soliton solutions for the models with local derivatives. A novel
solution for various FDEs is provided by the conformable fractional derivative, which aims
to expand the ordinary derivative while satisfying some natural properties.

Numerous methods, including the extended ( G′
G2 ) expansion method [25], the multiple

exp-function method [26], the M-lump solution [27], Sardar-subequation technique [28], the
Jacobi elliptic function method (JEFM) [29], Painleve analysis, and many others, can be used
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to find the solitary wave solutions of NLPDEs. However, in this work, the MAEM and RB
sub-ODE method [30] have been utilized for finding efficient and effective traveling wave
solutions. The RB sub-ODE technique is originally created to produce precise traveling
wave solutions, solitary wave solutions, and peaked wave solutions for NLPDEs. Backlund
transformation is applied to the RB equation [31]. NLPDE [32,33] may be converted into a set
of algebraic equations using the RB equation and a traveling wave transformation.

An approach for creating precise differential equation solutions is the MAEM [34].
The auxiliary equation approach has been expanded in this way. It offers a simple method
for handling the solutions of nonlinear evolution equations. This effective method has
been used to achieve findings that are pleasing and aid in the investigation of answers
to numerous issues that are appearing in applied mathematics and physics. Although
there are many different types of traveling wave solutions that may be built using exact
solution techniques, approximation solution approaches are also useful when studying
evolution equations. This study was inspired by recent developments in fractional nonlinear
evolution equations’ traveling wave solutions. Recently, it has been discovered that a
variety of exact solution techniques are useful in creating potential wave behaviors that
correspond to the physical system defined by a specific evolution equation. Reading the
published research papers [21,24,35–38] also inspired the authors. In this paper, we use two
effective analytical approaches to derive the precise soliton solutions of the BBM-Burger
equation while taking into account three natural extensions of the classical derivative,
namely the beta-derivative, M-TD, and CD. Additionally, using the Wolfram Mathematica
12 software, we provide several 2D and 3D graphical representations of the analytical
soliton solutions of the BBM-Burger equation and investigate the impact of the fractional
parameters employed in beta-derivative, M-TD, and CD.

This paper is organized as follows: Basic definitions and their properties are explained
in Section 2. Section 3 represents the mathematical interpretation of the BBM-Burger
equation. Sections 4 and 5 conduct the algorithmic steps of the RB-sub ODE method and
MAEM and apply them to the proposed model. In addition to computing, graphs are used
to show how the result can be physically explained in Section 6. In Section 7, there are some
concluding remarks to wrap up the work.

2. Preliminaries

The definitions of derivatives along with their fundamental properties are discussed
in this section.

2.1. β-Derivative and Its Properties

Definition 1. The β-derivative is another kind of conformable derivative that can be defined, as [20]

Dσ
β,tw(t) = lim

ε→0

w(t + ε(t + 1
Γ(σ) )

1−σ
)− w(t)

ε
, 0 < σ ≤ 1.

The β-derivative has the following properties.

• The β-derivative is a linear operator; Dσ
β,t(cd(z) + rq(z)) = c Dσ

β,td(z) + rDσ
β,tq(z),

∀c, r ∈ <.
• It satisfies the product rule; Dσ

β,t(d(z) ∗ q(z)) = q(z)Dσ
β,td(z) + d(z)Dσ

β,tq(z).

• It satisfies the quotient rule; Dσ
β,t

{
d(z)
q(z)

}
=

q(z)Dσ
β,td(z)−d(z)Dσ

β,tq(z)

q2(z) .

• The β-derivative of a constant is zero; Dσ
β,t(c) = 0, for any constant c.

2.2. M-Truncated Derivative and Its Properties

This section defines an M-TD and presents several results that are surprisingly similar
to those of classical calculus. Sousa et al. [39] recently presented the M-TD, which is a natu-
ral extension of the ordinary derivative. This derivative does not have the shortcomings of
the preceding ones. The M-TD is also known as a conformable fractional derivative [23,40].
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The M-TD can readily satisfy some features of classical calculus, including the quotient
rule, product rule, linearity, chain rule, and function composition rule. The M-TD, which
makes use of a one-parameter Mittag–Leffler function, also satisfies the requirements of
integer-order calculus.

Definition 2. The M-TD for the function w : [0, ∞)→ R of order σ ∈ (0, 1) is defined, as [35]

Dσ,β
j,t w(t) =

lim
ε→0

w(tEβ
j (εt−σ))− w(t),

ε

for t > 0. Where Eβ
j (.), β > 0 is a truncated Mittag–Leffler function of one parameter defined, as:

Eβ
j (t) =

j

∑
k=0

tk

Γ(βk + 1)
.

The M-TD has the following properties.

• The M-TD is a linear operator; Dσ,β
j,z (cd(z) + rq(z)) = cDσ,β

j,z d(z) + rDσ,β
j,z q(z),

∀ c, r ∈ <.
• It satisfies the product rule; Dσ,β

j,z (d(z) ∗ q(z)) = q(z)Dσ,β
j,z d(z) + d(z)Dσ,β

j,z q(z).

• It satisfies the quotient rule; Dσ,β
j,z

{
d(z)
q(z)

}
=

q(z)Dσ,β
j,z d(z)−d(z)Dσ,β

j,z q(z)

q2(z) .

• The M-TD for a differentiable function q(z) is defined, as:

Dσ,β
j,z q(z) =

z1−σ

Γ(β + 1)
dq
dz

.

2.3. Conformable Derivative

Definition 3. The conformable derivative of order σ for a function w : [0, ∞)→ < is written as:

Dσ
c,tw(t) = lim

ε→0

w(t + ε(t)1−σ)− w(t)
ε

, ∀t > 0.

If w has σ-differentiability in any interval (0, a) with a > 0, then

Dσ
c (w(0)) = lim

t→0+
Dσ

c (w(t)),

whenever the limit of the right-hand side exists.

Further, properties and theorems related to CD are discussed in [37].

3. Mathematical Interpretation of the Proposed Model

To obtain soliton solutions for Equation (4), the following transformations have been
employed.

W(z, t) = w(η). (5)

Three definitions are provided for the traveling wave parameter η.
For β-derivative, η has the following form

η = Kz +
R
σ

(
t +

1
Γ(σ)

)σ

. (6)

For M-TD, η has the following form

η = Kz +
RΓ(β + 1)

σ
tσ. (7)
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For CD, η has the following form

η = Kz +
R
σ

tσ, (8)

where K, R are arbitrary constants with K, R 6= 0. Utilizing the transformation Equation (5)
together with Equations (6)–(8), the obtained ordinary differential equation is

(K + R)w′ − K2Rw′′′ + ww′K = 0.

This, when integrated with the integration constant set to zero, yields

(K + R)w− K2Rw′′ +
w2

2
K = 0, (9)

where w′ = dw
dη .

4. Application of RB Sub-ODE Method

According to RB sub-ODE method [30], the solution for Equation (9) is

w′ = H1w2−L + F1w + G1wL, (10)

where the constants H1, F1, G1, and L will be found later.
Substituting Equation (10) into Equation (9), we have

−3K2RF1H1w(η)2 + K2LRF1H1w(η)2 − 2K2RH2
1 w(η)3−L + K2LRH2

1 w(η)3−L

−K2RF1G1w(η)2L − K2LRF1G1w(η)2L + Kw(η)1+L + Rw(η)1+L − K2RF2
1 w(η)1+L

−2K2RG1H1w(η)1+L +
1
2

Kw(η)2+L − K2LRG2
1w(η)−1+3L = 0.

(11)

Setting L = 0 in the above equation, we obtain

−K2RF1G1 + Kw(η) + Rw(η)− K2RF2
1 w(η)− 2K2RG1H1w(η) +

1
2

Kw(η)2

−3K2RF1H1w(η)2 − 2K2RH2
1 w(η)3.

(12)

Adjusting each coefficient of wi(i = 0, 1, 2, 3) to zero, we have

−K2RF1G1 = 0,

K + R− K2RF2
1 − 2K2RG1H1 = 0,
K
2
− 3K2RF1H1 = 0,

−2K2RH2
1 = 0.

(13)

Equation (13) produces the following results when it is solved.

H1 = ∓ 1
6
√

R
√

K + R
, F1 = ∓

√
K + R

K
√

R
, G1 = 0.

Case 1.
when L 6= 1, F1 6= 0 and G1 = 0, the algebraic solution can be obtained.

w(η) =

(
−H1

F1
+ PeF1(L−1)η

) 1
L−1

, (14)
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W1,1(z, t) =
1(

e
3
√

K+Rη

K
√

R P− K
6(K+R)

)1/3 .

Case 2.
when L 6= 1, H1 6= 0 and F1

2 − 4H1G1 < 0, the solitary periodic solutions can be obtained.

w(η) =

− F1

2H1
+

√
4H1G1 − (F1)

2

2H1
tan(

(1− L)
√

4H1G1 − (F1)
2

2
(η + P))


1

1−L

, (15)

W1,2(z, t) =

(
−3(K + R)

K
− 3
√

R
√

K + R

√
−K + R

K2R
tan

(
3
2

√
−K + R

K2R
(P + η)

))1/3

.

and

w(η) =

− F1

2H1
−

√
4H1G1 − (F1)

2

2H1
cot(

(1− L)
√

4H1G1 − (F1)
2

2
(η + P))


1

1−L

, (16)

W1,3(z, t) =

(
−3(K + R)

K
− 3
√

R
√

K + R

√
−K + R

K2R
cot

(
3
2

√
−K + R

K2R
(P + η)

))1/3

.

Case 3.
when L 6= 1, H1 6= 0 and F1

2 − 4H1G1 > 0, these dark optical and solitary optical soliton
solutions are found, respectively.

w(η) =

− F1

2H1
−

√
−4H1G1 + (F1)

2

2H1
coth(

(1− L)
√
−4H1G1 + (F1)

2

2
(η + P))


1

1−L

, (17)

W1,4(z, t) =

(
−3(K + R)

K
− 3
√

R
√

K + R

√
K + R
K2R

coth

(
3
2

√
K + R
K2R

(P + η)

))1/3

.

and

w(η) =

− F1

2H1
+

√
−4H1G1 + (F1)

2

2H1
tanh(

(1− L)
√
−4H1G1 + (F1)

2

2
(η + P))


1

1−L

, (18)

W1,5(z, t) =

(
−3(K + R)

K
− 3
√

R
√

K + R

√
K + R
K2R

tanh

(
3
2

√
K + R
K2R

(P + η)

))1/3

.

Case 4.
when L 6= 1, H1 6= 0 and F1

2 − 4H1G1 = 0, the following algebraic solution is found.

w(η) =

(
− F1

2H1
+

1
H1(L− 1)(η + P)

) 1
1−L

, (19)

W1,6(z, t) =

(
−3(K + R)

K
+

2
√

R
√

K + R
P + η

)1/3

.
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Case 5.
when L 6= 1, H1 6= 0 and G1 = 0, the following solution is obtained.

w(η) = (H1(L− 1)(η + P))
1

L−1 , (20)

W1,7(z, t) =
( 3

2
)1/4(

P+η√
R
√

K+R

)1/4 .

where P is an arbitrary constant.

5. Utilizing the MAEM

For obtaining the solutions, the MAEM [34] provides the general solution in the form

w(η) = H0 +
m

∑
k=1

[
HK(φ

h)
k
+ Fk(φ

h)
−k]

, (21)

where H0, Hk’s and Fk’s are unknown constants. The auxiliary equation defines the func-
tion h(η).

h′(η) =
s + mφ−h + nφh

ln φ
, (22)

for arbitrary constant values of s, m and n (φ > 0, φ 6= 1).
Cases for the Equation (22) are discussed below.

1. If s2 − 4mn < 0 and n 6= 0, then, φh(η) =
−s+
√

4mn−s2 tan
(√

4mn−s2η
2

)
2n , or φh(η) =

−
s+
√

4mn−s2cot
(√

4mn−s2η
2

)
2n .

2. If s2 − 4mn > 0 and n 6= 0, then, φh(η) = −
s+
√

s2−4mn tanh
(√

s2−4mnη
2

)
2n , or φh(η) =

−
s+
√

s2−4mn coth
(√

s2−4mnη
2

)
2n .

3. If s2 − 4mn = 0 and n 6= 0, then, φh(η) = − 2+sη
2nη .

The highest order derivative w′′ and the highest order nonlinear term w2 in Equation (9)
are balanced according to the homogeneous balance principle, yields that m = 2, gives

w(η) = H0 + H1φh + F1φ−h + H2φ2h + F2φ−2h. (23)

The following set of algebraic equations is obtained by equating each coefficient of
φh(η) to zero:

φh(η)−4
: 1

2 KF2
(
−12Km2R + F2

)
= 0,

φh(η)−3
: K
(
−10KmRsF2 + F1

(
−2Km2R + F2

))
= 0,

φh(η)−2
: −3K2mRsF1 +

KF2
1

2 + F2
(
K + R− 4K2R

(
2mn + s2)+ KH0

)
= 0,

φh(η)−1
: F1
(
K + R− K2R

(
2mn + s2)+ KH0

)
+ KF2(−6KnRs + H1) = 0,

φh(η)0
: −K2nRsF1 − 2K2n2RF2 + KH0 + RH0 +

KH2
0

2 − K2mRsH1 + KF1H1 − 2K2m2RH2 + KF2H2 = 0,

φh(η)1
:
(
K + R− K2R

(
2mn + s2)+ KH0

)
H1 + K(−6KmRs + F1)H2 = 0,

φh(η)2
: −3K2nRsH1 +

KH2
1

2 +
(
K + R− 4K2R

(
2mn + s2)+ KH0

)
H2 = 0,

φh(η)3
: K
(
−10KnRsH2 + H1

(
−2Kn2R + H2

))
= 0,

φh(η)4
: K
(
−10KnRsH2 + H1

(
−2Kn2R + H2

))
= 0.
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Solving the above equations, yields, the following families.

Family 1:
when H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 12KnRs, H2 = 12Kn2R, F1 = 0, F2 = 0.
The following cases have occurred.

• For s2 − 4mn < 0 and n 6= 0, the trigonometric solutions are found.

W1,1(z, t) = −1− R
K
+ 8KmnR− 2KRs2 + 3KR

(
4mn− s2

)
tan

(
1
2

√
4mn− s2η

)2
,

or

W1,2(z, t) = −1− R
K
+ KR

(
4mn− s2

)(
−1 + 3 csc

(
1
2

√
4mn− s2η

)2
)

.

• For s2 − 4mn > 0 and n 6= 0, the hyperbolic solutions are obtained.

W1,3(z, t) = −1− R
K
+ 8KmnR− 2KRs2 + 3KR

(
−4mn + s2

)
tanh

(
1
2

√
−4mn + s2η

)2
,

or

W1,4(z, t) = −1− R
K
+ 8KmnR− 2KRs2 + 3KR

(
−4mn + s2

)
coth

(
1
2

√
−4mn + s2η

)2
.

Family 2:

When H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 0, H2 = 0, F1 = 12KmRs, F2 = 12Km2R.
The following cases are obtained.

• For s2 − 4mn < 0 and n 6= 0, the following trigonometric solutions resulted.

W2,1(z, t) = −1− R
K
+ KR

s2 + 8mn

1 +
3
(

2mn− s2 + s
√

4mn− s2 tan
(

1
2

√
4mn− s2η

))
(

s−
√

4mn− s2 tan
(

1
2

√
4mn− s2η

))2


,

or

W2,2(z, t) = −1− R
K
+ KR

s2 + 8mn

 1 + 6mn

(s+
√

4mn−s2 cot( 1
2

√
4mn−s2η))

2

− 3s
s+
√

4mn−s2 cot( 1
2

√
4mn−s2η)

.

• For s2 − 4mn > 0 and n 6= 0, the following hyperbolic solutions are found.

W2,3(z, t) = −1− R
K
+ KR

s2 + 8mn

 1 + 6mn

(s+
√
−4mn+s2 tanh( 1

2

√
−4mn+s2η))

2

− 3s
s+
√
−4mn+s2 tanh( 1

2

√
−4mn+s2η)

,

or

W2,4(z, t) = −1− R
K
+ KR

s2 + 8mn

 1 + 6mn

(s+
√
−4mn+s2 coth( 1

2

√
−4mn+s2η))

2

− 3s
s+
√
−4mn+s2 coth( 1

2

√
−4mn+s2η)

.

Family 3:

When H0 = −K−R+8K2mnR+K2Rs2

K , H1 = 12KnRs, H2 = 12Kn2R, F1 = 12KmRs, F2 =
12Km2R.

The cases listed below have occurred.
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• For s2 − 4mn < 0 and n 6= 0, the trigonometric solutions are found.

W3,1(z, t) = −1− R
K
− 2KRs2 + 3KR

(
4mn− s2

)
tan

(
1
2

√
4mn− s2η

)2

+ 8KmnR

1 +
3
(

2mn− s2 + s
√

4mn− s2 tan
(

1
2

√
4mn− s2η

))
(

s−
√

4mn− s2 tan
(

1
2

√
4mn− s2η

))2

,

or

W3,2(z, t) = −1− R
K
− 2KRs2 + 3KR

(
4mn− s2

)
cot
(

1
2

√
4mn− s2η

)2

+ 8KmnR

 1 + 6mn

(s+
√

4mn−s2 cot( 1
2

√
4mn−s2η))

2

− 3s
s+
√

4mn−s2 cot( 1
2

√
4mn−s2η)

.

• For s2 − 4mn > 0 and n 6= 0, the following hyperbolic solutions are obtained.

W3,3(z, t) = −1− R
K
− 2KRs2 + 3KR

(
−4mn + s2

)
tanh

(
1
2

√
−4mn + s2η

)2

+ 8KmnR

 1 + 6mn

(s+
√
−4mn+s2 tanh( 1

2

√
−4mn+s2η))

2

− 3s
s+
√
−4mn+s2 tanh( 1

2

√
−4mn+s2η)

,

or

W3,4(z, t) = −1− R
K
− 2KRs2 + 3KR

(
−4mn + s2

)
coth

(
1
2

√
−4mn + s2η

)2

+ 8KmnR

 1 + 6mn

(s+
√
−4mn+s2 coth( 1

2

√
−4mn+s2η))

2

− 3s
s+
√
−4mn+s2 coth( 1

2

√
−4mn+s2η)

.

6. Graphical Illustration

This section provides a graphical representation of the BBM-Burger equation solutions
that have been found. Concerning the 2D and 3D graphs of W1,1(z, t), W1,3(z, t), W1,4(z, t),
respectively, provided the periodic and single wave solutions for the values σ = 0.5, 1,
P = 1.7, 5.5, K = 14.5, 15.5, R = −0.5, β = 0.35, within the interval −5 ≤ z ≤ 5, 0 ≤ t ≤ 2
for 3D graph and t = 1 for 2D plots, as shown in Figures 1–3 by RB sub-ODE method.
Figures 4 and 5 represent the Kink and Pulse shape soliton 3D solutions of W1,5(z, t) and
W1,6(z, t) for the values σ = 0.5, P = −1.7, 5.5, K = 14.5, 10.5, R = 14.5, 0.5, β = 0.35 and
2D plots at t = 1 for the same values in the interval −5 ≤ z ≤ 5, 0 ≤ t ≤ 2 by RB sub-ODE
method.

The solutions for the trigonometric and hyperbolic functions in W1,1(z, t) and W1,3(z, t)
are that we obtain the anti-bell-shaped solitons and dark soliton solutions, respectively, by
choosing the values σ = 0.5, m = 1, K = 2, R = 1, β = 0.35, s = 0.1, n = 1, within the range
−10 ≤ z ≤ 10,−10 ≤ t ≤ 10, and t = 1 for 2D surfaces in Figures 6 and 7 by MAEM. The
dark soliton solution, in which the intensity profile of the soliton displays a dip in a uniform
backdrop, this hole-soliton, often referred to as a dark soliton, causes a transient reduction
in wave amplitude. Solutions for the Family 2 in W2,1(z, t) and W2,3(z, t), by MAEM
provides the bright and bell-shaped soliton solutions by taking the values σ = 0.5, m = 1,
K = −2.5, R = 1, β = 0.35, s = 0.1, n = 1, within the range −10 ≤ z ≤ 10,−10 ≤ t ≤ 10,
and t = 1 for 2D surfaces in Figures 8 and 9.
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Figure 1. Graphical representation of analytical solution W1,1(z, t) by RB sub-ODE method, when
σ = 0.5, P = 1.7, K = 14.5, R = −9.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 2. Graphical representation of analytical solution W1,3(z, t) by RB sub-ODE method, when
σ = 0.5, P = 5.5, K = 15.5, R = − 7.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β =0.5 (purple), σ = 0.3, β =0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 3. Graphical representation of analytical solution W1,4(z, t) by RB sub-ODE method, when
σ = 0.5, P = 1.5, K = 18.5, R = 7, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D graph
at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25 (red),
σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different values of
σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red), 1 (purple),
0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.
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Figure 4. Graphical representation of analytical solution W1,5(z, t) by RB sub-ODE method, when
σ = 0.5, P = −1.7, K = 14.5, R = 14.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (red), σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different
values of σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red),
1 (purple), 0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 5. Graphical representation of analytical solution W1,6(z, t) by RB sub-ODE method, when
σ = 0.5, P = 5.5, K = 10.5, R = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D graph
at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25 (red),
σ = 1, β = 0.5 (purple), σ = 0.3, β = 0.75 (green); (e) 2D plot of β-derivative at different values of
σ = 0.5 (red), 1 (purple), 0.3 (green); (f) 2D plot of CD at different values of σ = 0.5 (red), 1 (purple),
0.3 (green); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.
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Figure 6. Graphical representation of analytical solution W1,1(z, t) by MAEM, when K = 2,
m = 0.1, s = 1, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ = 1, β = 0.5 (red), σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue), 1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 7. Graphical representation of analytical solution W1,3(z, t) by MAEM, when K = 2,
m = 0.1, s = 1, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ = 1, β = 0.5 (red), σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD(red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.
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Figure 8. Graphical representation of analytical solution W2,1(z, t) by MAEM, when K = −2.5,
m = 0.1, s = 0.5, n = 0.1, R = 1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.

In Figures 10 and 11, the trigonometric and hyperbolic solutions of W3,1(z, t) and
W3,3(z, t), we receive the M-shape and W-shape soliton solutions, respectively, by choosing
the values σ = 0.5, m = 1, K = −1, R = 0.5, β = 0.35, s = 0.1, n = 1, within the domain
−10 ≤ y ≤ 10, 0 ≤ t ≤ 5, and t = 1 for 2D surfaces by MAEM. In applied sciences,
particularly in dispersive systems, the retrieved solutions are important for describing a
variety of natural phenomena.
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Figure 9. Graphical representation of analytical solution W2,3(z, t) by MAEM, when K = 3.5,
m = 0.1, s = 0.5, n = 0.1, R = −1, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75(purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.

The construction of dark and bright solitons can be seen in Figure 1. The RB sub-
ODE technique provides solutions in the algebraic form in Figure 1, the periodic form
in Figure 2, and the hyperbolic form in Figure 3. The MAEM also gives trigonometric in
Figures 6, 8 and 10 and hyperbolic in Figures 7, 9 and 11 solutions. The bell-shaped soliton
in Figure 9, W-shaped soliton in Figure 10 and M-shaped soliton in Figure 11 are also
achieved in this work. These graphs demonstrate the dynamical and dispersive behavior
of the solitary wave solutions with a suitable choice of parameters. It can be noticed
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that the wave profile slightly varies when the fractional parameter’s value is changed
without changing the form of the curve. A very useful comparison among the different
fractional derivatives, including β, conformable, and M-TD’s, is shown in two-dimensional
line graphs.

(a) (b)

(c)

-10 -5 5 10
z

-2.0

-1.5

-1.0
t

(d)

-10 -5 5 10
z

-2.0

-1.5

-1.0
t

(e)

-10 -5 5 10
z

-2.0

-1.5

-1.0
t

(f)

-10 -5 5 10
z

-2.0

-1.5

-1.0
t

(g)

Figure 10. Graphical representation of analytical solution W3,1(z, t) by MAEM, when K = −1,
m = 0.1, s = 1, n = 0.1, R = −0.5, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative
3D graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5,
β = 0.25 (blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different
values of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue),
1 (red), 0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at
σ = 0.5. (d–g) 2D comparison plots at t = 1.
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Figure 11. Graphical representation of analytical solution W3,3(z, t) by MAEM, when K = −2,
m = 0.1, s = 1, n = 0.1, R = 0.5, σ = 0.5, β = 0.35. (a) M-TD 3D graph at σ = 0.5; (b) β-derivative 3D
graph at σ = 0.5; (c) CD 3D graph at σ = 0.5; (d) 2D plot of M-TD at different values of σ = 0.5, β = 0.25
(blue), σ =1, β = 0.5 (red) , σ = 0.3, β = 0.75 (purple); (e) 2D plot of β-derivative at different values
of σ = 0.5 (blue),1 (red), 0.3 (purple); (f) 2D plot of CD at different values of σ = 0.5 (blue), 1 (red),
0.3 (purple); (g) A comparison between M-TD (red), β-derivative (blue) and CD (green) at σ = 0.5.
(d–g) 2D comparison plots at t = 1.

7. Conclusions

In this study, the RB sub-ODE approach and the MAEM were used to solve the
nonlinear BBM-Burger problem, yielding novel, accurate, and analytical solitary wave
solutions. These methods provided remarkable solutions that can be operated consistently
and simply. Using these conventional and computerized techniques, we could comprehend
difficult nonlinear differential equations in a range of scientific domains. The solitons
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and other traveling wave solutions of the governing model could be found by applying
the definitions of derivatives with fractional parameters, i.e., β-derivative, CD, and M-
TD, to each function. Trigonometric and hyperbolic function solutions could be found
in the extracted solutions. The outcomes indicated that the MAEM and RB sub-ODE
approaches might be used as helpful mathematical tools for extracting the various solitary
wave solutions with different differential operators. The current work can be modified
in the future to include more evolution equation kinds with various nonlinearities. This
paper has studied the comparison of three derivatives. The analysis says that by changing
the values of fractional parameters, an effect on wave solutions is observed but M-TD is
considered more valuable because, by changing its parameter values, a smooth wave has
been observed. This transitive is very effective and useful. The reason for smooth waves is
the Mittag–Leffler function of one parameter, which is why better results are obtained in
comparison with other derivatives. They can be used by the researcher in the next phases
as well. Future research on the BBM-Burger equation may explore the fractional impacts on
the solutions of the governing system using, the fractional local derivative, the Atangana–
Baleanu derivative, and other recently proposed definitions of fractional derivatives. We
can also consider the BBM-Burger equation with stochastic terms. This study confirms that
the RB sub-ODE approach and MAEM are effective and useful mathematical methods and
are applicable to investigating other fractional NLEEs in science and engineering.
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