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Abstract: This article investigates the qualitative properties of solutions to a general difference
equation. Studying the properties of solutions to general difference equations greatly contributes to
the development of theoretical methods and provides many pieces of information that may help to
understand the behavior of solutions of some special models. We present the sufficient and necessary
conditions for the existence of prime period-two and -three solutions. We also obtain a complete
perception of the local stability of the studied equation. Then, we investigate the boundedness and
global stability of the solutions. Finally, we support the validity of the results by applying them to
some special cases, as well as numerically simulating the solutions.
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1. Introduction

In both pure and applied mathematics, meteorology, physics, population dynamics,
and engineering, there are many applications for the study of functional differential equa-
tions (FDEs) and difference equations (DIEs). The properties of these equations of different
sorts are a topic that is addressed by all of these fields. For global existence and uniqueness
theorems for differential equations, see books [1], and for the fundamentals of DIEs, see
books [2–5]. Pure mathematics is concerned with the existence and uniqueness of solutions.
The rigorous justification of the qualitative properties of solutions, such as oscillation,
periodicity, stability (local and global), Hopf bifurcation, control, etc., is emphasized in
applied mathematics [4,6–8].

DIEs are used to describe how a phenomena evolves in the real world when most
observations of a temporally changing variable are discrete. These equations consequently
become essential in mathematical models. Applications heavily rely on nonlinear DIEs of
an order larger than one. Additionally, these equations naturally occur as discrete analogs
and numerical answers to differential and delay differential equations that model a variety
of diverse phenomena in different sciences; see [5,9–15].

Investigation of the qualitative properties of the DIE

un+1 =
un−1

P(un, un−1)
(1)

is the focus of this paper, where P(t, s) : [0, ∞)2 → (0, ∞) is continuous and homogenous
with degree α, where α is a non-negative real number. Furthermore, the initial conditions
u−1, u0 are nonnegative real numbers.
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The study of the qualitative properties of solutions of DIEs was and still is a vital and
active research field. As a result of the rapid development of science and technology, many
biological, technological, geological and other issues have arisen. Many mathematical
models have emerged with these issues. Studying the qualitative behavior of the general
DIEs may significantly contribute to eliciting the characteristics of the solutions of these
new models.

In this work, we are interested in investigating some qualitative properties of solutions
to the general DIE (1). We begin by deducing the sufficient and necessary conditions for
the existence of prime period-two solutions of DIE (1). Then, we investigate the local
asymptotic stability of a two-cycle solution of DIE (1). Moreover, we obtain criteria that
guarantee the existence of prime period-three solutions, and apply the results in this
section to some special cases to support the theoretical results. We also study the local
and global stability of solutions to DIE (1). We present several lemmas and theorems that
set sufficient criteria for the convergence of solutions to the equilibrium point. Finally,
through examples and numerical simulations, we present some theoretical results for some
special cases of the studied equation and simulate the results numerically through the
MATHEMATICA program.

In order to verify the periodicity of solutions, the methodology of this study is based
on the use of an improved technique discussed in [16,17]. Using some theorems in [18], we
investigate the local and global stability of the equilibrium points of the studied equation.

In the following, we review some of the previous results in the literature, which
contributed significantly to the development of the study of the qualitative properties of
solutions of DIEs.

The Riccati DIEs model
un+1 =

a1 + a2un

a3 + a4un
, (2)

is one of the most intriguing ones, where ai ∈ R, for i = 1, 2, 3, 4, see [12]. A special
application of DIE (2) offers the traditional Beverton–Holt model on the dynamics of
exploited fish populations [10]. In [19], Kuruklis et al. examined some properties of
solutions of the Pielou’s discrete logistic model [20]

un+1 =
aun

1 + un−1
, (3)

where a ≤ 1. May [21] offered the DIE

un+1 =
unexp(c(1− 2un))

1− un + unexp(c(1− 2un))
, (4)

where c > 0, as an illustration of a map produced by a straightforward model for frequency-
dependent natural selection. The model of the expansion of the flour beetle population

un+1 = a1un + a2un−2 exp(−a3un − a4un−2),

was proven to be globally stable by Kuang et al. [22], where a1 ∈ (0, 1), a2, a3, a4 ∈
[0, ∞), a2 6= 0 and a3 + a4 > 0.

Many researchers have been interested in studying general models of DIEs. In [23],
Stevic studied the periodic nature of the general DIE

un+1 =
F(un, un−1)

a + un
,

where a, u−1, u0 ∈ R+ and F ∈ C(R+ ×R+,R+) and

F(k, l)− F(l, m) = (k−m)G(k, l, m)− a(k− l),
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for some G ∈∈ C(R+ ×R+,R+), such that

1
k

G(k, l, m)→ 0 as k, l, m→ ∞ and sup
1

a + k
G(k, l, m) < ∞.

Karakostas and Stevic [24] studied the qualitative properties of solutions to the gen-
eral DIE

un+1 = a +
un−r

F(un, un−1, . . . , un−r+1)

where a ≥ 0. In [25], the global stability of solutions to the general DIE

un+ = F(un−k, un−l),

has been studied, where k, l ∈ N, k < l. Moaaz et al. [26] discussed the qualitative properties
of solutions to the DIE

un+1 = f (un−l , un−k) (5)

where k, l ∈ N, and f is a homogenous function with degree zero.
Recently, Elsayed et al. [27–29], Al-Basyouni and Elsayed [30], and Kara and Yazlik [31]

established solutions to for certain categories of DIEs. In [27], Elsayed and Alofi studied the
properties of solutions to a system of DIEs and provided solutions to this system. Elsayed
et al. [28] considered the DIE

un+1 = aun−1 +
bun−1un−4

cun−4 + kun−2
,

and provided solutions to this DIE. The periodic properties and construction of the solution
for some rational system of DIEs were presented in [29,30]. Moreover, for fractional
difference equations and systems, there are many interesting results in [32,33].

2. Definitions and Preliminary Results

The fundamental definitions, including equilibrium points, local and global stabil-
ity, boundedness, and periodicity, are presented in this section. We also review some
basic theorems.

Consider a DIE in the form

un+1 = ψ(un−l , un−k), n = 0, 1, . . . , (6)

where ψ ∈ C(I × I, I), l, k ∈ Z+ ∪ {0}, I is some interval of R, and m = max{l, k}.

Definition 1. If a point ue is a fixed point of ψ, then it is said to be an equilibrium point (EQP) of
DIE (6).

Definition 2. Assume that ue is an EQP of (6).

S1. If for all ε > 0 there is a δ > 0 such that |un − ue| < ε for all n ≥ −m, for u−j ∈ I,
j = 0, 1, . . . , m with ∑m

j=0
∣∣u−j − ue

∣∣ < δ, then ue is said to be locally stable.
S2. If ue is locally stable and there is γ > 0 such that limn→∞ un = ue for u−j ∈ I, j = 0, 1, . . . , m

with ∑m
j=0
∣∣u−j − ue

∣∣ < δ, then ue is said to be locally asymptotically stable.
S3. If limn→∞ un = ue for all u−j ∈ I, j = 0, 1, . . . , m, then ue is said to be a global attractor.
S4. If ue is locally stable and a global attractor, then it is said to be globally asymptotically stable.
S5. If ue is not locally stable, then it is said to be unstable.

Definition 3. A sequence {un}∞
n=−m is called a periodic solution with period ` if un+` = un for

all n > −m.
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Definition 4. A sequence {un}∞
n=−m is called a periodic solution with prime period ` if

` = min{s ∈ Z+ : un+s = un for all n > −m}.

Definition 5. The linearized equation of (6) about the EQP ue is defined by Zn+1 = ∑m
i=0 λiZn−i

where

λi =
∂ψ(ue, ue)

∂un−i
.

Theorem 1 ([18], Theorem 1.4.6). Suppose that ψ ∈ C
(
I2, I

)
, where I ⊂ R, and ψ(t, s)

satisfies the following properties:
(a) ψt ≤ 0 and ψs ≥ 0, for all (t, s) ∈ I2,
(b) The DIE

un+1 = ψ(un, un−1) (7)

has no solutions of prime period two in I .
Then, DIE (7) has a unique EQP ue and all solutions of (7) converge to ue.

Theorem 2 ([18], Theorem 1.4.5). Suppose that ψ ∈ C
(
I2, I

)
, where I ⊂ R, and ψ(t, s)

satisfies the following properties:
(a) ψt ≥ 0 and ψs ≤ 0, for all (t, s) ∈ I2,
(b) If (s, B) ∈ I2 is a solution of the system{

ψ(s, B) = s,
ψ(B, s) = B,

then s = B.
Then, DIE (7) has a unique EQP ue and all solutions of (7) converge to ue.

3. Dynamics of Equation (1)

In the following, we study the behavior of solutions to DIE (1). Through the next
results, we need to define the following functions:

P1(t, s) =
∂

∂t
P(t, s)

and
P2(t, s) =

∂

∂s
P(t, s).

3.1. Periodic Behavior of Solutions

In the following, we provide the necessary and sufficient conditions for the existence
of prime period-two and -three solutions to DIE (1).

3.1.1. Existence of Prime Period-Two Solutions

Theorem 3. Suppose that α > 0. The necessary and sufficient condition for the existence of
periodic solutions with period-two of DIE (1) is the existence of a constant ` ∈ R+/{1} that
satisfies P(`, 1) = P(1, `).

Proof. Suppose that DIE (1) has the solution of the form . . . , σ, $, σ, $, . . . . Then, we
can obtain

σ =
σ

P($, σ)
;

$ =
$

P(σ, $)
.
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Therefore,

$αP
(

1,
σ

$

)
= 1,

and

$αP
(

σ

$
, 1
)
= 1.

Hence, there is a ` = σ/$ such that P(`, 1) = P(1, `).
On the other hand, we suppose that P(`, 1) = P(1, `). Now, we choose u−1 =

`P−1/α(1, `) and u0 = P−1/α(1, `), where ` ∈ R+/{1}. Thus,

u1 =
u−1

P(u0, u−1)

=
`P−1/α(1, `)

P
(
P−1/α(1, `), `P−1/α(1, `)

)
=

`P−1/α(1, `)
P−1(1, `)P(1, `)

= `P−1/α(1, `)

= u−1.

Also,

u2 =
u0

P(u1, u0)

=
P−1/α(1, `)

P−1(1, `)P(`, 1)

= P−1/α(1, `)

= u0.

Similarly, we have u2r = u0 and u2r+1 = u−1 for all r = 1, 2, . . . .
Then, the proof is complete.

Theorem 4. Suppose that α = 0. The necessary and sufficient condition for the existence of
periodic solutions with period-two of DIE (1) is the existence of a constant ` ∈ R+/{1} that
satisfies P(`, 1) = 1 = P(1, `).

Proof. Proceeding as in the proof of Theorem 1, we can prove that the condition is necessary.
On the other hand, we suppose that P(`, 1) = P(1, `). Now, we choose u−1 = c and

u0 = ck, where ` ∈ R+/{1}. Thus,

u1 =
c

P(c`, c)
=

c
P(`, 1)

= c

Also,

u2 =
c`

P(c, c`)
=

c`
P(1, `)

= c`.

Similarly, we have u2r = c and u2r+1 = c` for all r = 1, 2, . . . .
Then, the proof is complete.

Example 1. Let the DIE
un+1 =

un−1

aun + bun−1
, (8)

where a, b ∈ R+. We note that P(t, s) = at + bs is homogenous with degree one. Using
Theorem 3, the necessary and sufficient condition for the existence of periodic solutions with period-
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two of DIE (1) is the existence of a constant ` ∈ R+/{1} that satisfies a`+ b = a + b`, and so
(a− b)(`− 1) = 0, i.e., a = b, see Figure 1.

Figure 1. Periodic solutions of DIE (8) at a = b = 1, 2, or 3.

3.1.2. Local Asymptotic Stability of a Two Cycle

Suppose that DIE (1) has a solution with two cycle . . . , σ, $, σ, $, . . . . Now, we set

tn = un−1 and sn = un.

Then, DIE (1) is equivalent to the system tn+1 = sn,

sn+1 =
tn

P(sn, tn)
.

Next, we define F : [0, ∞)2 → [0, ∞)2 by

F
(

t
s

)
=

 s
t

P(s, t)

.

Therefore, we have that (
σ
$

)
is a fixed point of F[2] := F ◦ F, where

F[2]
(

t
s

)
=


t

P(s, t)
s

P
(

t
P(s,t) , s

)


The Jacobian matrix JF[2] at (σ, $) takes the form

JF[2]

(
σ
$

)
=

(
A B
C D

)
,
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where

A : =
P($, σ)− σP2($, σ)

P2($, σ)
,

B : =
−σP1($, σ)

P2($, σ)
,

C : =
−A$

P2
(

σ
P($,σ) , $

)P1

(
σ

P($,σ) , $
)

,

and

D :=
1

P2
(

σ
P($,σ) , $

)[P( σ
P($,σ) , $

)
− $
[

BP1

(
σ

P($,σ) , $
)
+ P2

(
σ

P($,σ) , $
)]]

.

In the event that the eigenvalues of JF[2] at (σ, $) are inside the unit disk, the two-cycle
solution is locally asymptotically stable. Using Theorem 1.1.1 (c) in [18], the eigenvalues of
JF[2] at (σ, $) are inside the unit disk if

K < 1 + L and L < 1,

where
K = A + D

and
L = AD− BC.

Example 2. Consider the DIE (8) where a, b ∈ R+. From Theorem 3, for ` ∈ R+/{1}, there is a
prime period two solution

. . . ,
`

a(1 + `)
,

1
a(1 + `)

,
`

a(1 + `)
,

1
a(1 + `)

, . . . . (9)

It is easy to verify that

A =
1

1 + `
, B = − `

1 + `
, C = − `

1 + `
,

and

D =
`(2 + `)

(1 + `)2 .

The two cycle solution (9) of DIE (8) is locally asymptotically stable if `(1 + `) < 1.

3.1.3. Existence of Prime Period-Three Solutions

Theorem 5. Assume that α > 0. Then, DIE (1) has a prime period-three solution if and only if
the system 

P(l, 1) = k2−αlP(k, 1),
P(1/kl, 1) = l1−α

k P(l, 1),
P(k, 1) = k2−1l2−2P(1/kl, 1),

(10)

has a solution (k, l), where k, l ∈ R+, and at least one of {k, l} is not equal to one.
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Proof. Suppose that DIE (1) has the solution . . . , δ, β, γ, δ, β, γ, . . . . Then, we can obtain

γ =
δ

P(β, δ)
,

δ =
β

P(γ, β)
,

β =
γ

P(δ, γ)
.

Set β/δ = k and γ/β = l, we arrive at

γ =
δ1−α

P(k, 1)
,

δ =
β1−α

P(l, 1)
,

β =
γ1−α

P(1/kl, 1)
.

Thus, we obtain
P(l, 1) = k2−αlP(k, 1),

and

P(1/kl, 1) =
l1−α

k
P(l, 1).

Then, system (10) has the solution (β/δ, γ/β).
On the other hand, we suppose that system (10) has a solution (k, l), where k, l ∈ R+,

and at least one of {k, l} is not equal to one. Now, we choose

u−1 =

(
1

klP(k, 1)

)1/α

,

u0 =

(
k

P(l, 1)

)1/α

.

Thus, by using (10), we have

u1 =
u−1

P(u0, u−1)

=
1

k1/αl1/αP1/α(k, 1)
1

P
(

k1/α

P1/α(l,1)
, 1

k1/α l1/αP1/α(k,1)

)
=

kl
k1/αl1/αP1/α(k, 1)

=
kl

k1/αl1/α 1
k

1−α
α l

2−α
α
P1/α(1/kl, 1)

=

(
l

P(1/kl, 1)

)1/α

.
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Additionally,

u2 =
u0

P(u1, u0)

=
k1/α

P1/α(l, 1)
1

P
(

l1/α

P1/α(1/kl,1)
, k1/α

P1/α(l,1)

)
=

k1/α

P1/α(l, 1)
1
k

=
k1/α

k
2−α

α l1/α

1
k

1
P1/α(k, 1)

=

(
1

klP(k, 1)

)1/α

= u−1

Similarly, we can prove that u3 = u0. Proceeding with the same approach, we
conclude that

u3r−1 = u−1, u3r = u0, and u3r+1 = u1, for all r = 1, 2, . . . .

Therefore, the proof is complete.

Theorem 6. Suppose that α = 0. DIE (1) has a prime period-three solution if and only if the system
0 = 1− klP(k, 1),
0 = k−P(l, 1),
0 = l −P(1/kl, 1)

(11)

has a solution (k, l, m), where k, l, m ∈ R+, and at least one of {k, l, m} is not equal to one.

Proof. Suppose that DIE (1) has the solution . . . , δ, β, γ, δ, β, γ, . . . . As in the proof of
Theorem 5, we arrive at

γ =
δ

P(k, 1)
,

δ =
β

P(l, 1)
,

β =
γ

P(1/kl, 1)
.

Thus, we obtain
klP(k, 1) = 1

k = P(l, 1)

and
l = P(1/kl, 1).

Then, system (10) has the solution (β/δ, γ/β).
On the other hand, we assume that (10) has a solution (k, l), where k, l ∈ R+, and at

least one of {k, l} is not equal to one. Now, we choose u−1 = c and u0 = ck, where k ∈ R+

and c is an arbitrary positive real number. Therefore,

u1 =
c

P(ck, c)
=

c
P(k, 1)

= ckl,

u2 =
ck

P(ckl, ck)
=

ck
P(l, 1)

= c = u−1,
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and
u3 =

u1

P(u2, u1)
=

ckl
P(c, ckl)

=
ckl

P(1/kl, 1)
= ck = u0.

Proceeding with the same approach, we conclude that

u3r−1 = u−1, u3r = u0, and u3r+1 = ckl, for all r = 1, 2, . . . .

Therefore, the proof is complete.

Example 3. Consider the DIE

un+1 =
unu2

n−1

aunun−1 + bu2
n + cu2

n−1
, (12)

where a, b and c ∈ R/{0}. We note that

P(t, s) = a + b
t
s
+ c

s
t

is homogenous with degree zero. Using Theorem 5, DIE (12) has a prime period-three solution if
the system

0 = 1− kl
(

a + bk + c 1
k

)
,

0 = k−
(

a + bl + c 1
l

)
,

0 = l −
(

a + b 1
kl + ckl

)
has the solution.
Consider the special case when a = − 2521

561 , b = 380
187 , and c = 223

187 . DIE (12) has a prime period-three
solution . . . , 1, 2, 6, 1, 2, 6, . . . , see Figure 2.

Figure 2. Prime period-three solution of DIE (12).

3.2. Stability Behavior of Solutions

Now, we define φ : (0, ∞)2 → (0, ∞) by

φ(t, s) =
s

P(t, s)
.
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The EQP of DIE (1) is given by ue = φ(ue, ue). Therefore,[
1

P(ue, ue)
− 1
]

ue = 0,

this implies that the positive EQP

ue =
1

P1/α(1, 1)
, α > 0. (13)

The linearized equation of DIE (1) is

Ln+1 − λLn − µLn−1 = 0, (14)

where

λ =
∂φ(ue, ue)

∂t
=
−ueP1(ue, ue)

P2(ue, ue)
= − P1(1, 1)

uα
eP2(1, 1)

and

µ =
∂φ(ue, ue)

∂s
=
P(ue, ue)− ueP2(ue, ue)

P2(ue, ue)
=
P(1, 1)−P2(1, 1)

uα
eP2(1, 1)

.

From (13), we obtain uα
e = 1/P(1, 1), and so

λ = −P1(1, 1)
P(1, 1)

and µ = 1− P2(1, 1)
P(1, 1)

.

Remark 1. Since P(t, s) is homogenous with degree α, we have P1(t, s) and P2(t, s) are homoge-
nous with degree α − 1. Moreover, from Euler Theorem for homogeneous functions tP1(t, s) +
sP2(t, s) = αP(t, s). Thus, P1(1, 1) + P2(1, 1) = αP(1, 1).

Lemma 1. The EQP ue of DIE (1) is locally asymptotically stable (sink) if

|η| < ρ < 2κ, (15)

otherwise it is unstable. Furthermore, it has the following unstable cases:
(a) ue is repeller if

|κ − ρ| > κ and |η| < |ρ|,

(b) ue is a saddle point if
η2 + 4κ2 > 4κρ and |η| > |ρ|,

(c) ue is a nonhyperbolic point if
η = |ρ|,

or
2κ = ρ and |η| ≤ 2κ,

where κ = P(1, 1), η = P1(1, 1), and ρ = P2(1, 1).

Proof. The proof results directly from Theorem 1.1.1 in [18], so it was deleted.

Lemma 2. Assume that P1(t, s) ≥ 0, P2(t, s) ≤ 0, and

P(`, 1) = P(1, `)→ ` = 1. (16)

Then, all solutions of DIE (1) converge to ue.
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Proof. From the definition of the function φ, it is easy to conclude that

∂φ(t, s)
∂t

=
−sP1(t, s)
P2(t, s)

≤ 0,

∂φ(t, s)
∂s

=
P(t, s)− sP2(t, s)

P2(t, s)
≥ 0.

Since P(`, 1) 6= P(1, `) for all ` ∈ R+/{1}, we obtain from Theorem 3 that DIE (1)
has no solutions of prime period two. Therefore, from Theorem 1, all solutions of DIE (1)
converge to ue. Hence, the proof is complete.

Lemma 3. Assume that α ≤ 1, P1(t, s) ≥ 0, and (16) holds. Then, all solutions of DIE (1)
converge to ue.

Proof. From Remark 1, we have αP(t, s)− sP2(t, s) ≥ 0, which with the fact that α ≤ 1
gives P(t, s) ≥ sP2(t, s). The rest of the proof is exactly as the proof of Theorem 2.

Lemma 4. Assume that α ≥ 1, P1(t, s) ≤ 0, and

P(1, `) = `2P(`, 1)→ ` = 1. (17)

Then, all solutions of DIE (1) converge to ue.

Proof. From Remark 1 and the fact that α ≥ 1, we get P(t, s) ≤ αP(t, s) ≤ sP2(t, s).
From the definition of the function φ, it is easy to conclude that ∂φ/∂t ≥ 0 and ∂φ/∂s ≤ 0.

Now, we suppose that (s, B) is a solution of the system{
φ(s, B) = s,
φ(B, s) = B.

Thus, we obtain
B = sP(s, B) and s = BP(B, s).

Hence, we conclude that

B = s sαP
(

1,
B
s

)
and s = B sαP

(
B
s

, 1
)

.

Set B/s = `, we arrive at
P(1, `) = `2P(`, 1).

Using (17), we obtain that ` = 1, and so B = s. Therefore, it follows from Theorem 2
that all solutions of DIE (1) converge to ue. This completes the proof.

Lemma 5. Assume that P1(t, s) ≥ 0, P(`, 1) ≥ P2(`, 1) for all ` ∈ R, and (16) holds. Then, all
solutions of DIE (1) converge to ue.

Proof. From the definition of the function φ, it is easy to note that ∂φ/∂t ≤ 0, and

∂φ(t, s)
∂s

=
P(t, s)− sP2(t, s)

P2(t, s)
=

sα
[
P
( t

s , 1
)
−P2

( t
s , 1
)]

P2(t, s)
≥ 0.

The rest of the proof is exactly as the proof of Theorem 2.

Lemma 6. Assume that α = 0, and there is a h0 ∈ R+ such that P(`, 1) ≥ h0 > 1 for all ` ∈ R+.
If {un}∞

n=−1 is a solution of DIE (1), then limn→∞ un = 0.
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Proof. From DIE (1), we have

0 <un+1 =
un+1

P(un, un−1)
=

1

uα−1
n−1P

(
un

un−1
, 1
) ≤ 1

h0
u1−α

n−1 (18)

≤ 1
h0

un−1. (19)

Now, let yn+1 = 1
h0

yn−1. Then,

yn =


1

hn/2
0

y0, if n is even,
1

h(n+1)/2
0

y−1, if n is odd.

Therefore,
lim

n→∞
yn = 0, if h0 > 1.

which with (19) gives limn→∞ un = 0. This completes the proof.

Lemma 7. Assume that α = 1, and there is a h0 ∈ R+ such that P(`, 1) ≥ h0 for all ` ∈ R+.
Then, all solutions of DIE (1) are bounded.

Proof. From DIE (1), we have that (18) holds. Thus, un+1 ≤ 1/h0 for all n ≥ 0. Hence,

un ≤ max
{

1
h0

, u0, u−1

}
for all n ≥ −1.

This completes the proof.

Theorem 7. Assume that α ≤ 1, P1(t, s) ≥ 0 and (16) holds. Then, the EQP of (1) is globally
asymptotically stable if (15) holds.

Theorem 8. Assume that P1(t, s) ≥ 0, P(`, 1) ≥ P2(`, 1) for all ` ∈ R, and (16) holds. Then,
the EQP of (1) is globally asymptotically stable if (15) holds.

3.3. Examples and Numerical Simulations

In this part, we provide some examples that support the previous theoretical results.
Examples are presented later, including what has been studied and what has not been
studied before.

3.3.1. Special Case 1

Consider the DIE
un+1 =

aun−1

bun + cun−1
, (20)

where a, b, and c are positive real numbers. Using the substitution un = a
bzn

, DIE (20)
reduces to zn+1 = c

b +
zn−1

zn
, and this equation has been studied in [34].

It is easy to notice that P(t, s) = b
a t + c

a s is homogenous with degree one. Using our
previous results, the following information can be obtained

1. DIE (20) has a prime period-two solution⇐⇒ b = c.
2. The positive EQP of DIE (20) is ue = a/(b + c).
3. The EQP ue of DIE (20) is locally asymptotically stable (sink) if b < c.
4. If b < c, then EQP of DIE (20) is globally asymptotically stable.
5. We note that P(`, 1) = 1

a c + 1
a b` ≥ c/a. Then, all solutions of DIE (20) are bounded if

c > a.
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3.3.2. Special Case 2

Consider the DIE

un+1 = un−1exp
(
−a− b

un

un−1
− c

un−1

un

)
, (21)

where a, b and c are real numbers. It is easy to notice that

P(t, s) = exp
(

a + b
t
s
+ c

s
t

)
is homogenous with degree zero.

1. DIE (21) has a prime period-two solution⇐⇒ there is a ` ∈ R+/{1} such that

b`+ c
1
`
=

(
b

1
`
+ c`

)
,

i.e., b = c < 0, see Figure 3.

Figure 3. Periodic solutions of DIE (21) at a = 1, and b = c = −2/5.

2. DIE (21) has a prime period-three solution⇐⇒ there is a `, l ∈ R+/{1} such that

bk2 + ak + c = −k ln(kl),

bl2 + al + c = l ln k,

ck2 + akl + bl2 = kl ln l,

see Figure 4.
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Figure 4. Periodic solutions of DIE (21) at a = −8.7829, b = 1.9489, and c = 0.684 16.

3. Assume that b, c ∈ R+. We note that P(`, 1) = ea+b`+ c
` ≥ ea. Then, every solution of

DIE (22) converges to zero if a > 0.

3.3.3. Special Case 3

Consider the DIE
un+1 =

un−1

au2
n + bunun−1 + cu2

n−1
, (22)

where a, b and c are real numbers, and one of them is not equal to zero at least. It is easy to
notice that

P(t, s) = at2 + bts + cs2

is homogenous with degree two.

1. DIE (22) has a prime period-two solution⇐⇒ there is a ` ∈ R+/{1} such that

(a− c)
(
`2 − 1

)
= 0

i.e., a = c, see Figure 5.

Figure 5. Periodic solutions of DIE (22) at b = 2, and a = c = 1.
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2. DIE (22) has a prime period-three solution⇐⇒ there is a `, l ∈ R+/{1} such that

c + al2 + bl − cl − ak2l − bkl = 0,

a− akl3 − bkl2 + ck2l2 + bkl − ckl = 0,

a− ckl2 − ak3l2 − bk2l2 + ck2l2 + bkl = 0,

see Figure 6.

Figure 6. Periodic solutions of DIE (22) at a = 38
41 , b = − 196

123 , and c = 1.

3. The positive EQP of DIE (22) is

ue =
1√

a + b + c
, a + b + c > 0.

4. The EQP ue of DIE (22) is locally asymptotically stable (sink) if

|2a + b| < b + 2c < 2(a + b + c).

If a, b, and c are positive, then ue is locally asymptotically stable (sink) if a < c, is a
saddle point if c < a, and is a nonhyperbolic point if a = c, see Figure 7.

Figure 7. Stability behavior of solutions (22).
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4. Conclusions

Our interest in this work was centered on the examination of some features of solutions
to the general DIE (1). We considered the periodic behavior, stability, and boundedness of
solutions to DIE (1). In detail, we fulfilled the sufficient and necessary conditions for the
existence of periodic solutions with periods two and three. We then obtained a complete
perception of the local stability of the EQPs for DIE (1). Moreover, we presented a number
of lemma and theorems that discuss the global stability and boundedness of the studied
equation. Finally, we obtained many properties of the solutions for some special cases of
the studied equation, and we showed numerical simulations of their solutions.

Studying the qualitative behavior of the general DIEs may significantly contribute to
eliciting the characteristics of the solutions of some new models that appear as a result of
scientific and technological development in various fields. It is interesting, as an extension
of our results in this work, to study the qualitative properties of solutions to the general
DIE un+1 = K(un, un−1), where K = G(P(t, s)) is a homothetic function.
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