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Abstract: In this paper, we discuss the implementation of a curvature flow on weighted graphs based
on the Bakry–Émery calculus. This flow can be adapted to preserve the Markovian property and its
limits as time goes to infinity turn out to be curvature sharp weighted graphs. After reviewing some of
the main results of the corresponding paper concerned with the theoretical aspects, we present various
examples (random graphs, paths, cycles, complete graphs, wedge sums and Cartesian products of
complete graphs, and hypercubes) and exhibit various properties of this flow. One particular aspect
of our investigations is asymptotic stability and instability of curvature flow equilibria. The paper
ends with a description of the Python functions and routines freely available in an ancillary file on
arXiv or via github. We hope that the explanations of the Python implementation via examples will
help users to carry out their own curvature flow experiments.
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1. Introduction

This paper is concerned with computational aspects of a curvature flow on weighted
graphs based on the Bakry–Émery calculus. This curvature flow was originally introduced
in our paper [1]. The current paper focuses on properties for various concrete examples
of graphs as well as stability investigations of the flow limits. Many observations in this
paper are gained with the help of our curvature flow software, which is freely available as
an ancillary file of [2] or via github at https://github.com/georgestagg/graph-curvature-
server (accessed on 6 June 2023). A summary of our findings is presented in Section 4.

A weighted graph in this paper is a finite simple mixed combinatorial graph G = (V, E)
with vertex set V and edge set E = E1 ∪ E2 of one- and two-sided edges, together with
a weighting scheme of transition rates pxy ≥ 0 for x, y ∈ V (which can be represented
by a generally non-symmetric matrix P after an enumeration of the vertices). Transition
rates pxy can only be positive if x = y or if there is a one- or two-sided edge from x to
y. One-sided edges are denoted by ordered pairs (x, y) ∈ E1 ⊂ V2, and two-sided edges
are denoted by sets {x, y} ∈ E2. One- or two-sided edges (x, y) ∈ E1 or {x, y} ∈ E2 with
vanishing transition rates pxy = 0 are called degenerate and a weighted graph (G, P) is
called non-degenerate if it does not have degenerate edges. A weighted graph (G, P) is called
Markovian, if we have ∑y∈V pxy = 1 for all x ∈ V. In this case, P is a stochastic matrix and
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we can view the transition rates pxy as transition probabilities of a lazy random walk (with
non-zero laziness if there exists a vertex x ∈ V with pxx > 0). Our curvature flow does
not affect the underlying combinatorial graph G, but it changes the weighting scheme. We
will focus on a version of our flow that preserves the Markovian property. In other words,
starting with an initial Markovian weighted graph (G, P0), this flow will provide a family
of Markovian weighting schemes {P(t)}t≥0 with P(0) = P0, depending on the continuous
time parameter t.

Before we introduce our curvature flow, we need to briefly discuss the relevant Bakry–
Émery curvature background. This curvature notion is based on the weighted Laplacian
∆ = ∆P, acting on functions f : V → R as follows:

∆P f (x) = ∑
y∈V

pxy( f (y)− f (x)).

The Laplacian gives rise to the following symmetric bilinear “carré du champ operators” Γ
and Γ2:

2Γ( f , g) = ∆( f g)− f ∆g− g∆ f ,

2Γ2( f , g) = ∆Γ( f , g)− Γ( f , ∆g)− Γ(g, ∆ f ).

1.1. Bakry–Émery Curvature and Curvature Sharpness

Bakry–Émery curvature depends on a dimension parameter N and is well-defined at
every vertex x ∈ V that is not isolated, that is, there exists another vertex y ∈ V with pxy > 0.
For isolated vertices, there is some ambiguity on how to define their curvature, and we
decided to assign to such a vertex the curvature value 0. (Another natural choice of cur-
vature for an isolated vertex x ∈ V would be KN(x) = ∞ for all N ∈ (0, ∞]. An argument
for that choice is that an isolated vertex can be viewed as a discrete analogue of a limit of
round spheres with radii shrinking to 0, whose curvatures would diverge to infinity.) The
definition of Bakry–Émery curvature reads as follows:

Definition 1 (Bakry–Émery curvature). The Bakry–Émery curvature of a non-isolated vertex
x ∈ V for a fixed dimension N ∈ (0, ∞] is the supremum of all values K ∈ R, satisfying the
curvature-dimension inequality

Γ2( f )(x) ≥ 1
N
(∆ f (x))2 + K Γ( f )(x) (1)

for all functions f : V → R. We use the simplified notation Γ( f ) = Γ( f , f ) and Γ2( f ) = Γ2( f , f ).
We denote the curvature at x ∈ V by KN(x) = KP,N(x). If x ∈ V is isolated, that is, we have
pxy = 0 for all y ∈ V \ {x}, we set KN(x) = KP,N(x) = 0 for all N ∈ (0, ∞].

This curvature notion is motivated by Bochner’s identity (see, e.g., [3] (Prop. 4.15)),
a fundamental pointwise formula in the smooth setting of n-dimensional Riemannian
manifolds involving gradients, Laplacians, Hessians, and Ricci curvature. It was introduced
for the smooth setting in [4]. The curvature was then reintroduced several times in the
setting of graphs, see [5–7]. For further research about Bakry–Émery curvature on finite
graphs, see, e.g., [8–19].

By the definition, the inequality

Γ2( f )(x) ≥ 1
N
(∆ f (x))2 + KN(x) Γ( f )(x) (2)

holds for every function f , and therefore, also holds for the combinatorial distance function
d(x, ·). Here, d(x, y) is the length of a shortest directed path from x to y (if there is no
such path, we set d(x, y) = ∞). If we have equality at x in (2) for this particular function
f = d(x, ·), we say that the vertex x ∈ V is N-curvature sharp. Curvature sharpness
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will be particularly important in our considerations. Curvature sharpness was originally
introduced in [20] (Definition 1.4). The (equivalent) definition given in this paper is inspired
by [21] (Proof of Theorem 1.2). For more details about relations between different curvature
sharpness definitions see Section 3 of [1].

Definition 2 (Curvature sharpness). Let (G, P) be a weighted graph and N ∈ (0, ∞]. A vertex
x ∈ V is called N-curvature sharp if we have

Γ2( f )(x) =
1
N
(∆ f (x))2 + KN(x) Γ( f )(x) (3)

for the distance function f = d(x, ·). Moreover, a vertex x ∈ V is curvature sharp if it is curvature
sharp for some dimension N ∈ (0, ∞]. A weighted graph (G, P) is called curvature sharp, if every
vertex of G is curvature sharp.

Note that each function f : V → R with Γ( f )(x) 6= 0 gives rise to an upper curvature
bound K f

P,N(x) via the inequality (2). Namely, we have

KN(x) ≤ K f
P,N(x) :=

1
Γ( f )(x)

(
Γ2( f )(x)− 1

N
(∆ f (x))2

)
. (4)

A vertex x ∈ V is therefore N-curvature sharp if its Bakry–Émery curvature KN(x) agrees
with the specific upper curvature bound Kd(x,·)

P,N (x). We would also like to mention the
following monotonicity property of curvature sharpness: If x ∈ V is N-curvature sharp
that this vertex is also curvature sharp for any dimension ≤ N (see [1] (Prop. 3.1)).

In the next subsection, we present an important reformulation of Bakry–Émery curva-
ture at x ∈ V using a specific matrix Q(x), which will be important in the definition of the
curvature flow.

1.2. Reformulation of Curvature via a Schur Complement

The combinatorial distance function allows us to define distance spheres and distance
balls,

Sr(x) = {z ∈ V : d(x, z) = r},
Br(x) = {z ∈ V : d(x, z) ≤ r}.

Let x ∈ V be a non-isolated vertex. It turns out that the Bakry–Émery curvature KN(x) is
determined locally, that is, can be derived solely from the information about the 2-ball

B2(x) = {x} ∪ S1(x) ∪ S2(x).

More precisely, denoting S1(x) = {y1, . . . , ym} and S2(x) = {z1, . . . , zn}, there exist a
column vector ∆(x) and a symmetric matrix Γ(x) of size m and a symmetric matrix Γ2(x)
of size m + n such that, for functions f , g : V → R with f (x) = g(x) = 0,

∆ f (x) = ∆(x)>~fm,

Γ( f , g)(x) = ~f>m Γ(x)~gm,

Γ2( f , g)(x) = ~f>m+nΓ2(x)~gm+n,

where ~fm = ( f (y1), . . . , f (ym))> and

~fm+n = ( f (y1), . . . , f (ym), f (z1), . . . , f (zn))
>,
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and ~gn,~gm+n, accordingly. Using the (n + m)-block decomposition

Γ2(x) =
(

Γ2(x)S1 Γ2(x)S1,S2

Γ2(x)S2,S1 Γ2(x)S2

)

and employing the Schur complement

Q(x) = Γ2(x)S1 − Γ2(x)S1,S2 Γ2(x)†
S2

Γ2(x)S2,S1

for matrices Γ2(x) with positive semidefinite Γ2(x)S2-blocks with A† the pseudoinverse
of A (for a given matrix A ∈ RN×M, its pseudoinverse A† ∈ RM×N is defined by the
following conditions: AA† A = A, A† AA† = A†, and AA† ∈ RN×N and AA† ∈ RM×M

are both symmetric matrices), we can reformulate Bakry–Émery curvature at x ∈ V for
dimension N ∈ (0, ∞] as follows (see Section 2.4 in [1]):

Let x ∈ V be a non-isolated vertex. KN(x) is then the maximum of all K ∈ R such that

Q(x)− 1
N

∆(x)∆(x)> − KΓ(x) � 0,

where A � B means that A− B is positive semidefinite.
This curvature translation was motivated originally by the aim to reformulate the

computation of Bakry–Émery curvature as an eigenvalue problem (see [22–24]).
The symmetric matrix Q(x) of a non-isolated vertex x ∈ V is of size m and is—in the

non-degenerate case—closely related to another symmetric matrix A∞(x), which, in turn,
can be viewed as a discrete counterpart of the Ricci curvature tensor at a point x ∈ M of
a Riemannian manifold (M, g) (see formula (1.2) and Section 7 in [24]). In the case of a
Markovian weighted graph, curvature sharpness at a vertex x ∈ V can also be alternatively
expressed with the help of the matrix Q(x) as follows.

Theorem 1 (see Theorem 1.3 in [1]). Let (G, P) be a Markovian weighted graph and x ∈ V be a
non-isolated vertex with S1(x) = {y1, . . . , ym}. Then, the following statements are equivalent:

(1) x is curvature sharp;
(2) x is curvature sharp for dimension N = 2;
(3) We have

Q(x)1m =
1
2

Kd(x,·)
P,∞ (x)px, (5)

where px = (pxy1 , . . . , pxym)
> and 1m is the all-one column vector of size m.

Note that the term Kd(x,·)
∞ (x) in (5) is the upper curvature bound introduced in (4) (in

the special case N = ∞), that is,

Kd(x,·)
P,∞ (x) =

Γ2(d(x, ·))(x)
Γ(d(x, ·))(x)

.

1.3. Curvature Flow

Let (G, P0) be a fixed initial weighted graph with N = |V|. For every non-isolated
vertex x ∈ V, the size of the corresponding symmetric matrix Q(x) agrees with the degree
of the vertex x, that is, the number of one- and two-sided edges emanating from x, and the
entries of Q(x) are determined by the transition rates of edges of the 2-ball B2(x). Our
curvature flow associates to this initial data a smooth matrix-valued function P : [0, ∞)→
RN×N with P(0) = P0. The corresponding symmetric Q-matrices at time t ∈ [0, ∞) depend
on the weighting schemes P(t), and we denote them henceforth by Qx(t) for all x ∈ V. Our
curvature flow is now defined as follows.
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Definition 3 (Curvature flow). Let (G, P0) be a finite weighted graph. The associated curvature
flow is given by the following differential equations for all non-isolated vertices x ∈ V and all
t ≥ 0:

p′xx(t) = 0, (6)

p′x(t) = −4Qx(t)1m + 2Cx(t)px(t), (7)

where S1(x) = {y1, . . . , ym} and

px(t) = (pxy1(t), . . . , pxym(t))
>.

In the case of an isolated vertex x ∈ V, its curvature flow is given by the simple equation p′xx(t) = 0,
that is pxx(t) is a constant function in t.

We note that the curvature flow Equation (6) guarantees that the diagonal entries of
the weighting scheme do not change. The functions Cx(t) in the curvature flow Equation (7)
play the role of a normalization since, for the choice Cx ≡ 0, various transition rates will be
unbounded as the time parameter t ≥ 0 increases. Note that in the smooth case of closed
Riemannian manifolds (M, g0), a suitable normalization leads to volume perseverance of
(M, gt) under the Ricci curvature flow. Our aim is to preserve the Markovian property,
and it was shown in our first paper that the curvature flow preserves this property if we
choose the normalization functions

Cx(t) = Kd(x,·)
P(t),∞(x). (8)

Let us give the explicit formulas for the curvature flow Equation (7) for this particular
choice of Cx(t), where y, y′, y′′ always represent vertices in S1(x) (see [1] (Formula (66)):

p′xy(t) =

pxy(t)


−4pyx(t)− 2 ∑

y′ 6=y
pyy′ (t) +

4
Dx

∑
y′

pxy′ (t)py′x(t) +
1

Dx
∑

y′ ,y′′
pxy′ (t)py′y′′ (t)− pyy(t)




+ ∑
y′ 6=y

pxy′ (t)py′y(t)

︸ ︷︷ ︸
(∗)

. (9)

Here, we use Dx = ∑y′ pxy(t) = 1 − pxx(t). Note that (6) guarantees that Dx ≤ 1 is
independent of the time parameter t.

The following theorem collects some fundamental properties of the normalized curva-
ture flow.

Theorem 2 (see Theorem 1.5 and Prop. 1.6 in [1]). Let (G, P0) be a Markovian weighted graph.
Then, the curvature flow (G, P(t))t≥0 associated with (G, P0) with normalization (8) is well defined
for all t ≥ 0 and preserves the Markovian property. If (G, P0) is non-degenerate, then (G, P(t)) is
also non-degenerate for all t ≥ 0. Moreover, if the flow converges for t→ ∞ to P∞ = limt→∞ P(t),
then the weighted graph (G, P∞) is curvature sharp.

We would like to emphasize that, even in the Markovian case, a flow limit P∞ =
limt→∞ P(t) of a non-degenerate weighted graph (G, P0) is in most cases no longer non-
degenerate, despite the fact that all weighting schemes P(t) for finite t ≥ 0 are non-
degenerate. In other words, some transition probabilities converge to zero under our
normalized curvature flow, as time tends to infinity.

1.4. Other Discrete Curvature Flows

We presented already other curvature flows in [1] and briefly recall them here for the
readers’ convenience.



Axioms 2023, 12, 577 6 of 34

To our knowledge, the curvature flow on discrete Markov chains in this paper is the
first one that is based on Bakry–Émery curvature. Other curvature flow investigations for
discrete Ricci-type curvature are the following:

• Combinatorial Ricci flows on surfaces [25];
• Ollivier Ricci flow ([26,27], Problem N) and [28,29];
• Forman-Ricci curvature flow [30,31];
• Stochastic Ricci flow for balanced Forman curvature [32,33];
• Entropic super Ricci flow [34,35];
• Resistance curvature flow [36].

2. Curvature Flow Examples

In this section, we investigate normalized curvature flows on some unmixed combi-
natorial graphs G = (V, E). By unmixed we mean that G does not have one-sided edges.
We assume in all examples and statements in this section that our graphs G = (V, E) are
finite, simple, unmixed, and connected and that our initial weighting schemes P0 = P(0) =
(pxy(0))x,y∈V are non-degenerate Markovian without laziness (even if we do not mention
this). Curvature flow limits (G, P∞) with P∞ = limt→∞ P(t) are necessarily curvature
sharp by Theorem 2 above. We do not know of any initial Markovian weighted graph that
does not converge as t→ ∞. Moreover, we know that every finite connected graph with at
least two vertices admits many curvature sharp Markovian weighting schemes without
laziness (see [1] (Theorem 1.10)). These facts give rise to the following conjecture.

Conjecture 1 (see Conjecture 1.7 in [1]). The curvature flow (G, P(t))t≥0 with normalization
(8) converges for any initial condition (G, P0) as t→ ∞.

Let us now address some practical aspects of the curvature flow implementation.
The Python code is freely available as an ancillary file of [2] or via github at https://github.
com/georgestagg/graph-curvature-server (accessed on 6 June 2023). The solution of the
curvature flow is computed numerically by the Runge–Kutta (RK4) method, which is
based on a time discretization with time increments dt > 0. In the following examples, we
choose the step sizes dt = 0.1 and dt = 0.3. In order to distinguish between the theoretical
curvature flow and its implementation, we refer to the latter as the numerical curvature flow.
Since a numerical curvature flow cannot run forever, a suitable numerical convergence
criterion needs to be introduced. Our convergence criterion is based on the parameter
limtolerance > 0. We say that a numerical curvature flow solution (P(t))t≥0 has converged
numerically at time t (with respect to the parameter limtolerance) if all the entries of P(t)
differ from the corresponding entries of P(t + 10) and P(t + 20) by less than limtolerance.
The numerical flow limit is then defined to be P(t). In all the following examples, we set
limtolerance = 0.001.

In this section, we are particularly interested in numerical flow limits that are not
numerically totally degenerate. An unmixed weighted graph (G, P) is called numerically
totally degenerate if there are no edges with numerical non-zero transition rates in both
directions, where we consider a transition rate pxy as numerically non-zero (with respect to
a parameter threshold > 0), if and only if pxy ≥ threshold. In all the following examples
we set threshold = 0.001.

2.1. Random Graphs

In this subsection, we investigate the numerical curvature flow for random weighted
graphs (G, P0) with vertex set V. The relevance of this example is that it provides insights
into flow limits for general graphs without any special symmetries. At the same time,
readers are familiarized with our software tool, enabling them to run examples of their own
interest. The edge set E of the random graph G is generated by an Erdös-Rényi process [37],
that is, any pair of vertices is independently and randomly connected by a two-sided edge
with a probability p ∈ [0, 1]. Similarly, we choose a random initial weighting scheme P0

https://github.com/georgestagg/graph-curvature-server
https://github.com/georgestagg/graph-curvature-server


Axioms 2023, 12, 577 7 of 34

with the property that all non-zero transition rates pvv′(0) lie in the interval [threshold, 1],
for some positive parameter threshold > 0. We are interested in the properties of the
numerical flow limits of these graphs. If the parameter p > 0 in the Erdös-Rényi process is
too small, these flow limits are always numerically totally degenerate. A reasonable choice
to obtain not numerically totally degenerate flow limits for such random graphs with, say,
10 vertices in roughly half of the cases, is p = 0.7.

Example 1 (A random graph with 10 vertices). Let (G, P0) be the unmixed weighted Markovian
graph with vertex set V = {v0, . . . , v9} and

P0 =




0 0.1 0.08 0.17 0 0.28 0.21 0.08 0 0.08
0.08 0 0 0.16 0 0.2 0.07 0.3 0.04 0.15
0.27 0 0 0 0 0 0.3 0 0 0.43
0.02 0.19 0 0 0.17 0.17 0.11 0.34 0 0

0 0 0 1 0 0 0 0 0 0
0.04 0.21 0 0.41 0 0 0.34 0 0 0
0.06 0.29 0.14 0.12 0 0.3 0 0.09 0 0
0.08 0.31 0 0.19 0 0 0.23 0 0.19 0

0 0.13 0 0 0 0 0 0.25 0 0.62
0.1 0.33 0.38 0 0 0 0 0 0.19 0




This randomly generated initial graph is illustrated on the left-hand side of Figure 1. The nu-
merical curvature flow of (G, P0) has numerical convergence time tmax = 20.7 (with respect to
limtolerance = 0.001). The numerical flow limit (G, P(tmax)) is presented on the right hand side of
Figure 1. Let us briefly explain the illustration of the edges of this flow limit: Edges with numerical
non-zero transition rates in both directions are displayed in green. Edges with only one-sided
numerical non-zero transition rates are displayed as dashed red lines with arrows. Edges whose
transition rates shrink in both directions numerically to zero under the curvature flow are displayed
as dotted black lines. The corresponding non-zero transition rates are written along these edges.
The vertices of the green edges of the flow limit in Figure 1 are given by

W = {v0, v1, v3, v5, v6, v7}.

Since there are no numerical non-zero transition rates from these vertices to the other vertices
v2, v4, v8, v9 ∈ V \W, the vertex set W together with the green edges and their transition rates
represent a highly connected non-degenerate Markovian weighted subgraph (GW , PW). The combi-
natorial graph GW with vertex set W can be viewed as a double cone over the complete graph K4
of the four vertices v0, v1, v3, v6 with the vertices v5, v7 as its cone tips. The transition rates of the
weighting scheme PW towards all vertices in K4 are 0.25 = 1/4, all transition rates towards v5 are
x = 0.05 and all transition rates towards v7 are y = 0.2. Note that such a weighted double cone
over K4 with these transition rates for any choice of x, y > 0 satisfying x + y = 1/4 is curvature
sharp (this follows readily from the geometric criterion in [1] (Theorem 3.15), since the weighting
scheme is volume homogeneous in all vertices and reversible with π(v5) = 4x/5, π(v7) = 4y/5
and π|K4 ≡ 1/5). Therefore, not only is the flow limit itself curvature sharp in Theorem 2 but also
the highly connected non-degenerate weighted subgraph (GW , PW).

Figure 2 presents the transition rates of the vertices v3, v7 under the curvature flow as func-
tions over the interval [0, tmax]. While most transition rates converge to strictly positive limits,
the transition rates pv3v4(t) and pv8v9(t) shrink to zero. Consequently, the corresponding edges
on the right-hand side of Figure 1 are represented by a dashed red line and a black dotted line,
respectively.

Let us finally consider the curvatures t 7→ KP(t),N(vj) of the vertices vj under the curvature
flow. We focus primarily on the vertices v1 and v9 and the dimension parameter N = ∞. Figure 3
presents the ∞-curvature (in blue) and upper curvature bound Kd(v,·)

P(t),∞(v) (in orange) of v ∈
{v1, v9} as functions over the interval [0, tmax]. Note that the absence of laziness implies that the
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upper curvature bounds Kd(v,·)
P(t),∞(v) are all ≥ 0 (see [1] (19)). For both vertices, the curvature and

upper curvature bound functions are numerically asymptotic as t→ tmax, indicating that v1 and
v9 of the flow limit are ∞-curvature sharp. (In fact, all vertices in this example are ∞-curvature
sharp with respect to the flow limit.) This is not always the case, but Theorem 1 confirms that all
vertices of a flow limit (G, P∞) are at least N-curvature sharp for dimension N = 2. Moreover,
the initial and final ∞-curvatures of all vertices under the curvature flow are presented in Table 1.
The final curvatures of all vertices in K4 assume the highest values 0.875, followed by the final
curvature values 0.773 and 0.476 of the vertices v7 and v5, respectively. All other vertices in V \V0
have much lower final curvatures with values ≤ 0.125.

Figure 1. Curvature flow of a random graph with 10 vertices with initial weighting scheme P0

(left-hand side) and final weighting scheme P(tmax) (right-hand side).

Figure 2. Transition rates of vertices v3 and v8 of a random graph with 10 vertices under the
curvature flow.

Figure 3. Curvatures (blue) and upper curvature bounds (orange) of vertices v1 and v9 of a random
graph with 10 vertices for the dimension ∞ under the curvature flow.
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Table 1. Vertex curvatures for the dimension ∞ of a random graph with 10 vertices at the beginning
and the end of the curvature flow.

j KP(0),∞(vj) KP(tmax),∞(vj)

0 0.406 0.875
1 0.293 0.875
2 0.168 0.125
3 0.346 0.875
4 0.34 0
5 0.527 0.476
6 0.404 0.875
7 0.202 0.773
8 0.246 0.11
9 0.236 0.125

Example 1 and its illustrations were generated by the following code.10 CUSHING, KAMTUE, LIU, MÜNCH, PEYERIMHOFF, AND SNODGRASS

1 dt = 0.1 # time increment in the Runge -Kutta (RK4) algorithm

2 stoch_corr = False # automatic stochastic correction in the RK4 algorithm

3 norm_tolerance = 0.001 # threshold to apply stochastic correction

4 threshold = 0.001 # threshold to consider a number numerally as zero

5 lim_tolerance = 0.001 # threshold to define flow convergence

6 t_lim = 10000 # maximal flow time

7 p = 0.7 # Erdoes -Renyi probability parameter

8 k = 1 # time multiplier for consecutive curvature computations

9 is_Markov = True # curvatures are w.r.t. a Markovian weighting scheme

10 N = inf # dimension parameter for curvature computations

11 laziness = False # Boolean in the generation of random weighting schemes

12

13 A = rand_adj_mat (10, 0.7, False)

14 P_0 = randomizer(A, threshold , laziness)

15

16 limit = norm_curv_flow_lim(A, P_0 , dt , stoch_corr , norm_tolerance , lim_tolerance ,

t_lim)

17

18 t_max=limit [1] # limit [1] is the convergence time

19 # as calculated by norm_curv_flow_lim

20

21 flow = norm_curv_flow(A, P_0 , t_max , dt, stoch_corr , norm_tolerance)

22

23 display_weighted_graph(A, P_0 , "Initial random weighted graph", threshold)

24 display_weighted_graph(A, limit[0], "Curvature flow limit", threshold)

25 display_trans_rates(A, flow , dt , [3, 8])

26

27 curvs = calc_curvatures(A, flow , N, k)

28 curv_bound = calc_curv_upper_bound(A, flow , N, k)

29 display_curvatures(curvs , dt , is_Markov , N, k, curv_bound , [1, 9])

Let us explain the commands of this program in detail. After initializing various parameters in lines
1-11, a random graph G = (V,E) is generated in line 13 via an Erdös-Renyi process with probability
p = 0.7. A corresponding random non-degenerate Markovian weigthing scheme without laziness
is generated in line 14, with each non-zero transition rate satisfying pvv′(0) ∈ [threshold, 1]. The
numerical convergence time tmax ≥ 0 is determined in lines 16-17. In most cases, the convergence
time does not exceed 100. (If convergence is not achieved by tlim = 10000, the curvature flow
computation stops at that time and notifies the user.) The numerical curvature flow on the interval
[0, tmax] is solved again in line 21. Initial and final weighting schemes are displayed by the commands
in lines 23 and 24, respectively, providing the illustrations given in Figure 1. The transition rates
of the vertices v3 and v8 are displayed by the command in line 25, providing the illustrations given
in Figure 2 The curvatures and upper curvature bounds at time steps j · k·tmax

dt , j = 0, 1, . . . , are
computed in lines 27 and 28, respectively, with the choice k = 1. They are displayed for the vertices
v1 and v9 via the command in line 29, providing the illustrations given in Figure 3.

When running this program, users may be faced with the following message:

‘norm_tolerance’ has been exceeded at one or more vertices, at time t = ... Would

you like to:

A = Stop calculation and return list of P-matrices so far

B = Apply manual normalization now, and apply it again when necessary without asking

(you will still be notified when it is applied)

Let us explain the commands of this program in detail. After initializing various
parameters in lines 1–11, a random graph G = (V, E) is generated in line 13 via an
Erdös-Renyi process with probability p = 0.7. A corresponding random non-degenerate
Markovian weighting scheme without laziness is generated in line 14, with each non-zero
transition rate satisfying pvv′(0) ∈ [threshold, 1]. The numerical convergence time tmax ≥ 0
is determined in lines 16–18. In most cases, the convergence time does not exceed 100. (If
convergence is not achieved by tlim = 10000, the curvature flow computation stops at that
time and notifies the user.) The numerical curvature flow on the interval [0, tmax] is solved
again in line 21. Initial and final weighting schemes are displayed by the commands in



Axioms 2023, 12, 577 10 of 34

lines 23 and 24, respectively, providing the illustrations given in Figure 1. The transition
rates of the vertices v3 and v8 are displayed by the command in line 25, providing the
illustrations given in Figure 2. The curvatures and upper curvature bounds at time steps
j · k·tmax

dt , j = 0, 1, . . . , are computed in lines 27 and 28, respectively, with the choice k = 1.
They are displayed for the vertices v1 and v9 via the command in line 29, providing the
illustrations given in Figure 3.

When running this program, users may be faced with the following message:

‘norm_tolerance’ has been exceeded at one or more vertices, at time
t = ... Would you like to:
A = Stop calculation and return list of P-matrices so far
B = Apply manual normalization now, and apply it again when necessary without
asking (you will still be notified when it is applied)
C = Apply manual normalization now, and ask again before reapplying it
Please enter A, B or C here:

The reason behind this message is the following. The computation of the numerical
curvature flow is based on a time discretization. Therefore, the solution will increasingly
depart from the Markovian property after each time increment dt = 0.1. If the sum of entries
of one of the rows of P(t) at time t differs from one by more than normtolerance = 0.001,
the program informs the user that a normalization of the weighting scheme is needed for
the continuation of the flow calculations. After choosing the option ’B’, the program will
continue with its flow calculations without further interruptions, and the user is simply
notified about the times at which the program applies further artificial normalizations
of the transition rates. The user can suppress this message entirely by changing line 2
of the program into "stoch_corr = True", in which case the program applies stochastic
corrections automatically, each time with the message

Transition rates have been artificially normalized at time t = ...

The numerical observations of Example 1 suggest that similar properties may also
hold in general in the theoretical setting. Firstly, we call an edge {x, y} ∈ E in an unmixed
weighted graph (G, P) non-degenerate if pxy, pyx > 0. An unmixed weighted graph (G, P) is
called totally degenerate if it does not have any non-degenerate edges. Secondly, we denote
the vertices of all non-degenerate edges of a flow limit (G, P∞) by W ⊂ V, and GW denotes
the subgraph of G consisting of the vertices W and all non-degenerate edges of (G, P∞).
Moreover, PW denotes the restriction of the weighting scheme P∞ to the vertex set W. We
call GW the non-degenerate subgraph of (G, P∞) and we conjecture the following:

Conjecture 2. If the normalized curvature flow of a nondegenerate unmixed Markovian weighted
graph (G, P0) converges to a not totally degenerate limit (G, P∞), then the non-degenerate subgraph
GW coincides with the induced subgraph (of G) of the subset W ⊂ V and all transition rates from
W to V \W are zero. (GW , PW) is a non-degenerate Markovian weighted graph, which is itself
curvature sharp.

Figuratively speaking, the curvature flow converges towards the non-degenerate
Markovian subgraph (GW , PW) consisting of highly connected components. Moreover,
each vertex of V \W is usually connected to the set W by a sequence of edges with one-
sided non-zero transition rates pointing towards the set W, and we generally expect that
the ∞-curvature values of the vertex set W in (G, P∞) are significantly larger than the
∞-curvature values of the set V \W in (G, P∞).

In Example 1, the weighted Markovian subgraph (GW , PW) has only one connected
component, but we will see in the next subsection in the case of paths and cycles that
(GW , PW) may be composed of more than just one connected component.
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2.2. Paths and Cycles

Paths and cycles are the easiest examples of graph families and are therefore natural
examples to study. We will see that both families have flow limits of very similar types.
Let G = (V, E) be a path of length N ≥ 2, that is, V = {v0, . . . , vN−1} with a two-sided
edge between vi and vj if and only if |i − j| = 1. If N = 2, G is a trivial case of a star
graph and any Markovian weighting scheme satisfying p01 = p21 = 1 and p10 + p12 = 1 is
curvature sharp (see [1], Example 4.3). For that reason, we consider only paths of lengths
N ≥ 3. A cycle of length 3 is the complete graph K3, and a full list of all curvature sharp
weighting schemes was given in [1], Prop. 1.9, so we consider only cycles of length N ≥ 4.
The following example provides some insights into some features of curvature flow limits
of weighted paths and cycles.

Example 2 (A path and a cycle of length 12). Figure 4 presents numerical curvature flow limits
of a Markovian weighted path with vertices 12 vertices (left-hand side) and of a weighted cycle
with 12 vertices (right-hand side). The non-zero transition rates of the initial weighting scheme
P0 = (pji)0≤i,j≤11 for the path limit in Figure 4 were chosen as follows:

p0,1 p1,2 p2,3 p3,4 p4,5 p5,6 p6,7 p7,8 p8,9 p9,10 p10,11
1 0.25 0.72 0.46 0.23 019 0.84 0.71 0.62 0.9 0.55

p1,0 p2,1 p3,2 p4,3 p5,4 p6,5 p7,6 p8,7 p9,8 p10,9 p11,10
0.75 0.28 0.54 0.77 0.81 0.16 0.29 0.38 0.1 0.45 1

The non-degenerate subgraph GW of the path limit consists of W = {v1, v2, v3, v9, v10, v11}
as its vertex set together with the four green edges. Moreover, GW has two paths of length 2
as its connected components. For each vertex v ∈ V\W, there exists a directed path to one of
the components of GW via a sequence of one-sided transition rates. For example, the vertices
v5, v6, v7, v8 are connected to the vertex v9 ∈W via such one-sided paths, and v4, v5 are connected
to the vertex v3 via such one-sided paths.

Figure 4. Examplesof numerical curvature flow limits of a path and of a cycle of length 12.

The cycle limit on the right-hand side of Figure 4 is totally degenerate with no green edges,
and all one-sided non-zero transition rates are oriented in a clockwise direction. The experiments
show that Figure 4 exhibits generic limit properties: flow limits of weighted paths are never totally
degenerate and their non-degenerate subgraphs GW consist of disjoint paths of length ≤ 2. Such
types of limits also appear in the case of weighted cycles. However, in contrast to the path case,
sometimes a cycle limit is totally degenerate with all its one-sided transition rates oriented either
clockwise or anti-clockwise. The code for running the curvature flow for paths and cycles of length n
reads as follows:
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with 12 vertices (right hand side). The non-zero transition rates of the initial weighting scheme
P0 = (pji)0≤i,j≤11 for the path limit in Figure 4 were chosen as follows:

p0,1 p1,2 p2,3 p3,4 p4,5 p5,6 p6,7 p7,8 p8,9 p9,10 p10,11
1 .025 0.72 0.46 0.23 019 0.84 0.71 0.62 0.9 0.55

p1,0 p2,1 p3,2 p4,3 p5,4 p6,5 p7,6 p8,7 p9,8 p10,9 p11,10
0.75 0.28 0.54 0.77 0.81 0.16 0.29 0.38 0.1 0.45 1

The non-degenerate subgraph GW of the path limit consists of W = {v1, v2, v3, v9, v10, v11} as
its vertex set together with the four green edges. Moreover, GW has two paths of length 2 as
its connected components. For each vertex v ∈ V \W there exists a directed path to one of the
components ofGW via a sequence of one-sided transition rates. For example the vertices v5, v6, v7, v8
are connected to the vertex v9 ∈W via such one-sided paths and v4, v5 are connected to the vertex
v3 via such one-sided paths.
The cycle limit on the right hand side of Figure 4 is totally degenerate with no green edges, and all
one-sided non-zero transition rates are oriented in a clockwise direction. Experiments show that
Figure 4 exhibit generic limit properties: flow limits of weighted paths are never totally degenerate
and their non-degenerate subgraphs GW consist of disjoint paths of length ≤ 2. Such types of
limits appear also in the case of weighted cycles. However, in contrast to the path case, sometimes
a cycle limit is totally degenerate with all its one-sided transition rates oriented either clockwise or
anti-clockwise. The code for running the curvature flow for paths and cycles of length n reads as
follows:

1 N = 12

2 A = path(N)

3 # A = cycle(N)

4 P = randomizer(A)

5 limit = norm_curv_flow_lim(A, P)[0]

6 display_weighted_graph(A, P, "Initial weighted graph")

7 display_weighted_graph(A, limit , "Curvature flow limit")

Before we provide the following result about path limits, let us first introduce the
notion of a two-sided degenerate edge of weighted graphs (G, P): An edge {x, y} ∈ E
of G is called two-sided degenerate if its transition rates vanish in both directions, that
is, pxy = pyx = 0. Similarly, an edge is called numerically two-sided degenerate, if its
transition rates in both directions are < threshold. Such edges are displayed in the routine
display_weighted_graph as dotted black lines (see, e.g., the edges {v2, v9} and {v8, v9}
on the right hand side of Figure 1).

Proposition 1 (Flow limits of paths of length ≥ 3). Let (G, P0) be a weighted path of length
N ≥ 3 with consecutive vertices v0, . . . , vN−1. Let P(t) be its corresponding curvature flow
converging to a limit P∞ = limt→∞ P(t), such that (G, P∞) does not have two-sided degenerate
edges. Then, this limit is neither totally degenerate nor is it not non-degenerate (that is, it contains
both green and dashed red edges). Moreover, the components of the non-degenerate subgraph
GW are paths of lengths ≤ 2, and they are separated from each other by at least two degenerate
edges. If a component of GW is a path of length 1, that is, just one edge {vj, vj+1}, then we have
p∞

j,j+1 = p∞
j+1,j = 1.

Proof. By the last statement of Theorem 2, we only need to prove these statements for
curvature sharp weighting schemes P = (pij)0≤i,j≤N of paths of length N ≥ 3. Such
weighting schemes can never be non-degenerate by [1] (Prop. 1.11).

For the proof that curvature sharp weighting schemes can never be totally degenerate,
we note that we cannot have two consecutive degenerate edges {vj, vj+1}, {vj+1, vj+2} ∈ E
with pj,j+1 = 1 = pj+2,j+1 (since this would imply pj+1,j = pj+1,j+2 = 0, contradicting to
pj+1,j + pj+1,j+2 = 1). Therefore, since p01 = 1, any totally degenerate weighting scheme
would require pj,j+1 = 1 for any j ≥ 0, in particular, pN−2,N−1 = 1, but this contradicts the
fact that we also have pN−1,N−2 = 1 and that the edge {vN−1, vN−2} needs to be degenerate.

A curvature sharp weighting scheme cannot have more than two consecutive non-
degenerate edges. This can be seen as follows: At any vertex vj with pj,j−1, pj,j+1 > 0 we
must have pj−1,j = pj+1,j. This follows from the arguments in the proof of [1] (Lemma 4.1)
(namely, since the vertex vj is not contained in any triangle, we have pj−1,j = py+1,j =
pj,j−1 pj−1,j + pj,j+1 pj+1,j.) If 0 < pj−1,j = pj+1,j < 1, we could iterate this argument
backward and forward and would end up with the fact that all entries of the matrix P
above the diagonal and below the diagonal would lie in (0, 1), which is a contradiction
to p01 = 1. So, we must have pj−1,j = pj+1,j ∈ {0, 1}. Therefore, we cannot have two
consecutive indices j ∈ {0, . . . , N − 1} with 0 < pj−1,j = pj+1,j < 1, which would exist in
the case of three consecutive non-degenerate edges. So, the components of GW are paths of
length ≤ 2.

Moreover, any gap between two consecutive non-degenerate edges must be at least
two edges: this follows from the fact that if a non-degenerate edge {vj, vj+1} is followed
by a degenerate edge {vj+1, vj+2}, then we must have pj+1,j+2 = 0: if we had pj+1,j+2 > 0,
then we had pj+1,j, pj+1,j+2 > 0 and, therefore, 0 < pj+1,j = pj+2,j+1 and {vj+1, vj+2}would
be non-degenerate, which is a contradiction. Similarly, if a degenerate edge {vk, vk+1} is
followed by a non-degenerate edge {vk+1, vk+2}, we must have pk+1,k = 0. Combining
both facts implies that there cannot be a single degenerate edge separating two components
of GW . These arguments also show that components of GW that are single edges {vj, vj+1}



Axioms 2023, 12, 577 13 of 34

must satisfy pj,j+1 = pj+1,j = 1 since the adjacent degenerate edges have one-sided
transition rates pointing towards this component.

Similar arguments to the above can be used to prove that for cycles, the components
of any flow limit of a weighted cycle are again paths of length ≤ 2, unless the limit is non-
degenerate. Such non-degenerate limits exist for cycles, namely the simple random walks,
but experiments show that simple random walks are very unstable stationary solutions of
the curvature flow. Small perturbations of simple random walks do not converge back to
the simple random walk (unless our cycle is K3) but converge usually to a degenerate limit.
Finally, if a totally degenerate cycle limit does not have two-sided degenerate edges, then its
transition rates must all be either oriented clockwise or anti-clockwise; otherwise, we would
necessarily have a vertex with transition rates of both incident degenerate edges pointing
towards this vertex. This would fail to satisfy the Markovian condition at this vertex.

Paths and cycles of length N ≥ 3 have the property that no edge is contained in a
triangle. We would like to finish the section with a general statement about the curvature
flow for edges not contained in triangles.

Proposition 2. Let (G, P0) be a weighted Markovian graph without laziness and (P(t))t≥0 be its
associated normalized curvature flow. If we have, for some t0 ≥ 0 and an edge e = {x, y} ∈ E,
pxy(t0) = 0 and e is not contained in a triangle of G, then we have

pxy(t) = 0 for all t ≥ t0.

Proof. This proposition is an easy consequence of the flow Equation (9). Since we assume
no laziness, we have pyy(t) = 0, and since e is not contained in a triangle, the last term
of (9), denoted by (∗), is zero and the statement follows now from the uniqueness of the
solution satisfying pxy(t0) = 0.

2.3. Complete Graphs

Complete graphs are the natural choice for the study of the behavior of curvature
flows of highly connected graphs. For these graphs, the simple random walks turn out
to be the flow limits of non-degenerate initial weighting schemes. The simple random
walk on any complete graph is a non-degenerate curvature sharp Markovian weighting
scheme. Our experiments show that any non-degenerate initial weighting scheme P0 on
Kn converges to the simple random walk, that is p∞

jk = 1
n−1 . The following example shows

that convergence to the simple random walk appears even if the initial weighting scheme
is degenerate. This is not in contradiction to Proposition 2 since, in a complete graph Kn,
n ≥ 3, every edge is contained in a triangle. Example 3 is the only exception in this section
where we allow an initial weighting scheme to have degenerate edges.

Example 3 (A degenerate weighted complete graph with six vertices). Let (G, P0) be the
complete weighted Markovian graph with vertex set V = {v0, . . . , v5} and

P0 =




0 0.2 0.1 0.2 0 0.5
0.1 0 0.3 0.25 0.25 0.1
0.2 0 0 0.3 0.15 0.35
0.3 0.5 0.1 0 0.1 0
0.2 0.3 0.3 0.2 0 0
0.6 0.1 0.1 0.2 0 0




,

as illustrated in Figure 5. Note that the edges {v0, v4}, {v1, v2}, {v3, v5} and {v4, v5} of this
initial weighting scheme are degenerate, with the latter being two-sided degenerate. The numerical
curvature flow has numerical convergence time tmax = 18.5 (with respect to limtolerance = 0.001)
with the simple random walk as its numerical flow limit. Figure 6 presents the transition rates of the
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vertices v2 and v5. Of particular interesting are the functions p2,1(t) and p5,4(t) for t ∈ [0, tmax],
since their initial values are zero.

Based on our experiments, we conjecture the following, which is a strengthening of [1]
(Conjecture 1.8).

Conjecture 3 (Curvature flow of complete graphs). Let P0 be a Markovian weighting scheme
without laziness on a complete graph Kn = (V, E) with n ≥ 2 such that, for every proper subset
W ⊂ V, there exist x, x′ ∈ W and y, y′ ∈∈ V \W with pxy > 0 and py′x′ > 0. Then, the
curvature flow has a limit P∞, which is the simple random walk.

Figure 5. Curvature flow of a complete graph with six vertices with degenerate initial weight-
ing scheme P0 (left-hand side) and numerical flow limit P(tmax), the simple random walk (right-
hand side).

Figure 6. Transition rates of vertices v2 and v5 of a complete graph with six vertices under the
curvature flow.

2.4. Wedge Sums of Complete Graphs

Let G1 = (V1, E1) and G2 = (V2, E2) be two combinatorial graphs and x1 ∈ V1 and
x2 ∈ V2. By merging the vertices x1 and x2 into one new vertex x, which inherits the
incident edges of both vertices x1 and x2, we obtain a new combinatorial graph in which
we denote the wedge sum of G1 and G2. In this subsection, we consider the flow limits
of wedge sums of complete graphs. The study of these graphs leads to an interesting
dynamical aspect of our curvature flow, namely that its limits concentrate on one of the
components of these wedge sums.
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Example 4 (A wedge sum of a K4, K5, K2, and K3). We consider the curvature flow on the wedge
sum G = (V, E) of complete graphs presented in Figure 7 with random initial weighting schemes
P = P0. The adjacency matrix A of this graph is generated with our code in the following way:

16 CUSHING, KAMTUE, LIU, MÜNCH, PEYERIMHOFF, AND SNODGRASS

Figure 6. Transition rates of vertices v2 and v5 of a complete graph with 6 vertices
under the curvature flow

2.4. Wedge sums of complete graphs. Let G1 = (V1, E1) and G2 = (V2, E2) be two combina-
torial graphs and x1 ∈ V1 and x2 ∈ V2. By merging the vertices x1 and x2 into one new vertex x
which inherits the incident edges of both vertices x1 and x2, we obtain a new combinatorial graph,
which we denote the wedge sum of G1 and G2. In this subsection, we consider flow limits of wedge
sums of complete graphs. The study of these graphs leads to an interesting dynamical aspect of
our curvature flow, namely that its limits concentrate on one the components of these wedge sums.

Example 2.9 (A wedge sum of a K4, K5, K2 and K3). We consider the curvature flow on the
wedge sum G = (V,E) of complete graphs presented in Figure 7 with random initial weighting
schemes P = P0. The adjacency matrix A of this graph is generated with our code in the following
way:

1 A1 = wedge_sum(complete (4), complete (5), 2, 1)

2 A2 = wedge_sum(A1, complete (2), 6, 0)

3 A = wedge_sum(A2 , complete (3), 8, 0)

Figure 7. A wedge sum of a K4, K5, K2 and a K3

Our experiments show that, depending on the initial weighting scheme P0, the curvature flow
converges to a limit that is concentrated in one of the complete graphs. More precisely, the limit
weighting scheme P∞ represents a simple random walk on one of the complete graphs while, from all
other vertices, there is a directed path of {0, 1} transition rates towards this particular complete
graph. Figures 8–10 show the numerical curvature flow limits of various random initial weighting
schemes. We carried out several runs of 100,000 numerical curvature flows with random initial
weighting schemes to describe the limit behavior of these flows quantitatively. The results are
presented in Table 2. While more than 80% of limits concentrate on the largest clique K5, it is
somewhat surprising that more limits concentrate on K3 than on the larger subgraph K4. Not a
single flow limit ended up concentrating on K2. The mean numerical convergence time is shortest
for K3, followed by K4 and K5 (with respect to limtolerance = 0.001). While most convergence times
are below 100, there were maximal numerical convergence times well above 500.

Figure 7. A wedge sum of a K4, K5, K2 and a K3.

16 CUSHING, KAMTUE, LIU, MÜNCH, PEYERIMHOFF, AND SNODGRASS

which inherits the incident edges of both vertices x1 and x2, we obtain a new combinatorial graph,
which we denote the wedge sum of G1 and G2. In this subsection, we consider flow limits of wedge
sums of complete graphs. The study of these graphs leads to an interesting dynamical aspect of
our curvature flow, namely that its limits concentrate on one the components of these wedge sums.

Example 2.9 (A wedge sum of a K4, K5, K2 and K3). We consider the curvature flow on the
wedge sum G = (V,E) of complete graphs presented in Figure 7 with random initial weighting
schemes P = P0. The adjacency matrix A of this graph is generated with our code in the following
way:

1 A1 = wedge_sum(complete (4), complete (5), 2, 1)

2 A2 = wedge_sum(A1, complete (2), 6, 0)

3 A = wedge_sum(A2 , complete (3), 8, 0)

Figure 7. A wedge sum of a K4, K5, K2 and a K3

P0 =




0 0.4 0.5 0.1 0 0 0 0 0 0 0

0.1 0 0.4 0.5 0 0 0 0 0 0 0

0.1 0.1 0 0.3 0.1 0.1 0.1 0.2 0 0 0
0.2 0.5 0.3 0 0 0 0 0 0 0 0

0 0 0.1 0 0 0.1 0.3 0.5 0 0 0

0 0 0.1 0 0.1 0 0.4 0.4 0 0 0
0 0 0.2 0 0.3 0.1 0 0.1 0.3 0 0

0 0 0.5 0 0.1 0.3 0.1 0 0 0 0

0 0 0 0 0 0 0.1 0 0 0.8 0.1
0 0 0 0 0 0 0 0 0.5 0 0.5

0 0 0 0 0 0 0 0 0.7 0.3 0




Figure 8. Initial weighting scheme (left) and numerical flow limit a simple random
walk on K3 (right)

Figure 8. Initial weighting scheme (left) and numerical flow limit a simple random walk on K3 (right).



Axioms 2023, 12, 577 16 of 34

CURVATURE SHARPNESS AND FLOW IN WEIGHTED GRAPHS – THEORY 17

P0 =




0 0.3 0.3 0.4 0 0 0 0 0 0 0

0.1 0 0.4 0.5 0 0 0 0 0 0 0

0.3 0.2 0 0.1 0.1 0.1 0.1 0.1 0 0 0
0.4 0.4 0.2 0 0 0 0 0 0 0 0

0 0 0.3 0 0 0.1 0.1 0.5 0 0 0

0 0 0.2 0 0.2 0 0.5 0.1 0 0 0
0 0 0.4 0 0.1 0.1 0 0.3 0.1 0 0

0 0 0.7 0 0.1 0.1 0.1 0 0 0 0

0 0 0 0 0 0 0.5 0 0 0.4 0.1
0 0 0 0 0 0 0 0 0.4 0 0.6

0 0 0 0 0 0 0 0 0.1 0.9 0




Figure 9. Initial weighting scheme (left) and numerical flow limit a simple random
walk on K4 (right)

P0 =




0 0.2 0.2 0.6 0 0 0 0 0 0 0
0.2 0 0.3 0.5 0 0 0 0 0 0 0

0.1 0.1 0 0.2 0.1 0.1 0.2 0.2 0 0 0

0.3 0.3 0.4 0 0 0 0 0 0 0 0
0 0 0.1 0 0 0.2 0.3 0.4 0 0 0

0 0 0.2 0 0.4 0 0.2 0.2 0 0 0

0 0 0.3 0 0.2 0.1 0 0.2 0.2 0 0
0 0 0.5 0 0.1 0.3 0.1 0 0 0 0

0 0 0 0 0 0 0.6 0 0 0.2 0.2

0 0 0 0 0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 0 0 0.3 0.7 0




Figure 10. Initial weighting scheme (left) and numerical flow limit a simple random
walk on K5 (right)
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Table 2. Statistics of flow limit concentrations on the complete subgraphs K4, K5, K2 and K3 of their
wedge sum, together with mean convergence times.

K4 K5 K2 K3

concentration of flow limits 8.7% 80.5% 0% 10.8%
mean convergence time 18.9 24.7 – 17.7

The limit behavior described in the above example seems to be common for many
wedge sums of complete graphs. It is, however, not always true that flow limits concentrate
on just one of the constituents of a wedge sum. A path of length ≥ 2 can be viewed as
a wedge sum of consecutive K2’s, and we have seen in Section 2.2 that flow limits will
concentrate on more than only one of these K2’s (see left-hand side of Figure 4). Another
special case of a wedge sum is a dumbbell which is our next example.

Example 5 (A symmetric weighted dumbbell). The weighted graph (G, P0) in this example is
a wedge sum of a K5, K2 and another K5, together with a simple random walk as initial weighting
scheme (see line 4 in the code). This situation can be set up by the following code:
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Our experiments show that, depending on the initial weighting scheme P0, the curvature flow
converges to a limit which is concentrated in one of the complete graphs. More precisely, the limit
weighting scheme P∞ represents a simple random walk on one of the complete graphs while, from
all other vertices, there is a directed path of {0, 1} transition rates towards this particular complete
graph. Figures 8, 9 and 10 show the numerical curvature flow limits of various random initial
weighting schemes. We carried out several runs of 100000 numerical curvature flows with random
initial weighting schemes to describe the limit behaviour of these flows quantitatively. The results
are presented in Table 2. While more than 80% of limits concentrate on the largest clique K5, it is
somewhat surprising that more limits concentrate on K3 than on the larger subgraph K4. Not a
single flow limit ended up concentrating on K2. The mean numerical convergence time is shortest
for K3, followed by K4 and K5 (with respect to limtolerance = 0.001). While most convergence times
are below 100, there were maximal numerical convergence times well above 500.

K4 K5 K2 K3

concentration of flow limits 8.7% 80.5% 0% 10.8%
mean convergence time 18.9 24.7 – 17.7

Table 2. Statistics of flow limit concentrations on the complete subgraphs
K4,K5,K2 and K3 of their wedge sum, together with mean convergence times

The limit behaviour described in the above example seems to be common for many wedge sums
of complete graphs. It is, however, not always true that flow limits concentrate on just one of the
constituents of a wedge sum. A path of length ≥ 2 can be viewed as a wedge sum of consecutive
K2’s, and we have seen in Subsection 2.2 that flow limits will concentrate on more than only one
of these K2’s (see left hand side of Figure 4). Another special case of a wedge sum is a dumbbell
which is our next example.

Example 2.10 (A symmetric weighted dumbbell). The weighted graph (G,P0) in this example is
a wedge sum of a K5, K2 and another K5, together with a simple random walk as initial weighting
scheme (see line 4 in the code). This situation can be set up by the following code:

1 A1 = complete (5)

2 A2 = complete (5)

3 A = bridge_at(A1 ,A2 ,0,0)

4 P_0 = srw(A)

The numerical convergence time is 79 and the limit of the numerical curvature flow concentrates
on the “bridge” K2 between the two K5’s, as illustrated in Figure 11. (To obtain the flow limit
illustrated at the right hand side of this figure, users should choose limtolerance = 0.0001.)
This limit could have been predicted assuming that the initial weighted graph symmetry across
the “bridge” is preserved under the curvature flow and that the limit concentrates on only one of
the complete graphs K5,K2,K5. If instead of the simple random walk, a random initial weighting
scheme would have been chosen on the dumbbell G, the limit would have usually concentrated on
one of the two K5’s.

The numerical convergence time is 79 and the limit of the numerical curvature flow concentrates
on the “bridge” K2 between the two K5’s, as illustrated in Figure 11. (To obtain the flow limit
illustrated at the right-hand side of this figure, users should choose limtolerance = 0.0001.)

Figure 11. Curvature flow of a dumbbell as a wedge sum of a K5, K2 and another K5 with simple
random walk initial weighting scheme P0 (left-hand side) and numerical flow limit concentrated on
K2 (right-hand side).

This limit could have been predicted assuming that the initial weighted graph symmetry across
the “bridge” is preserved under the curvature flow and that the limit concentrates on only one of
the complete graphs K5, K2, K5. If instead of the simple random walk, a random initial weighting
scheme would have been chosen on the dumbbell G, the limit would have usually concentrated on
one of the two K5’s.

2.5. Cartesian Products of Complete Graphs

It is tempting to assume that simple random walks are always the preferred curvature
flow limits in relation to complete graphs. However, this is not always the case as the
following example shows. Namely, we have the following result for Cartesian products of
complete graphs:

Theorem 3. Let G be the Cartesian product of two complete graphs Kn+1 and Km+1 with the
non-lazy simple random walk P as the initial weighting scheme. Then, the curvature flow P(t)
converges to a limit as t→ ∞ with limit transition rates

a∞ =
m + 3

2nm + 3n + 3m
,

b∞ =
n + 3

2nm + 3n + 3m
,

where a∞ are the transition rates along edges between (x, x′) and (y, x′) with x, y ∈ Kn+1, x ∼ y
and x′ ∈ Km+1 (“horizontal edges”), and b∞ are the transition rates along edges between (x, x′)
and (x, y′) with x ∈ Kn+1 and x′, y′ ∈ Km+1, x′ ∼ y′ (“vertical edges”).
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Proof. By symmetry of the configuration, we have only two types a(t) and b(t) of transi-
tion rates for the curvature flow at time t ≥ 0 (for horizontal and vertical edges, respec-
tively) with

a(0) = b(0) =
1

n + m
and

na(t) + mb(t) = 1,

due to the Markovian property. This implies that b(t) = 1−na(t)
m and b′(t) = −−na′(t)

m ,
and we only need to consider an ordinary differential equation for a with initial condition
a(0) = 1

n+m . We can also assume without loss of generality that n ≤ m. We derive from the
explicit description (9) of the curvature flow that

a′(t) =

a(t)
(
−4a(t)− 2(n− 1)a(t) + 4(na2(t) + mb2(t)) + n(n− 1)a2(t) + m(m− 1)b2(t)

)

+ (n− 1)a2(t) = n(n + 3)a3(t) + m(m + 3)a(t)
(

1− na(t)
m

)2

− (n + 3)a2(t) =

a(t)
(

n
(

2n + 3 +
3n
m

)
a2(t)−

(
3n + 3 +

6n
m

)
a(t) + 1 +

3
m

)
. (10)

If this differential equation converges as t→ ∞, its limit a∞ must satisfy

a∞ ∈
{

0,
1
n

,
m + 3

2nm + 3n + 3m

}
,

that is

(a∞, b∞) ∈
{(

0,
1
m

)
,
(

1
n

, 0
)

,
(

m + 3
2nm + 3n + 3m

,
n + 3

2nm + 3n + 3m

)}
,

with

b∞ = lim
t→∞

b(t) = lim
t→∞

1− na(t)
m

=
1− na∞

m
.

Our assumption n ≤ m implies that we have

1
n + m

≤ m + 3
2nm + 3n + 3m

<
1
n

and that the right hand side of (10) is strictly positive for a(t) in the interval
[

1
n + m

,
m + 3

2nm + 3n + 3m

)
,

zero at a(t) = m+3
2nm+3n+3m , and strictly negative for a(t) on the interval

(
m + 3

2nm + 3n + 3m
,

1
n

)
.

These monotonicity properties force the function a(t) to converge to the limit a∞ =
m+3

2nm+3n+3m .

Example 6 (Flow limit of K3 × K4 with simple random walk). The following code computes
the numerical flow limit for K3 × K4 with the simple random walk as initial weighting scheme.
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the curvature flow that

(10) a′(t) =

a(t)
(
−4a(t)− 2(n− 1)a(t) + 4(na2(t) +mb2(t)) + n(n− 1)a2(t) +m(m− 1)b2(t)

)

+ (n− 1)a2(t) =

n(n+ 3)a3(t) +m(m+ 3)a(t)

(
1− na(t)

m

)2

− (n+ 3)a2(t) =

a(t)

(
n

(
2n+ 3 +

3n

m

)
a2(t)−

(
3n+ 3 +

6n

m

)
a(t) + 1 +

3

m

)
.

If this differential equation converges as t→∞, its limit a∞ must satisfy

a∞ ∈
{

0,
1

n
,

m+ 3

2nm+ 3n+ 3m

}
,

that is

(a∞, b∞) ∈
{(

0,
1

m

)
,

(
1

n
, 0

)
,

(
m+ 3

2nm+ 3n+ 3m
,

n+ 3

2nm+ 3n+ 3m

)}
,

with

b∞ = lim
t→∞

b(t) = lim
t→∞

1− na(t)

m
=

1− na∞
m

.

Our assumption n ≤ m implies that we have

1

n+m
≤ m+ 3

2nm+ 3n+ 3m
<

1

n

and that the right hand side of (10) is strictly positive for (at) in the interval
[

1

n+m
,

m+ 3

2nm+ 3n+ 3m

)
,

zero at a(t) = m+3
2nm+3n+3m , and strictly negative for a(t) on the interval

(
m+ 3

2nm+ 3n+ 3m
,

1

n

)
.

These monotonicity properties force the function a(t) to converge to the limit a∞ = m+3
2nm+3n+3m . �

Example 2.12 (Flow limit of K3 ×K4 with simple random walk). The following code computes
the numerical flow limit for K3 ×K4 with the simple random walk as initial weigthing scheme.

1 n,m = 2,3

2 A = cart_prod(complete(n+1),complete(m+1))

3 P = srw(A)

4 limit = norm_curv_flow_lim(A, P)[0]

5 display_weighted_graph(A, P, "Initial weighting scheme of K3 x K4")

6 display_weighted_graph(A, limit , title="Curvature flow limit")

The initial transition rates are all equal to 1/5 = 0.2, and the transition rates of the numerical
limit are 0.22 · · · ≈ 2/9 and 0.19 · · · ≈ 5/27, as predicted by the above theorem.

The initial transition rates are all equal to 1/5 = 0.2, and the transition rates of the
numerical limit are 0.22 · · · ≈ 2/9 and 0.19 · · · ≈ 5/27, as predicted by the above theorem.

2.6. Totally Degenerate Flow Limits

As mentioned before, many curvature limits are totally degenerate. Therefore, it is
worth investigating the properties of those particular limits.

Example 7 (The octahedron with a totally degenerate flow limit). Let G = (V, E) with
V = {v0, . . . , v5} be the unmixed graph representing the octahedron, as illustrated in Figure 12
(left hand side). While the simple random walk without laziness is a stationary solution of the
normalized curvature flow, any small perturbation of this initial weighting scheme leads to another
curvature sharp limit, which is totally degenerate. For example, the initial weighting scheme

P0 =




0 0.26 0 0.24 0.25 0.25
0.25 0 0.25 0 0.25 0.25

0 0.25 0 0.25 0.25 0.25
0.25 0 0.25 0 0.25 0.25
0.25 0.25 0.25 0.25 0 0
0.25 0.25 0.25 0.25 0 0




(11)

converges to the totally degenerate limit illustrated in Figure 12 (right-hand side) under the
numerical curvature flow.

The following considerations show that the limit in Example 7 is essentially the only totally
degenerate curvature sharp weighting scheme without two-sided degenerate edges for the octahedron
(see Proposition 3 below). We start with a general unmixed combinatorial graph G = (V, E)
without isolated vertices. A totally degenerate weighting scheme P assigns to each edge {x, y} ∈ E
either a direction (x → y if pxy > 0 and y → x if pyx > 0, illustrated by a red dashed line with
an arrow) or the edge is two-sided degenerate (that is pxy = pyx = 0, illustrated by a black dotted
line). A first observation is that none of the vertices x ∈ V can be a sink: the Markovian property
requires that at least one edge incident to x must be outward directed. The following lemma presents
a useful property of triangles.

Figure 12. Left-hand side: An octahedron with vertices v0, . . . , v5. Right-hand side: A numerical flow
limit of the octahedron with a small perturbation of simple random walk as initial weighing scheme.
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Lemma 1. Let (G, P) be a totally degenerate curvature sharp Markovian weighted graph without
laziness. Then, the directions of a triangle T = {x, y, z} ⊂ V without two-sided degenerate
edges cannot be oriented, that is, its edges cannot have the orientations x → y → z → x or
x → z→ y→ x.

Proof. Assume that a totally degenerate curvature sharp Markovian weighting scheme
without laziness contains a triangle T = {x, y, z} with pxz, pzy, pyx > 0, that is, we have an
orientation x → z → y → x. This means, in particular, that pxy = 0. We can read off the
flow equation (9) that curvature sharpness of a totally degenerate Markovian weighting
scheme means

pxy(−2 ∑
y′ 6=y

pyy′ + ∑
y′ ,y′′

pxy′ py′y′′) + ∑
y′ 6=y

pxy′ py′y = 0. (12)

Since we have pxy = 0, this means

0 ≤ pxz pzy ≤ ∑
y′ 6=y

pxy′ py′y = 0,

in contradiction to pxz, pzy > 0. The orientation x → y → z → x can be ruled out
similarly.

The main tool in the proof of the following proposition can be found in [38] (Exercise
25.14). Assume a tessellation of the two-dimensional sphere carries an orientation along all
its edges. For every vertex v of the tessellation, let ind(v) = 1− c(v)/2, where c(v) is the
number of changes in the orientation of edges adjacent to v (in cyclic order). For a face f ,
let ind( f ) = 1− c( f )/2, where c( f ) is the number of changes in the orientation (clockwise
vs. anti-clockwise) of edges of f . Then, we have

∑
v

ind(v) + ∑
f

ind( f ) = 2.

Proposition 3. Let G = (V, E) be the octahedron, as illustrated in Figure 12 (left-hand side).
Then, G has essentially only one totally degenerate non-lazy curvature sharp Markovian weighting
scheme without two-sided degenerate edges, namely, we have (up to a permutation of the vertices
corresponding to a graph automorphism)

pv0,v1 = pv1,v2 = pv2,v3 = pv3,v0 = 1

and

pv4,v0 = pv4,v1 = pv4,v2 = pv4,v3 = 1/4, pv5,v0 = pv5,v1 = pv5,v2 = pv5,v3 = 1/4.

Proof. We can think of the octahedron as a tessellation of the sphere by eight triangles,
all of them not oriented, by Lemma 1. This means that ind( f ) = 0 for all faces of the
octahedron. Therefore, we must have

∑
v

ind(v) = 2,

that is, at least two vertices of the octahedron must have ind(v) = 1, which means that
each of them must be a source or a sink. The Markovian property rules out sinks, and two
sources cannot be adjacent (otherwise they would be connected by a non-degenerate edge).
Therefore, the octahedron must have two sources at distance 2, which we denote by v4, v5.
Their edges are all directed towards a cycle of length 4. The directions of the edges in
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this cycle must be directed, for otherwise there would be a sink in this cycle, which is not
possible. We denote this oriented cycle by v0 → v1 → v2 → v3 → v0, and we must have

p01 = p12 = p2,3 = p3,0 = 1,

where we used the notation pij = pvi ,vj for simplicity. Applying formula (12) to (x, y) =
(v4, v0) yields

p40(−2(p01 + p03) +
3

∑
i=0

p4i) + p41 p10 + p43 p30 = p40(−2 + 1) + p43 = 0,

that is p40 = p43. Similarly, we can show that all transition rates p4i must coincide and,
therefore, p40 = p41 = p42 = p43 = 1/4. The same arguments apply to the vertex v5,
finishing the proof of the proposition.

Conjecture 4 (Flow limits of the octahedron). The normalized curvature flow on the octahedron
for any non-degenerate initial weighting scheme without laziness different from the simple random
walk always converges to a limit described in Proposition 3.

3. Asymptotically Stable and Unstable Curvature Sharp Markovian Weighting Schemes

Our curvature flow can be viewed as a continuous dynamical system with its limits as
equilibrium states. This leads naturally to stability questions at these equilibria, which is the
concern of this section. Further information about the relevance and the background theory
of stability theory for dynamical systems can be found, for example, in [39] (Chapter 9).

Since every curvature sharp Markovian weighting scheme on a given combinatorial
graph is a stationary solution of the normalized curvature flow, the question arises whether
such a stationary solution Ps is asymptotically stable, that is, whether any closeby Markovian
weigthing scheme P converges back to this equilibrium Ps as t→ ∞. This can be decided
via the linearization of the curvature flow equations around such an equilibrium. In the
next subsection, we will describe this linearization in full detail before we consider various
examples in the following subsection.

3.1. Linearization of the Curvature Flow Equations at Equilibria

Let Ps be a curvature sharp Markovian weighting scheme of a finite simple mixed
combinatorial graph G = (V, E). We consider Markovian weighting schemes P near Ps with
the same laziness, that is, pxx = ps

xx for all x ∈ V. Let Edir = {(x, y) ∈ V ×V : d(x, y) = 1}.
The linearization of F at the equilibrium Ps of the normalized curvature flow is given for
each component function Fxy, (x, y) ∈ Edir, by

DFxy(Ps)(quv)(u,v)∈Edir) =

−4ps

yx − 2 ∑
y′ 6=y

ps
yy′ +

4
Dx

∑
y′

ps
xy′ p

s
y′x +

1
Dx

∑
y′ ,y′′

ps
xy′ p

s
y′y′′ − ps

yy


qxy

+ ps
xy


−4qyx − 2 ∑

y′ 6=y
qyy′ +

4
Dx

∑
y′

(
ps

xy′qy′x + ps
y′xqxy′

)
+

1
Dx

∑
y′ ,y′′

(
ps

xy′qy′y′′ + ps
y′y′′qxy′

)



= ∑
y′∈S1(x)

Bxy(xy′)qxy′ + ∑
y′∈S1(x)

∑
z∈B1(x)

Bxy(y′z)qy′z.
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Here, y′, y′′ are vertices in S1(x) and the potentially non-zero B-coefficients are given by

Bxy(xy) = −4ps
yx − ps

yy − 2 ∑
y′ 6=y

ps
yy′

+
1

Dx


4ps

xy ps
yx + 4 ∑

y′
ps

xy′ p
s
y′x + ps

xy ∑
y′

ps
yy′ + ∑

y′ ,y′′
ps

xy′ p
s
y′y′′


, (13)

Bxy(xy′) =
4

Dx
ps

xy ps
y′x +

1
Dx

ps
xy ∑

y′′
ps

y′y′′ + ps
y′y if y′ 6= y, (14)

Bxy(yx) = 4ps
xy

(
1

Dx
ps

xy − 1
)

, (15)

Bxy(y′x) =
4

Dx
ps

xy ps
xy′ if y′ 6= y, (16)

Bxy(yy′) = ps
xy

(
1

Dx
ps

xy − 2
)

if y′ 6= y, (17)

Bxy(y′y) = ps
xy′

(
1

Dx
ps

xy + 1
)

if y′ 6= y, (18)

Bxy(y′y′′) =
1

Dx
ps

xy ps
xy′ if y′ 6= y and y′′ 6= y, y′. (19)

All other B-coefficients are chosen to be zero. Note, however, that the transition probabilities
(pxy)y∈S1(x) are not independent, and therefore, the choice of the B-coefficients is not unique,
as explained in the following remark.

Remark 1. Since we have ∑v∈S1(u) quv = 0 for all u ∈ V, there is a degree of freedom in the choice
of the B-coefficients. For example, in the case that G is an unmixed complete graph, we can replace
Bxy(u, v) by B′xy(u, v) = Cu + Bxy(u, v) with arbitrary constants Cu. This allows us to modify
the B-coefficients Bxy(yy′) and Bxy(y′y′′) in (17) and (19) to vanish, and we can use instead

DFxy(Ps)((quv)(u,v)∈Edir) = ∑
y′ 6=x

B′xy(xy′)qxy′ + ∑
y′ 6=x

B′xy(y
′x)qy′x + ∑

y′ 6=x,y
B′xy(y

′y)qy′y

with
B′xy(xy) = −4ps

yx − ps
yy − 2 ∑

y′ 6=y
ps

yy′

+
1

Dx


4ps

xy ps
yx + 4 ∑

y′
ps

xy′ p
s
y′x + ps

xy ∑
y′

ps
yy′ + ∑

y′ ,y′′
ps

xy′ p
s
y′y′′


,

B′xy(xy′) =
4

Dx
ps

xy ps
y′x +

1
Dx

ps
xy ∑

y′′
ps

y′y′′ + ps
y′y if y′ 6= x, y,

B′xy(yx) = ps
xy

(
3

Dx
ps

xy − 2
)

,

B′xy(y
′x) =

3
Dx

ps
xy ps

xy′ if y′ 6= x, y,

B′xy(y
′y) = ps

xy′ if y′ 6= x, y.

Note that in the case of the unmixed complete graph, we have S1(x) = V \ {x} and, in the formulas
for the B′-coefficients, y′y′′ represent all vertices different from x, as before.

To end up with a uniquely defined Jacobi matrix of F, we need to restrict transi-
tion probabilities that are independent. For that, we introduce the subset Eess ⊂ Edir

of “essential” transition probabilities by removing, for each x ∈ V with outgoing di-
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rected edges, that is S1(x) 6= ∅, one pair (x, y) from Edir. The cardinality of Eess is
M := |E1| + 2|E2| − |V0|, where V0 ⊂ V is the subset of vertices x ∈ V for which we
have S1(x) 6= ∅. Any choice (puv)(u,v)∈Eess determines then a weighting scheme P by
setting puv = Du − ∑v′∈S1(u)\{v} puv′ for the directed edge (u, v) 6∈ Eess. Similarly, any
choice (quv)(u,v)∈Eess also determines the parameters quv with (u, v) 6∈ Eess by setting
quv = −∑v′∈S1(u)\{v} quv′ . Then, DF((ps

uv)(u,v)∈Eess) is a square matrix of size M, and the
weighting scheme Ps corresponding to (ps

uv)(u,v)∈Eess is asymptotically stable if and only if the
real parts of all eigenvalues of this square matrix are negative, and the weighting scheme
Ps is unstable if and only if at least one of the real parts of these eigenvalues is positive.

Let us reformulate this restriction in terms of matrix multiplications. We start by
enumerating the vertices of the graph G = (V, E): V = {v0, . . . , vN}. We also introduce
the following enumeration on the directed edges in Edir: Let 1 = j0 and aj0 , . . . , ak0 be
the edges of the type (v0, ∗) (where second vertices are chosen with increasing indices) in
Edir, j1 = k0 + 1 and aj1 , . . . , ak1 be the edges of the type (v1, ∗) in Edir, and so on. For all
vertices vl ∈ V with S1(vl) = ∅, we set jl = kl−1 + 1 and kl = kl−1. We remove the edges
ak0 , ak1 , . . . , akN from Edir to obtain Eess. For simplicity, we use the notation ps

j and qj for ps
aj

and qaj , and we can write for all aj ∈ Eess,

DFaj((ps
k)ak∈Eess)((qk)ak∈Eess) =

N

∑
l=0

kl

∑
k=jl

Baj(ak)qk =
N

∑
l=0

kl−1

∑
k=jl

(Baj(ak)− Baj(akl
))qk,

where the last expression involves only parameters qk corresponding to essential directed
edges ak ∈ Eess. Consequently, the Jacobi matrix DF((ps

k)ak∈Eess)((qk)ak∈Eess) can be writ-
ten as

DF((ps
k)ak∈Eess) = P1BP2 (20)

where B is the square matrix of size kN with Bjk = Baj(ak) for aj, ak ∈ Edir, P1 is obtained
from the identity matrix IkN by removing the rows k0, k1, . . . , kN , and P2 = P>1 − P3 with P3
a kN ×M matrix whose first k0 − 1 columns are all the standard basis vector ek0 , the next
k1 − j1 columns are all the standard basis vector ek1 , and so on.

3.2. Examples of Asymptotically Stable and Unstable Equilibria

In this subsection, we investigate curvature sharp weighting schemes of various
examples of unmixed combinatorial graphs.

Example 8 (Curvature sharp weighting schemes on a cycle). Let CN = (V, E) be a cycle
of length N ≥ 4, that is, V = {v0, v1, . . . , vN−1} and vi ∼ vi+1 with indices i modulo N.
For simplicity, we refer to vertex vi henceforth as i. We assume Ps to be a non-lazy curvature sharp
weighting scheme on CN , and we remove the directed edges (i, i + 1) ∈ Edir to obtain Eess, and the
only coefficients Baj(ak) with aj ∈ Eess and ak ∈ Edir, which may be potentially non-zero are
(see (13)–(16)),

Bi,i−1(i, i− 1) = −4ps
i,i−1 + 8ps

i,i−1 ps
i−1,i + 4ps

i,i+1 ps
i+1,i,

Bi,i−1(i, i + 1) = 4ps
i,i−1 ps

i+1,i,

Bi,i−1(i− 1, i) = 4(ps
i,i−1)

2 − 4ps
i,i−1,

Bi,i−1(i + 1, i) = 4ps
i,i−1 ps

i,i+1.

This implies

DFi,i−1((ps
k)ak∈Eess)((qk)ak∈Eess)

= (Bi,i−1(i, i− 1)− Bi,i−1(i, i + 1))qi,i−1 + Bi,i−1(i + 1, i)qi+1,i − Bi,i−1(i− 1, i)qi−1,i−2

= 4((ps
i,i−1)

2 − ps
i,i−1)qi−1,i−2 + 4(−ps

i,i−1 + 2ps
i,i−1 ps

i−1,i + ps
i,i+1 ps

i+1,i − ps
i,i−1 ps

i+1,i)qi,i−1

+ 4ps
i,i−1 ps

i,i+1qi+1,i.
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In the case of the simple random walk ps
i,i−1 = ps

i,i+1 = 1/2, i ∈ {0, . . . , N − 1}, this simplifies to

DFi,i−1((ps
k)ak∈Eess)((qk)ak∈Eess) = qi−1,i−2 + qi+1,i,

and the corresponding matrix DF((ps
k)ak∈Eess) coincides with the adjacency matrix of CN whose

largest eigenvalue is 2. Therefore, the simple random walk on CN , N ≥ 4, is an unstable equilibrium.
This is in contrast to the simple random walk on C3 = K3, which is asymptotically stable, as we will
see in Example 10.

In the case of the totally degenerate clockwise weighting scheme pi,i−1 = 1 and pi,i+1 = 0 (see
right-hand side of Figure 4), we have

DFi,i−1((ps
k)ak∈Eess)((qk)ak∈Eess) = −4qi,i−1,

that is, DF((ps
k)ak∈Eess) = −4IdN , and this curvature sharp Markovian weighting scheme is

asymptotically stable. This agrees with the fact that many initial weighting schemes end up in
this limit under the curvature flow. The same holds true for the corresponding totally degenerate
anti-clockwise weighting scheme with pi,i+1 = 1 and pi,i−1 = 0.

Example 9 (Flow limits of the octahedron). We know from Example 7 that stationary solutions
of the normalized curvature flow on the octahedron are the simple random walk without laziness as
well as the totally degenerate weighting scheme given as matrix Ps in the following code (see also
the right-hand side of Figure 12). The linearization DF(Ps) is analyzed in line 10 of the program,
and the functionequilibrium_type with the parameters chosen in lines 6 and 7 returns one of the
values −1, 0, 1 (corresponding to “asymptotically stable”, ”undecided”, “unstable”, respectively),
followed by a list of its eigenvalues. That is, after execution of line 10, result[0] is one of the
values −1, 0, 1 and result[1] is a list of the 18 eigenvalues λj of DF(Ps).
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This implies

DFi,i−1((psk)ak∈Eess)((qk)ak∈Eess)

= (Bi,i−1(i, i− 1)−Bi,i−1(i, i+ 1))qi,i−1 +Bi,i−1(i+ 1, i)qi+1,i −Bi,i−1(i− 1, i)qi−1,i−2

= 4((psi,i−1)
2−psi,i−1)qi−1,i−2+4(−psi,i−1+2psi,i−1p

s
i−1,i+p

s
i,i+1p

s
i+1,i−psi,i−1psi+1,i)qi,i−1+4psi,i−1p

s
i,i+1qi+1,i.

In the case of the simple random walk psi,i1 = psi,i+1 = 1/2, i ∈ {0, . . . , N − 1}, this simplifies to

DFi,i−1((psk)ak∈Eess)((qk)ak∈Eess) = qi−1,i−2 + qi+1,i,

and the corresponding matrix DF ((psk)ak∈Eess) coincides with the adjacency matrix of CN whose
largest eigenvalue is 2. Therefore the simple random walk on CN , N ≥ 4, is an unstable equilibrium.
This is in contrast to the simple random walk on C3 = K3, which is asymptotically stable, as we
will see in Example 3.4.
In the case of the totally degenerate clockwise weighting scheme pi,i−1 = 1 and pi,i+1 = 0 (see right
hand side of Figure 4), we have

DFi,i−1((psk)ak∈Eess)((qk)ak∈Eess) = −4qi,i−1,

that is, DF ((psk)ak∈Eess) = −4IdN , and this curvature sharp Markovian weigthing scheme is asymp-
totically stable. This agrees with the fact that many initial weighting schemes end up in this limit
under the curvature flow. The same holds true for the corresponding totally degenerate anti-
clockwise weighting scheme with pi,i+1 = 1 and pi,i−1 = 0.

Example 3.3 (Flow limits of the octahedron). We know from Example 2.13 that stationary so-
lutions of the normalized curvature flow on the octahedron are the simple random walk without
laziness as well as the totally degenerate weighting scheme given as matrix P s in the following code
(see also the right hand side of Figure 12). The linearization DF (P s) is analyzed in line 10 of the
program, and the function equilibrium_type with the parameters chosen in lines 6 and 7 returns
one of the values −1, 0, 1 (corresponding to “asymtotically stable”, ”undecided”, “unstable”, re-
spectively), following by a list of its eigenvalues. That is, after execution of line 10, result[0] is
one of the values −1, 0, 1 and result[1] is a list of the 18 eigenvalues λj of DF (P s).

1 A = [[0,1,0,1,1,1],[1,0,1,0,1,1],[0,1,0,1,1,1],

2 [1,0,1,0,1,1],[1,1,1,1,0,0],[1,1,1,1,0,0]]

3 # Ps = srw(A)

4 Ps = [[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],

5 [1 ,0 ,0 ,0 ,0 ,0] ,[1/4 ,1/4 ,1/4 ,1/4 ,0 ,0] ,[1/4 ,1/4 ,1/4 ,1/4 ,0 ,0]]

6 eigenvalues = True

7 jacobi_matrix = False

8 threshold = 0.001

9 norm_tolerance = 0.001

10 result = equilibrium_type(A,Ps,eigenvalues ,jacobi_matrix ,norm_tolerance ,threshold)

11 print("Flow dynamics eigenvalues:")

12 for j in range (18):

13 print(np.around(result [1][j],3))

The program provides us with the following list of complex eigenvalues:

λj −1 −1 + i −1− i −2 −2 + i −2− i −3 −4
multiplicity 2 2 2 2 2 2 2 4

This shows that the totally degenerate curvature sharp weighting scheme P s on the octahedron is
asymptotically stable. This is expected since the initial weighting scheme P0 in (11) of Example
2.13 converges to this limit under the normalized numerical curvature flow.

The program provides us with the following list of complex eigenvalues:

λj −1 −1 + i −1− i −2 −2 + i −2− i −3 −4

multiplicity 2 2 2 2 2 2 2 4

This shows that the totally degenerate curvature sharp weighting scheme Ps on the octahedron
is asymptotically stable. This is expected since the initial weighting scheme P0 in (11) of Example 7
converges to this limit under the normalized numerical curvature flow.

Running the same code for the simple random walk without laziness instead (by uncommenting
line 3 and commenting out lines 4 and 5 in the above code) shows that this second curvature sharp
weighting scheme is unstable. The eigenvalues, in this case, are all real-valued, one of them 0.5,
and given as follows:

λj 0.5 0 −0.75 −1 −1.5

multiplicity 3 3 2 6 4
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Example 10 (Simple random walk on a complete graph). Let Kn+1 = (V, E) be the complete
unmixed graph with n + 1 ≥ 3 vertices. Instead of the B-coefficients, we make use of the B′-
coefficients introduced in Remark 1. The simple random walk pxy = 1

n for x 6= y is a curvature
sharp Markovian weighting scheme, and the non-zero B′-coefficients are then given by

B′xy(xy) =
(n + 1)(3− n)

n2 , B′xy(xy′) =
2n + 3

n2 , B′xy(yx) =
3− 2n

n2 , B′xy(y
′x) =

3
n2 , B′xy(y

′y) =
1
n

,

where y′ ∈ V is an arbitrary vertex different from x, y. Let {v0, v1, . . . , vn} be the vertex set of
Kn+1 and, as in the previous example, we refer to vertex vi as i, for simplicity.

Let us now consider the case n = 2. The process of removing edges from Edir described earlier
leads to the following remaining edges in Eess:

a1 = (0, 1), a3 = (1, 0), a5 = (2, 0).

Choosing the simple random walk ps
01 = ps

10 = ps
20 = 1/2, we have

DF(ps
01, ps

10, ps
20) =




e>1
e>3
e>5


B′

(
e1 − e2 e3 − e4 e5 − e6

)

=




B′01(01)− B′01(02) B′01(10)− B′01(12) B′01(20)− B′01(21)
B′10(01)− B′10(02) B′10(10)− B′10(12) B′10(20)− B′10(21)
B′20(01)− B′20(02) B′20(10)− B′20(12) B′20(20)− B′20(21)


 =



−1 1

4
1
4

1
4 −1 1

4
1
4

1
4 −1


, (21)

which is a negative definite matrix with eigenvalues − 1
2 , − 5

4 , − 5
4 , showing that the simple random

walk on K3 is an asymptotically stable equilibrium. This result can be numerically verified via the
following code:
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Running the same code for the simple random walk without laziness instead (by uncommenting
line 3 and commenting out lines 4 and 5 in the above code) shows that this second curvature sharp
weighting scheme is unstable. The eigenvalues in this case are all real valued, one of them 0.5, and
given as follows:

λj 0.5 0 −0.75 −1 −1.5
multiplicity 3 3 2 6 4

Example 3.4 (Simple random walk on a complete graph). Let Kn+1 = (V,E) be the complete
unmixed graph with n + 1 ≥ 3 vertices. Instead of the B-coefficients, we make use of the B′-
coefficients introduced in Remark 3.1. The simple random walk pxy = 1

n for x 6= y is a curvature
sharp Markovian weighting scheme, and the non-zero B′-coefficients are then given by

B′xy(xy) =
(n+ 1)(3− n)

n2
, B′xy(xy′) =

2n+ 3

n2
, B′xy(yx) =

3− 2n

n2
, B′xy(y′x) =

3

n2
, B′xy(y′y) =

1

n
,

where y′ ∈ V is an arbitrary vertex different from x, y. Let {v0, v1, . . . , vn} be the vertex set of
Kn+1 and, as in the previous example, we refer to vertex vi as i, for simplicity.
Let us now consider the case n = 2. The process of removing edges from Edir described earlier
leads to the following remaining edges in Eess:

a1 = (0, 1), a3 = (1, 0), a5 = (2, 0).

Choosing the simple random walk ps01 = ps10 = ps20 = 1/2, we have

(21) DF (ps01, p
s
10, p

s
20) =



e>1
e>3
e>5


B′

(
e1 − e2 e3 − e4 e5 − e6

)

=



B′01(01)−B′01(02) B′01(10)−B′01(12) B′01(20)−B′01(21)
B′10(01)−B′10(02) B′10(10)−B′10(12) B′10(20)−B′10(21)
B′20(01)−B′20(02) B′20(10)−B′20(12) B′20(20)−B′20(21)


 =



−1 1

4
1
4

1
4 −1 1

4
1
4

1
4 −1


 ,

which is a negative definite matrix with eigenvalues −1
2 , −5

4 , −5
4 , showing that the simple random

walk on K3 is an asymptotically stable equilibrium. This result can be numerically verified via the
following code:

1 n = 2

2 A = complete(n+1)

3 P = srw(A)

4 result = equilibrium_type(A, P, True , True)

5 print()

6 print("Eigenvalues:")

7 print(np.around(result [1], 3))

8 print()

9 print("Linearised flow matrix at equilibrium:")

10 print(np.around(result [2], 3))

The program returns the eigenvalues of the linearized flow matrix of K3 at the simple random
walk. Note however that the computed matrix is based here on the B-coefficients instead of the
B′-coefficients, so this matrix is slightly different from the one given above, while the eigenvalues
are the same.
In the case n = 3, we have ps01 = ps02 = ps10 = ps12 = ps20 = ps21 = ps30 = ps31 = 1/3 and the returned
matrix by the program (after changing n=2 into n=3 in line 1 of the code) is as follows:

The program returns the eigenvalues of the linearized flow matrix of K3 at the simple random
walk. Note, however, that the computed matrix is based here on the B-coefficients instead of the
B′-coefficients, so this matrix is slightly different from the one given above, while the eigenvalues are
the same.

In the case n = 3, we have ps
01 = ps

02 = ps
10 = ps

12 = ps
20 = ps

21 = ps
30 = ps

31 = 1/3 and
the returned matrix by the program (after changing n=2 into n=3 in line 1 of the code) is as follows:

DF(ps
01, ps

02, ps
10, ps

12, ps
20, ps

21, ps
30, ps

31) =




−1 0 −1/3 0 1/3 1/3 1/3 1/3
0 −1 1/3 1/3 −1/3 0 0 −1/3
−1/3 0 −1 0 1/3 1/3 1/3 1/3
1/3 1/3 0 −1 0 −1/3 −1/3 0

0 −1/3 1/3 1/3 −1 0 0 −1/3
1/3 1/3 0 −1/3 0 −1 −1/3 0
1/3 1/3 0 −1/3 0 −1/3 −1 0

0 −1/3 1/3 1/3 −1/3 0 0 −1




.

Its eigenvalues are − 2
3 with multiplicity 6 and −2 with multiplicity 2. This shows that the simple

random walk on K4 is again an asymptotically stable equilibrium.
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Since numerical experiments show that all non-degenerate Markovian weighting
schemes without laziness on Kn+1 converge to the simple random walk, we expect that
the simple random walk on Kn+1 is an asymptotically stable equilibrium for all n ≥ 2 (see
also our Conjecture 3, which is an even stronger statement). To this end, our code provides
the following numerical results: The eigenvalues of DF(Ps) for the simple random walk
without laziness on the complete graph Kn+1 are real-valued and given by:

• − 7
16 with multiplicity 4, − 3

4 with multiplicity 6, and − 7
4 with multiplicity 5 for n = 4;

• − 8
25 with multiplicity 5,− 4

5 with multiplicity 10, and − 8
5 with multiplicity 9 for n = 5;

• − 1
4 with multiplicity 6, − 5

6 with multiplicity 15, and− 3
2 with multiplicity 14 for n = 6;

• − 10
49 with multiplicity 7, − 6

7 with multiplicity 21, and − 10
7 with multiplicity 20 for

n = 7.

These results give rise to the following conjecture:

Conjecture 5. The non-lazy simple random walk Ps on the unmixed complete graph Kn+1, n ≥ 2,
is asymptotically stable and the eigenvalues of DF(Ps) are given by

−n− 1
n

with multiplicity
(

n
2

)
,

−n + 3
n2 with multiplicity n,

−n + 3
n

with multiplicity
(

n
2

)
− 1.

As n→ ∞, we have − n−1
n → −1, − n+3

n2 ≈ − 1
n → 0 and − n+3

n → −1.

Example 11 (Simple random walks on hypercubes). We know from [1] (Corollary 1.14) that
the simple random walk without laziness on a hypercube Qd = (K2)

d is curvature sharp, and it is
the only non-degenerate curvature sharp weighting schemes without laziness if and only if d is odd.
For d = 2, a non-degenerate curvature sharp weighting scheme on Q2 different from the simple
random walk is given in line 4 of the following code:
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DF (ps01, p
s
02, p

s
10, p

s
12, p

s
20, p

s
21, p

s
30, p

s
31) =




−1 0 −1/3 0 1/3 1/3 1/3 1/3
0 −1 1/3 1/3 −1/3 0 0 −1/3
−1/3 0 −1 0 1/3 1/3 1/3 1/3
1/3 1/3 0 −1 0 −1/3 −1/3 0
0 −1/3 1/3 1/3 −1 0 0 −1/3

1/3 1/3 0 −1/3 0 −1 −1/3 0
1/3 1/3 0 −1/3 0 −1/3 −1 0
0 −1/3 1/3 1/3 −1/3 0 0 −1




.

Its eigenvalues are −2
3 with multiplicity 6 and −2 with multiplicity 2. This shows that the simple

random walk on K4 is again an asymptotically stable equilibrium.

Since numerical experiments show that all non-degenerate Markovian weighting schemes without
laziness on Kn+1 converge to the simple random walk, we expect that the simple random walk on
Kn+1 is an asymptotically stable equilibrium for all n ≥ 2 (see also our Conjecture 2.8, which an
is even stronger statement). To this end, our code provides the following numerical results: The
eigenvalues of DF (P s) for the simple random walk without laziness on the complete graph Kn+1

are real valued and given by

• − 7
16 with multiplicity 4, −3

4 with multiplicity 6, and −7
4 with multiplicity 5 for n = 4,

• − 8
25 with multiplicity 5, −4

5 with multiplicity 10, and −8
5 with multiplicity 9 for n = 5,

• −1
4 with multiplicity 6, −5

6 with multiplicity 15, and −3
2 with multiplicity 14 for n = 6, and

• −10
49 with multiplicity 7, −6

7 with multiplicity 21, and −10
7 with multiplicity 20 for n = 7.

These results give rise to the following conjecture:

Conjecture 3.5. The non-lazy simple random walk P s on the unmixed complete graph Kn+1,
n ≥ 2, is asymptotically stable and the eigenvalues of DF (P s) are given by

−n− 1

n
with multiplicity

(
n

2

)
,

−n+ 3

n2
with multiplicity n,

−n+ 3

n
with multiplicity

(
n

2

)
− 1.

As n→∞, we have −n−1
n → −1, −n+3

n2 ≈ − 1
n → 0 and −n+3

n → −1.

Example 3.6 (Simple random walks on hypercubes). We know from [CKL+22b, Corollary 1.14]
that the simple random walk without laziness on a hypercube Qd = (K2)

d is curvature sharp, and
it is the only non-degenerate curvature sharp weigthing schemes without laziness if and only if d
is odd. For d = 2, a non-degenerate curvature sharp weigthing scheme on Q2 different from the
simple random walk is given in line 4 of the following code:

1 A = hypercube (2)

2 p = rand()

3 q = 1-p

4 P = [[0,p,q,0],[p,0,0,q],[p,0,0,q],[0,p,q,0]]

5 result = equilibrium_type(A,P,True)

6 print("flow dynamics eigenvalues:", result [1])

All eigenvalues λj of the corresponding linearized flow matrix provided by this code via line 6
seem to be real. Two of them are numerically zero and the other two are given by ±λ with a non-zero
real λ. So this equilibrium is unstable.

Our experiments for arbitrary weighting schemes on Qd, d ≥ 2, close to the simple random
walk show that the numerical flow converges usually to a degenerate limit. This agrees with
our observation that the linearized flow matrix at the simple random walk always seems to have
real eigenvalues with some of them being positive. These eigenvalues can be obtained via the
following code:
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All eigenvalues λj of the corresponding linearized flow matrix provided by this code via line 6 seem
to be real. Two of them are numerically zero and the other two are given by ±λ with a non-zero
real λ. So this equilibrium is unstable.
Our experiments for arbitrary weighting schemes on Qd, d ≥ 2, close to the simple random walk
show that the numerical flow converges usually to a degenerate limit. This agrees with our ob-
servation that the linearized flow matrix at the simple random walk seems always to have real
eigenvalues with some of them being positive. These eigenvalues can be obtained via the following
code:

1 d = 3

2 A = hypercube(d)

3 P = srw(A)

4 result = equilibrium_type(A,P,True)

5 print("Flow dynamics eigenvalues at the simple random walk:")

6 for j in range((d-1) *(2**d)):

7 print(np.around(result [1][j],4))

Let us finish this section with a conjecture which we verified numerically for d = 2, 3, . . . , 9:

Conjecture 3.7. The non-lazy simple random walk P s on the hypercube Qd, d ≥ 2, is unstable
and the eigenvalues of the corresponding linearized curvature flow matrix are all real with the
largest eigenvalue λmax equals

λmax =
4

d
.

4. Conclusion and Open Questions

In Section 2 we investigated curvature flows of various concrete examples. Our findings and possible
directions of further research are as follows:

(a) Random graphs: We observed an edge density threshold for Erdös-Rényi graphs. For values
below this threshold, the flow usually converges to a totally degenerate limit, while for values
above this threshold, the flow limit concentrates on a non-degenerate cluster (see Conjecture
2.3). Further research could encompass curvature flows of random regular graphs with
simple random walks as their initial weighting schemes.

(b) Paths and cycles: Our observed limits for these graphs are usually directed graphs with
isolated clusters of three vertices (see Figure 4 and Proposition 2.5).

(c) Complete graphs and their wedge sums and Cartesian products: In the case of complete
graphs, non-degenerate initial weighting schemes seem to converge always to simple ran-
dom walks (see Conjecture 2.8). In wedge sums of complete graphs, curvature flow limits
concentrate usually totally on one of its components, which is mostly the largest compo-
nent (see Table 2). This observation might motivate further research on largest clusters of
general highly connected graphs. We also describe the flow limit of Cartesian products of
complete graphs with the simple random walk as its initial weighting scheme (see Theorem
2.11). A natural question here is the limit behaviour of Cartesian products of graphs with
curvature sharp initial weighting schemes.

(d) Octahedron: In the case of the octahedron, there is a unique totally degenerate flow limit (up
to symmetries), which has two sources and a directed 4-cycle (see Figure 12 and Proposition
2.15). The shape of totally degenerate flow limits for general graphs is obscure and would
benefit from further investigations.

As mentioned already in [CKL+22b], curvature flow limits are always curvature sharp. A rough
interpretation of curvature sharpness at a vertex is that its Ricci curvature is constant in all
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Let us finish this section with a conjecture that we verified numerically for d =
2, 3, . . . , 9:

Conjecture 6. The non-lazy simple random walk Ps on the hypercube Qd, d ≥ 2, is unstable and
the eigenvalues of the corresponding linearized curvature flow matrix are all real with the largest
eigenvalue λmax equals

λmax =
4
d

.

4. Conclusions and Open Questions

In Section 2, we investigated curvature flows of various concrete examples. Our
findings and possible directions for further research are as follows:

(a) Random graphs: We observed an edge density threshold for Erdös-Rényi graphs.
For values below this threshold, the flow usually converges to a totally degenerate
limit, while for values above this threshold, the flow limit concentrates on a non-
degenerate cluster (see Conjecture 2). Further research could encompass curvature
flows of random regular graphs with simple random walks as their initial weight-
ing schemes.

(b) Paths and cycles: Our observed limits for these graphs are usually directed graphs with
isolated clusters of three vertices (see Figure 4 and Proposition 1).

(c) Complete graphs and their wedge sums and Cartesian products: In the case of complete
graphs, non-degenerate initial weighting schemes seem to converge always to simple
random walks (see Conjecture 3). In wedge sums of complete graphs, curvature flow
limits usually concentrate totally on one of its components, which is most often the
largest component (see Table 2). This observation might motivate further research on
the largest clusters of general highly connected graphs. We also describe the flow limit
of Cartesian products of complete graphs with the simple random walk as its initial
weighting scheme (see Theorem 3). A natural question here is the limit behavior of
Cartesian products of graphs with curvature sharp initial weighting schemes.

(d) Octahedron: In the case of the octahedron, there is a unique totally degenerate flow
limit (up to symmetries), which has two sources and a directed 4-cycle (see Figure 12
and Proposition 3). The shape of totally degenerate flow limits for general graphs is
obscure and would benefit from further investigations.

As mentioned already in [1], curvature flow limits are always curvature sharp. A rough
interpretation of curvature sharpness at a vertex is that its Ricci curvature is constant in all
directions (see [1] Equation (8)). Section 3 was concerned with a dynamical aspect of these
curvature flow limits, namely their stability properties. Our findings are the following:

(e) Cycles: Simple random walks on cycles Cn for n ≥ 4 are unstable, and totally degener-
ate directed weighting schemes are asymptotically stable (see Example 8).

(f) Complete graphs: We have strong numerical evidence that simple random walks on
complete graphs Kn are asymptotically stable (numerically verified for n = 3, . . . , 8);
see Example 10. Moreover, our numerics provide explicit information about all
eigenvalues of the linearized curvature flow as stated in Conjecture 5.

(g) Hypercubes: Simple random walks of hypercubes Qd for d ≥ 2 seem to be unstable and
our experiments give rise to a conjecture about the largest eigenvalue of the linearized
curvature flow (see Conjecture 6).

(h) Octahedron: The totally degenerate flow limit of the octahedron is asymptotically stable
(see Example 9).

(i) Edge-transitive graphs: In view of (e), (f), and (g), an interesting research direction
would be to investigate the stability of the simple random walk for general edge-
transitive graphs.

Let us end this section with some final reflections: After having introduced a discrete
curvature flow based on the Bakry–Émery calculus in [1], the main concern of this paper
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was to gain further insights into this flow from a dynamical viewpoint using a specially
developed Python software. The most pressing and still open question is whether our
curvature flow is always convergent as time tends to infinity (see Conjecture 1), or whether
other limiting behavior may occur such as periodic orbits. Moreover, this could be just
the starting point of various further questions, for example, whether every curvature flow
allows for asymptotically stable limits—a natural technique here might be to use particular
Lyapunov functions (see, e.g., [39] (Section 9.3)). The dynamical viewpoint also gives rise
to other questions such as the existence of heteroclinic orbits between equilibria. All these
questions may lead to further research in the future.

5. Implementation of the Curvature Flow and Useful Tools

This section provides a short description of a program, written in Python, which allows
users to carry out their own curvature flow experiments. This program is provided as
an ancillary file of [2] or via github at https://github.com/georgestagg/graph-curvature-
server (accessed on 6 June 2023) and can be used in combination with the “Graph Curvature
Calculator”, which can be freely accessed at http://www.mas.ncl.ac.uk/graph-curvature
(accessed on 6 June 2023) .

The Graph Curvature Calculator is a powerful but easy-to-use interactive Web tool to
draw graphs and to compute various types of curvatures such as Bakry–Émery curvature
on its vertices or Ollivier Ricci curvature on its edges (for details see [40]). This Web tool
allows users to obtain the adjacency matrix of the graph under consideration, which can
then be used as input for the curvature flow code.

The curvature flow code provides functions and routines, which can be divided into
six categories:

1. Functions related to graphs and their adjacency matrices;
2. Functions related to weighting schemes;
3. Functions testing combinatorial and weighted graphs;
4. Curvature flow computation routines;
5. Curvature computation routines;
6. Display routines.

Each category is discussed in one of the following subsections.

5.1. Functions Related to Graphs and Their Adjacency Matrices

Recall that the topology of a given Markov chain (G, P) is contained in the combinato-
rial graph G = (V, E). This information is provided by the adjacency matrix A = AG of
the graph. Firstly, we go through some useful functions performing operations with these
adjacency matrices. Every graph generated by one of the functions below is returned as
such an adjacency matrix; in particular, as a NumPy array. The names of these functions
are as follows:

• rand_adj_mat(n, p, connected=False);
• complete(n);
• path(n);
• cycle(n);
• wedge_sum(A, B, i, j);
• bridge_at(A, B, i, j);
• hypercube(n);
• cart_prod(A, B);
• onespheres(A).

rand_adjmat(n, p) returns a random adjacency matrix with n vertices, where p is
the probability that an edge exists between any two vertices. Therefore, higher values of
p usually lead to better-connected graphs. Choosing connected=True instead guarantees
that the returned adjacency matrix provides a connected combinatorial graph.

https://github.com/georgestagg/graph-curvature-server
https://github.com/georgestagg/graph-curvature-server
http://www.mas.ncl.ac.uk/graph-curvature
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The functions complete(n), path(n) and cycle(n) return the adjacency matrix of a
complete graph with n vertices, a path of length n and a cycle of length n, respectively.

wedge_sum(A, B, i, j) produces an adjacency matrix of a graph that is the wedge
sum of two pointed graphs represented by the adjacency matrices A and B and the ith
vertex of A and the jth vertex of B, that is, the new graph is obtained from the disjoint union
of these two graphs by only identifying these two vertices and keeping all other edges and
vertices disjoint.

There is also bridge_at(A, B, i, j), which returns an adjacency matrix of the graph
formed by connecting the graphs represented by A and B by a single edge at the ith vertex
of A and the jth vertex of B.

The function hypercube(n) returns the adjacency matrix of the n-dimensional hyper-
cube.

The Cartesian product of two graphs represented by adjacency matrices A and B is
returned by the function cart_prod(A, B). (The n-dimensional hypercube can also be
alternatively generated as the Cartesian product of n complete graphs K2.)

Finally, for a graph G = (V, E) given by the adjacency matrix A and the vertex set
V = {0, 1, . . . , n− 1}, the function onespheres(A) returns a list of lists whose i-th entry is
a list of all neighbors of vertex i ∈ V, and whose n-th entry is a list of the combinatorial
degrees of the vertices in V. This function is mainly used in the execution of other functions.

5.2. Functions Related to Weighting Schemes

The weighting scheme of a Markov chain (G, P) is provided via the weighted matrix
P = PG. The functions in this category are the following:

• randomizer(A, threshold=0.001, laziness=False);
• srw(A, laziness=False);
• cart_prod_prob(P, Q, p, q).

randomizer(A) and srw(A) are two useful functions that can be used to give weighted
matrices from an adjacency matrix.

The function randomizer(A) returns a weighting scheme for the graph G with random,
numerically non-degenerate transition rates, that is, no transition rate is chosen to be below
the parameter threshold. Usually, the returned weighting schemes are without laziness,
but choosing laziness=True returns weighting schemes with all vertices having laziness
≥ threshold.

srw(A) returns the weighting scheme corresponding to the non-lazy simple ran-
dom walk on the graph G = (V, E) represented by the adjacency matrix A. Choosing
laziness=True, the transition rates of a vertex v ∈ V with degree n to its neighbors are
chosen to be 1

n+1 and its laziness is also chosen to be 1
n+1 .

The function cart_prod_prob(P, Q, p, q) is a “weighted” analog of the function
cart_prod from the previous subsection for the Cartesian product of two weighting
schemes P, Q with weights p, q, with p+ q = 1. If P and Q are of size n and m, respectively,
this function returns the matrix pP⊗ In + qIm ⊗ Q of size nm, where In is the identity matrix
of size n and A⊗ B is the Kronecker product of A and B.

5.3. Functions Testing Combinational and Weighted Graphs

For combinatorial graphs given by their adjacency matrices A and weighted graphs
given additionally by their weighting scheme P, we have the following test functions:

• is_connected(A);
• is_weakly_connected(A, threshold=0.001);
• is_totally_degenerate(A, P, threshold=0.001);
• is_markovian(P, norm_tolerance=0.001);
• is_curvature_sharp(A, P, norm_tolerance=0.001, threshold=0.001);
• equilibrium_type(A, P, eigenvalues=False, jacobi_matrix=False,

norm_tolerance=0.001, threshold=0.001).
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The function is_connected(A) returns True if and only if the adjacency matrix A
represents a connected graph.

The function is_weakly_connected(P) is a “weighted” analog, which returns True
if and only if the weighted matrix P represents a weakly connected graph. It does this
by forming an adjacency matrix with a 1 in the (i, j)th entry if and only if P[i, j] >
threshold or P[j, i] > threshold and then testing for connectedness.

Recall that a weighted graph (G, P) is called numerically totally degenerate if there are no two-
sided edges with numerical non-zero transition rates in both directions and no one-sided edges
with numerical non-zero transition rate, where we consider a transition rate pxy as numerically
non-zero if and only if pxy ≥ threshold. The function is_totally_degenerate(A,P) tests
this property.

The function is_markovian(P) tests whether the entries of each of the columns of P
add up numerically to 1 up to an error ≤ norm_tolerance.

Numerical curvature sharpness (up to an error ≤ threshold) of Markovian weighted
graphs given by (A,P) is tested by is_curvature_sharp(A,P). If (A,P) fails to be Marko-
vian (with respect to norm_tolerance), this function returns NONE and gives notice to the
user by an error message.

For dynamical investigations of curvature flow equilibria, we have the function
equilibrium_type(A,P), which always returns a list of length three. The function checks
first whether (A,P) satisfies the Markovian property and is numerically curvature sharp.
If this is not the case, it returns a list of three NONE values. Otherwise, the function inves-
tigates the real parts of the eigenvalues λj of the linearized curvature flow matrix at the
equilibrium P. The first entry of the return list is −1, 0 or 1 depending on the maximum
maxj Re(λj). If this maximum is ≥ threshold, the return value is 1 (for “unstable”) and
if this maximum is ≤ −threshold, the return value is −1 (for “asymptotically stable”).
Otherwise, the dynamical nature of the equilibrium cannot be numerically decided and the
function returns the value 0. The following two entries of the return list are usually NONE
unless the user made the choices eigenvalues=True or jacobi_matrix=True. In the first
case, the second entry of the return list is a list of all eigenvalues of the linearized curvature
flow matrix, and in the second case the third entry of the return is the linearized curvature
flow matrix itself.

5.4. Curvature Flow Computation Routines

At the heart of the program are the curvature flow routines solving the initial value
ordinary differential Equations (6) and (7). The relevant routines are the following:

• curv_flow(A, P, t_max, dt=0.3, C=zeroes),
• norm_curv_flow(A, P, t_max, dt=0.3, stoch_corr=True, norm_tolerance=0.001),
• norm_curv_flow_lim(A, P, dt=0.3, stoch_corr=True, norm_tolerance=0.001,

lim_tolerance=0.001, t_lim=10000).

The initial Markov chain (G, P0) with G = (V, E) is entered by the adjacency matrix A
describing the topology of the graph G and the weighting scheme P containing the initial
probability transitions pxy(0).

The first routine curv_flow(A,P) computes the non-normalized numerical curvature
flow with coefficients Cx(t) = 0 in (7). If users decide to choose other coefficient functions,
they need to modify the input parameter C=zeroes. Note that zeroes(A,P) is a function
returning simply a list of zeroes of length |V|. Users can investigate modifications of the
curvature flow by choosing their own coefficient functions with input values (A,P) and
returning a list of length |V| of real values. Using the discretization parameter dt=0.3 for
the discrete time steps starting at t=0, the curvature flow routine creates a list P_list of
weighting schemes (represented by NumPy arrays of size |V| × |V|) at each time increment
using the Runge–Kutta algorithms RK4. There are two internal subroutines involved,
which we would like to mention briefly. Pvecs_to_P translates a weighting scheme given
by a list of lists (where each inner list contains the transition rates of the corresponding
vertex) into the corresponding NumPy array. Pvecs_prime computes, for a given weighting
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scheme P, the right-hand side of the ordinary differential equations describing the curvature
flow. The representation of this right-hand side is again a list of lists, as described before.
The computation stops just before the discrete time steps exceed the limit time t_max and
the routine returns P_list. Note that in this general setting, transition rates can assume
arbitrary values and even negative ones or diverge to infinity in finite time which may lead
to system error messages. Users need to be aware of this possibility.

The normalized curvature flow, using the coefficients Cx(t) = Kd(x,·)
P(t),∞(x) (see (8)), is nu-

merically computed by the routine norm_curv_flow(A,P). This special flow is the main fo-
cus of this paper and could also be mimicked by choosing C=K_inf in curv_flow. The func-
tion K_inf(A,P) returns a list of upper curvature bounds for all vertices of the Markovian
weighted graph represented by (A,P) (see [1] (Formula (66)) for an explicit expression of
this function in terms of transition rates). During the numerical computations of subsequent
time steps, the Markovian property of the corresponding weighting schemes may be slightly
violated. If this violation exceeds the threshold norm_tolerance, the routine prepares for a
potential correction according to the Boolean variable stoch_corr. If stoch_corr=False,
the program stops with a message to the user as discussed in Example 1. Otherwise, the
program carries out the following automatic Markovian renormalization of the currently
considered weighting scheme: while the diagonal entries (the laziness values) are un-
changed, the off-diagonal entries in each row are rescaled by a suitable factor to guarantee
that the resulting matrix becomes stochastic again. As before, this routine returns a list
P_list of consecutive weighting schemes up to the time limit t_max.

While the user needs to specify the time limit t_max in the above two routines, the third
routine norm_curv_flow_lim(A,P) continues computing the normalized numerical curva-
ture flow until a numerical flow limit is reached. This limit is determined by the parameter
lim_tolerance. The details for this numerical limit are explained in the introductory part
of Section 2. This routine returns a list of length two: the limiting weighting scheme as
a NumPy array followed by the numerical convergence time. Since it may happen that
a normalized numerical flow does not converge at all (even though we are not aware of
any such example), the parameter t_lim provides an upper time limit beyond which the
routine will not continue. The parameters stoch_corr and norm_tolerance play the same
role as in the routine norm_curv_flow.

5.5. Curvature Computation Routines

The functions in this section calculate Bakry–Émery curvatures and curvature upper
bounds of graphs with given weighting schemes at all vertices.

• curvatures(A, P, N=inf, onesps=[], q=None);
• calc_curvatures(A, P_list, N=inf, k=1);
• K_inf(A, P);
• calc_curv_upper_bound(A, P_list, N=inf, k=1).

The routine curvatures(A,P) computes, for a weighted graph (G, P) with G = (V, E)
and represented by (A,P), the curvatures of all vertices for dimension N = ∞ and returns
them as a list of length |V|. If users are interested in curvatures for other dimensions,
they need to change the parameter N=inf. There are two other inputs that can speed up
the curvature calculations: if the number q of vertices in V is given, it can be specified to
avoid its repeated recalculation, for example, during a curvature flow process. Similarly, if
onespheres(A) has already been calculated earlier, this information can be communicated
to the routine via the input variable onesps.

After a curvature flow computation with corresponding list P_list of consecutive
weighting schemes, the routine calc_curvatures(A,P_list) computes the corresponding
evolution of vertex curvatures by calling curvatures(A,P_list[j]) and returns it as a
list of lists. Here, the j-th inner list contains the curvature evolution of the j-th vertex of
the graph G = (V, E) represented by A. The dimension parameter N=inf plays the same
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role as before. calc_curvatures computes curvatures only of each k-th weighting scheme
provided by P_list. Where appropriate, this can help to reduce computation time.

The routine K_inf(A,P) was already discussed in the previous subsection and pro-
vides a list of upper curvature bounds for all vertices of the weighted graph (G, P) repre-
sented by (A,P).

calc_curv_upper_bound is completely analogous to calc_curvatures, but it calls
K_inf instead of curvatures.

5.6. Display Routines

The main display routines for users are the evolution of curvatures at various vertices
during the curvature flow, the evolution of transition rates of edges emanating from
vertices, and the display of individual weighted graphs with vertices arranged in a circle.
The relevant routines are the following:

• display_curvatures(curv, dt=0.3, is_Markovian=True, N=inf, k=1,
curv_bound=[], vertex_list=[]);

• display_trans_rates(A, P_list, dt=0.3, vertex_list=[]);
• display_weighted_graph(A, P, title=None, threshold=10**(-3),

display_options=[10, True, 2, []], laziness=False).

Given the evolution of vertex curvatures during a curvature flow process via a list of lists,
where the j-th inner list is the curvature evolution of the j-th vertex, display_curvatures(curv)
displays the curvature evolution for each consecutive vertex separately, as illustated, for
example, in Figure 3. If this information should be only given for specific vertices, this can
be specified by the input parameter vertex_list. The time step dt=0.3 and the value of k
together determine the labeling of the horizontal time axis. For the role of k, we refer read-
ers to our explanation about the routine calc_curvatures. Upper curvature bounds can
be inserted into the displays by the input parameter curv_bound, which needs to be given
in the same format as the vertex curvatures. Constant lower and upper curvature bounds
−1 and 2 are plotted alongside if the Boolean is_Markovian is chosen to be True and if the
dimension parameter N is ≥ 2. These bounds appear, for example, in the illustrations given
in Figure 3.

Given the evolution of weighting schemes during a curvature flow process on a graph with
adjacency matrix A by a list P_list of NumPy arrays, display_trans_rates(A,P_list)dis-
plays the evolution of transition rates of emanating edges for each consecutive vertex sepa-
rately, as illustrated, for example, in Figure 2. The input parameters dt and vertex_list
play the same role as in the previous routine.

Finally, there is the routine display_graph(A,P) with input parameters A and P repre-
senting a weighted graph (G, P). This routine produces a MatPlotLib plot of this weighted
graph, with the vertices arranged counter-clockwise in a circle. The plot uses the following
convention to illustrate different types of edges:

• Green, solid lines represent numerically non-degenerate edges, that is {x, y} ∈ E with
both pxy, pyx ≥ threshold;

• Red, dashed lines with an arrow represent numerically degenerate edges, that is,
{x, y} ∈ E with exactly one of pxy and pyx strictly less than threshold;

• Black, dotted lines represent edges with numerically vanishing transition rates in both
directions, that is {x, y} ∈ E with both pxy, pyx strictly less than threshold.

Users can add a title to the display by specifying the input parameter title. For Marko-
vian weighted graphs with non-vanishing laziness, the option laziness=True labels each
vertex with its corresponding laziness.

The input parameter display_options of the display_graph routine remains to be
discussed. This parameter is a list of four entries. The first entry determines the size of
the plot. Usually, the transition rates are printed above the edges, but if the second entry
is chosen to be False, this information about the transition rates is omitted. Otherwise,
the transition rates are given to a number of decimal places determined by the third entry.
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The default positions of these transition rates are 1
6 of the way along the edges, with the

number closest to the vertex x in the edge (x, y) being pxy, but this can be altered manually
to avoid overlapping by specification in the fourth entry of display_options. For example,
if one wishes the p45 label to be moved to a position 1

4 of the way from vertex 4 to vertex
5 and the p62 label to be moved to a position 1

5 of the way from vertex 6 to vertex 2, this
fourth entry should be chosen to be [[4, 5, 1/4, 1/6], [6, 2, 1/5, 1/6]].

This completes the description of the functions and routines in the accompanying
Python program to this article.
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