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Abstract: In this paper, we present and justify a methodology to solve the Monge–Kantorovich mass
transfer problem through Haar multiresolution analysis and wavelet transform with the advantage
of requiring a reduced number of operations to carry out. The methodology has the following steps.
We apply wavelet analysis on a discretization of the cost function level j and obtain four components
comprising one corresponding to a low-pass filter plus three from a high-pass filter. We obtain the
solution corresponding to the low-pass component in level j− 1 denoted by µ∗j−1, and using the
information of the high-pass filter components, we get a solution in level j denoted by µ̂j. Finally, we
make a local refinement of µ̂j and obtain the final solution µσ

j .
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1. Introduction

In recent years, schemes to approximate infinite linear programs have become very
important in theory. The authors of [1] showed that under suitable assumptions, the pro-
gram’s optimum value can be approximated by the values of finite-dimensional linear
programs and that every accumulation point of a sequence of optimal solutions for the
approximating programs is an optimal solution for the original problem. In particular, in [2]
the authors studied the Monge–Kantorovich mass transfer (MT) problem on metric spaces.
They considered conditions under the MT problem as solvable and, furthermore, that
an optimal solution can be obtained as the weak limit of a sequence of optimal solutions to
suitably approximate MT problems.

Moreover, in [3], the authors presented a numerical approximation for the value of
the mass transfer (MT) problem on compact metric spaces. A sequence of transportation
problems was built, and it proved that the value of the MT problem is a limit of the
optimal values of these problems. Moreover, they gave an error bound for the numerical
approximation. A generalization of this scheme of approximation was presented in [4,5].
They proposed an approximation scheme for the Monge–Kantorovich (MK) mass transfer
problem on compact spaces that consisted of reducing to solve a sequence of finite transport
problems. The method presented in that work uses a metaheuristic algorithm inspired by a
scatter search in order to reduce the dimensionality of each transport problem. Finally, they
provided some examples of that method.

On the other hand, the authors of [6] provided orthonormal bases for L2(Rn) that
have properties that are similar to those enjoyed by the classical Haar basis for L2(R).
For example, each basis consists of appropriate dilates and translates of a finite collection of
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“piecewise constant” functions. The construction is based on the notion of multiresolution
analysis and reveals an interesting connection between the theory of compactly supported
wavelet bases and the theory of self-similar tilings. Recent applications of the wavelet filter
methodology have been used in various problems arising in communication systems and
detection of thermal defects (see, for example, [7,8], respectively).

In [9], the authors gave a scheme to approximate the MK problem based on the
symmetries of the underlying spaces. They took a Haar-type MRA constructed according
to the geometry of the spaces. Thus, they applied the Haar-type MRA based on symmetries
to the MK problem and obtained a sequence-of-transport problem that approximates the
original MK problem for each MRA space. Note that in the case of Haar’s classical wavelet,
this methodology coincides with the methods presented in [2,3].

It is important to note that various scientific problems are modeled through the
Monge–Kantorovich approach; therefore, providing new efficient methodologies to find
approximations of such problems turns out to be very useful. Within the applications of
problems whose solutions are the Monge–Kantorovich problem are found: the use of the
transport problem for the analysis of elastic image registration (see, for example, [10–12]).
Other optimization problems related to this topic and differential equation tools can be
found in recent works such as [13,14].

The main goal of this paper is to present a scheme of approximation of the MK problem
based on wavelet analysis in which we use wavelet filters to split the original problem.
That is, we apply the filter to the discrete cost function in level j, which results in a cost
function of level j− 1 and three components of wavelet analysis. Using the information of
the cost function given by the low-pass filter, which belongs to level j− 1, we construct µ∗j−1
a solution of the MK problem for that level j− 1, and using the additional information, the
other three components of wavelet analysis are extended to µ̂j, which is a solution to level
j, where the projection of µ̂j to level j− 1 is µ∗j−1. Finally, we make a local analysis of the
solution µ̂j to obtain an improved solution based on the type of points of that solution (we
have two type of points that are defined in the base in the connectedness of the solution).

This work has three non-introductory sections. In the first of them we present the
Haar multiresolution analysis (MRA) in one and two dimensions. Next, we relate this to
the absolutely continuous measures over a compact in R2. We finish with the definition of
the Monge–Kantorovich mass transfer problem and its relation to the MRA.

In the second section, we define a proximity criterion for the components of the
support of the simple solutions of the MK problem and study in detail the problem of,
given a solution µ∗j−1 at level j− 1 of resolution for the MK problem, construct a feasible
solution µ̂j for the MK problem at level of resolution j such that it is a refinement of the
solution with lees resolution.

On the other hand, in the third section we present a methodological proposal to solve
the MKj problem such that it can be summarized in a simple algorithm of six steps:

Step 1. We consider a discretization of the cost function for the level j, denoted by cj.
Step 2. We apply the wavelet transform to cj; we obtain the low-pass component cj−1 and

three high-pass components, denoted by Ψ1, Ψ2 and Ψ3, respectively.
Step 3. Using cj−1 and the methodology of [3,4,9], we obtain a solution µ∗j−1 for MK j−1

associated with this cost function.
Step 4. We classify the points of the support of the solution µ∗j−1 by proximity criteria as

points of Type I or Type II.
Step 5. Using the solution µ∗j−1, the information of the high-pass components and Lemma 1,

we obtain a feasible solution for the level j, which is denoted by µ̂j. This feasible
solution has the property that its projection to the level j − 1 is equal to µ∗j−1;
moreover, the support of µ̂j is contained in the support of µ∗j−1.

Step 6. The classification of the points of µ∗j−1 induce classification of the points in µ̂j by
contention in the support. Over the points of Type I of the solution µ̂j, we do
not move those points. For the points of Type II, we apply a permutation to the
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solution over the two points that better improves the solution, and we repeat the
process with the rest of the points.

Finally, we present a series of examples that use the proposed methodology based on
wavelet analysis and compare their results with those obtained applying the methodology
of [3,4,9].

2. Preliminaries
2.1. One-Dimensional MRA

The results of this and the following subsection are well known, and for a detailed
exposition, we recommend consulting [15–17]. We begin by defining a general multiresolu-
tion analysis and developing the particular case of the Haar multiresolution analysis on
R. Given a > 0 and b ∈ R, the dilatation operator Da and the translation operator Tb are
defined by

(Da f )(x) = a1/2 f (ax) and (Tb f )(x) = f (x− b) (1)

for every f ∈ L2(R), where the latter denotes the usual Hilbert space of square integrable
real functions defined on R. A multiresolution analysis (MRA) on R is a sequence of
subspaces (Vj)j∈Z of L2(R) such that it satisfies the following properties:

(1) Vj ⊂ Vj+1 for every j ∈ Z.
(2) L2(R) = span

⋃
j∈Z

Vj.

(3)
⋂
j∈Z

Vj = {0}.

(4) Vj = D2j V0.
(5) There exists a function ϕ ∈ L2, called the scaling function, such that the collection

{Tj ϕ}j∈Z is an orthonormal system of translates and

V0 = span{Tj ϕ}i∈Z. (2)

We denote as χA the characteristic function of the set A. Then, the Haar scaling
function is defined by

ϕ(x) = χ[0,1)(x). (3)

For each pair j, k ∈ Z, we call

Ij,k = [2−jk, 2−j(k + 1)). (4)

Hence, we define the function

ϕj,k(x) = (TkD2j ϕ)(x)

= 2j/2 ϕ(2jx− k)

= 2j/2χIj,k (x).

(5)

The collection {ϕj,k}j,k∈Z is called the system of Haar scaling functions. For j0 ∈ Z,
the collection {ϕj0,k}k∈Z is referred to as the system of scale j0 Haar scaling functions.
The Haar function is defined by

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x). (6)

For each pair j, k ∈ Z, we define the function

ψj,k(x) = (TkD2j ψ)(x)

= 2j/2ψ(2jx− k)

= 2j/2(χIj+1,2k − χIj+1,2k+1

)
(x).

(7)
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The collection {ψj,k}j,k∈Z is referred to as the Haar system on R. For j0 ∈ Z, the col-
lection {ψj0,k}k∈Z is referred to as the system of scale j0 Haar functions. It is well known
that with respect to the usual inner product 〈·, ·〉 in L2(R), the Haar system on R is an
orthonormal system. Moreover, for each j0 ∈ Z, the collection of scale j0 Haar scaling
functions is an orthonormal system. Thus, for each j ∈ Z, the approximation operator Pj on
L2(R) is defined by

(Pj f )(x) = ∑
k
〈 f , ϕj,k〉ϕj,k(x), for all f ∈ L2(R), (8)

and the approximation space Vj by

Vj = span{ϕj,k}k∈Z. (9)

The collection {Vj}j∈Z is called Haar multiresolution analysis. Similarly, we have that
for each j0 ∈ Z, the detail operator Qj on L2(R) is defined by

(Qj f )(x) = (Pj+1 f )(x)− (Pj f )(x), for all f ∈ L2(R), (10)

and the wavelet space Wj by
Wj = span{ψj,k}k∈Z. (11)

Note that Vj+1 = Vj ⊕Wj for all j ∈ Z. Hence, the collection

{ϕj0,k, ψj,k : j ≥ j0, k ∈ Z} (12)

is a complete orthonormal system on R; this system is called the scale j0 Haar system on R.
As a consequence, the Haar system {ψj,k}j,k∈Z is a complete orthonormal system on R.

2.2. Two-Dimensional MRA

To obtain the Haar MRA on R2, we consider the Haar MRA on R defined in the
previous subsection with scaling and Haar functions ϕ and ψ, and from them, through a
tensor product approach we can construct a two-dimensional scaling and Haar function.
First, we define the four possible products:

Φ(x, y) = ϕ(x)ϕ(y), Ψ(1)(x, y) = ϕ(x)ψ(y)

Ψ(2)(x, y) = ψ(x)ϕ(y), Ψ(3)(x, y) = ψ(x)ψ(y),
(13)

which are the scaling function associated with the unitary square and three Haar functions,
respectively. Hence, for each j, k1, k2 ∈ Z, we define naturally the scaling and Haar function
systems:

Φj,k1,k2(x, y) = ϕj,k1(x)ϕ(y)j,k2 , Ψ(1)
j,k1,k2

(x, y) = ϕ(x)j,k1 ψ(y)j,k2

Ψ(2)
j,k1,k2

(x, y) = ψ(x)j,k1 ϕ(y)j,k2 , Ψ(3)
j,k1,k2

(x, y) = ψj,k1(x)ψ(y)j,k2 .
(14)

Then for j0 ∈ Z, as in the one-dimensional case, we have that the collection

{Φj0,k1,k2 : k1, k2 ∈ Z} ∪ {Ψ(i)
j,k1,k2

: 1 ≤ i ≤ 3, j ≥ j0} (15)

is an orthonormal basis on L2(R2). Thus, the collection

{Ψ(i)
j,k1,k2

: 1 ≤ i ≤ 3, j, k1, k2 ∈ Z} (16)
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is an orthonormal basis on L2(R2). Then for j ∈ Z and f ∈ L2(R2), the approximation
operator is defined by

(Pj f )(x, y) = ∑
k1

∑
k2

〈 f , Φj,k1,k2〉Φj,k1,k2(x, y), (17)

and for i = 1, 2, 3, the detail operators are

(Q(i)
j f )(x, y) = ∑

k1

∑
k2

〈 f , Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y). (18)

Hence, the projection can be written as

(Pj+1 f )(x, y) = (Pj f )(x, y) + (Q(1)
j f )(x, y) + (Q(2)

j f )(x, y) + (Q(3)
j f )(x, y). (19)

We will describe the approximation Pj and detail operators Q(i)
j from the geometric

point of view. First of all, we fix some j, k1, k2 ∈ Z and define the square

S(j, k1, k2) = Ij,k1 × Ij,k2

= [2−jk1, 2−j(k1 + 1))× [2−jk2, 2−j(k2 + 1)).
(20)

Then, we have that Φj,k1,k2 is the characteristic function of S(j, k1, k2), in symbols

Φj,k1,k2(x, y) = χS(x, y) (21)

where S = S(j, k1, k2). Therefore for f ∈ L2(R2), the operator Pj f acts as a discretization of
f that is constant over the disjointed S(j, k1, k2) squares. On the other hand, we can split
S(j, k1, k2) as follows (see Figure 1):

Figure 1. Functions Φj,k1,k2 , Ψ(1)
j,k1,k2

, Ψ(2)
j,k1,k2

and Ψ(3)
j,k1,k2

.

(i) Into two rectangles with half the height and the same width as S(j, k1, k2), namely, the
sets

A1(j, k1, k2) = [2−jk1, 2−j(k1 + 1))× [2−j−12k2, 2−j−1(2k2 + 1)) and

A2(j, k1, k2) = [2−jk1, 2−j(k1 + 1))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)).
(22)

(ii) Into two rectangles with the same height and half the width as S(j, k1, k2), namely,

B1(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−jk2, 2−j(k2 + 1)) and

B2(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−jk2, 2−j(k2 + 1)).
(23)
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(iii) Into four squares with half the side lengths of S(j, k1, k2), namely,

C1(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−j−12k2, 2−j−1(2k2 + 1)),

C2(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−j−12k2, 2−j−1(2k2 + 1)),

C3(j, k1, k2) = [2−j−12k1, 2−j−1(2k1 + 1))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)) and

C4(j, k1, k2) = [2−j−12k1 + 1, 2−j−1(2k1 + 2))× [2−j−12k2 + 1, 2−j−1(2k2 + 2)).

(24)

Hence, for i = 1, 2, 3, the function Ψ(i)
j,k1,k2

is defined by

Ψ(1)
j,k1,k2

(x, y) = χA1(x, y)− χA2(x, y) with Al = Al(j, k1, k2) for l = 1, 2.

Ψ(2)
j,k1,k2

(x, y) = χB1(x, y)− χB2(x, y) with Bl = Bl(j, k1, k2) for l = 1, 2.

Ψ(3)
j,k1,k2

(x, y) = χC1∪C4(x, y)− χC2∪C3(x, y) with Cl = Cl(j, k1, k2) for l = 1, 2, 3, 4.

(25)

(see Figure 1). Thus, the image of f ∈ L2(R2) under the detail operator Q(i)
j is a function

Q(i)
j f formed by pieces that oscillate symmetrically on each square S(j, k1, k2).

Now we have the elements to define an MRA on R2; to do this, we will use the notation
introduced for the one-dimensional MRA on R defined in the previous subsection. For each
j ∈ Z, we define

Vj = Vj ⊗Vj. (26)

Then the collection {Vj}j∈Z is the Haar multiresolution analysis on R2, where the
dilatation and translation operators are defined by

D2j = D2j ⊗ D2j and Tm,n = Tm ⊗ Tn, (27)

respectively. Note that we have the following relation:

Vj+1 = Vj ⊕W(1)
j ⊕W(2)

j ⊕W(3)
j , (28)

where W(1)
j = Vj ⊗Wj, W(2)

j = Wj ⊗ Vj and W(3)
j = Wj ⊗Wj. For more detail with

respect to the Haar MRA, see [15].

2.3. Measures and MRA

In this subsection, we will use the two previous ones and the [9] approach to relate
measures over R2 with the Haar MRA on R2. The results and definitions presented in this
and the following subsection can be found in the classical references [18,19]. We consider a
compact subset X of R2 and a measure µ such that it is absolutely continuous with respect
to the Lebesgue measure λ. We call

fµ =
dµ

dλ
(29)

the Radon–Nikodym derivative of µ with respect to λ. By construction, it necessary holds
that fµ ∈ L1(X). We additionally suppose that fµ ∈ L2(X). Then, as a consequence of the
Haar MRA on R2, we have that

‖Pj fµ − fµ‖2 → 0 as j→ ∞. (30)

Moreover, the compactness of X ensures that

‖Pj fµ − fµ‖1 ≤ λ(X)1/2‖Pj fµ − fµ‖2. (31)
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The above allow us to define µj, the approximation of the measure µ to the level j ∈ Z
of the Haar MRA on R2, as the measure induced by the projection of the Radon–Nikodym
to the level j. That is, µj is defined by the relation

dµj = Pj fµ dλ. (32)

We denote the expectation of a function g ∈ L(R2) with respect to λ as

E[g] =
∫
R2

gdλ. (33)

Then Theorem 4 and Corollary 5 in [9] ensure that for each g ∈ L2(R2) and j ∈ Z, it is
fulfilled that

E[Pjg] = E[g]. (34)

Thus, µj is absolutely continuous with respect to the Lebesgue measure. If, additionally,
we suppose that µ is a measure with support on X, then (µj) converges to µ in the L1 and
L2 sense. That is, by the Riesz Theorem, we can associate each of these measures µj to an
integrable function µ̂j ∈ PjL2(R2) such that for each Lebesgue measurable set A ⊂ R2,

µj(A) =
∫

A
µ̂jdλ

=
∫

µ̂jχAdλ

= E[µ̂jχA],

(35)

and we apply the respective convergence mode. Further, the compact support of measures
ensures that the sequence (µj) converges weakly to the measure µ, proof of which can be
found in [9] Theorem 7.

2.4. M-K Problem and MRA

In this subsection, we study the Monge–Kantorovich problem from the point of view
of the Haar MRA on R2 (for a detailed exposition, we recommend consulting [9]). Let
X and Y be two compact subsets of R2. We denote by M+(X × Y) the family of finite
measures on X×Y. Given µ ∈ M+(X×Y), we denote its marginal measures on X and Y
as

Π1µ(E1) = µ(E1 ×Y) (36)

and
Π2µ(E2) = µ(X× E2) (37)

for each µ-measurable set E1 ⊂ X and E2 ⊂ Y. Let c be a real function defined on X × Y,
and η1, η2 are two measures defined on X and Y, respectively. The Monge–Kantorovich
mass transfer problem is given as follows:

MK: minimize 〈µ, c〉 :=
∫

cdµ

subject to: Π1µ = η1, Π2µ = η2, µ ∈ M+(X×Y).
(38)

A measure µ ∈ M+(X × Y) is said to be a feasible solution for the MK problem if it
satisfies (38) and 〈µ, c〉 is finite. We said that the MK problem is solvable if there is a feasible
solution µ∗ that attains the optimal value for it. So µ∗ is called an optimal solution for (38).
If, additionally, we assume that µ, η1 and η2 are absolutely continuous with respect to the
Lebesgue measures on R2 and R, then in a natural way, we can discretize the MK problem
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through the Haar MRA on R2 as follows. For j ∈ Z, we define the MK problem of level j
by:

MKj: minimize 〈µj, c〉 :=
∫

cdµj

subject to: Π1µj = η1
j , Π2µj = η2

j , µ ∈ M+(X×Y).
(39)

where µj, η1
j and η2

j are the projections to level j of the measures µ, η1 and η2, respectively,
to the Haar MRA.

3. Technical Results

In this section, we present a series of results that ensure the good behavior of the
methodological proposal of the next section. In order to do this, we start by assuming
an MK problem with cost function c = c(x, y), base sets X = Y = [0, 1] and measure
restrictions η1 = η2 = λ|[0,1]. In other words, we consider the problem of moving a uniform
distribution to a uniform one with the minimum movement cost. Since in applications we
work with discretized problems, then as a result of applying the MRA on R2, we have that
our objective is to solve:

MKj: minimize ∑
i,k

µ
j
i,kcj

i,k

subject to: ∑
i

µ
j
i,k =

1
2j , for each k = 1, . . . , 2j.

∑
k

µ
j
i,k =

1
2j , for each i = 1, . . . , 2j.

∑
i,k

µ
j
i,k = 1.

µ
j
i,k ≥ 0, for each i, k = 1, . . . , 2j.

(40)

where µ
j
i,k is the portion of the initial value

1
2j in the position Ij,i of the x-axis allocated to

the position Ij,k of the y-axis. We call j-discrete unit square the grid formed by the squares
S(j, k1, k2) (see (20)), dividing the set [0, 1] × [0, 1] in 2j × 2j blocks, in a such way that
each one is identified with the point (k1, k2). We suppose that there is a simple solution µ
for (40). That is, µ is a feasible solution such that, given i0, k0 ∈ {1, . . . , 2j} with µi0,k0 6= 0, it
necessarily holds that µi0,k = 0 for each k 6= k0 and µi,k0 = 0 for each i 6= i0. Geometrically,
if the measure µ is plotted as a discrete heat map in the j-discrete unit square, then no color
element in the plot has another color element in its same row and column, as can be seen in
Figure 2.

Definition 1. We define a proximity criteria in the j-discrete unit square as follows: (i, k) is a
neighbor of (l, m) if

|i− l| = 1 or |k−m| = 1. (41)

In Figure 2, we plot the support of the hypothetical simple solution µ. Hence, the
neighbors of the position in the middle of the cross are those that touch the yellow stripes.
Then in this example, the middle point has four neighbors.



Axioms 2023, 12, 555 9 of 29

Figure 2. Support of µ and the proximity criteria.

With this in mind, we can classify the points in support(µ) as follows.

Definition 2. We say that (k1, k2) ∈ support(µ) is a border point if k1 or k2 equals 0 or 1;
otherwise, we call it an interior point. It is clear that a border point has at least one neighbor and at
most three, whereas an interior point has at least two neighbors and at most four. Hence, we can
partition support(µ) into two sets as follows.

The set of the points of Type I is given by

T1 = {(i, k) ∈ support(µ) | (i, k) has minimun neighbors}, (42)

and the set of the points of Type II is given by

T2 = support(µ) \ T1. (43)

Intuitively, the set T1 is composed of well-controlled points, whereas the set T2 has
the points that admit permutations between them, since, as we will see in the next section,
in the proposed algorithm they will be permuted. See Figures 3 and 4. Naturally, since µ
is a feasible solution for (40), then given elements (k1, k2), (m1, m2) ∈ support(µ) and for
i = 1, 2 permutations σi over {ki, mi}, the measure µσ defined by

µσ(a, b) = µ(σ1(a), σ2(b)) (44)

is a feasible solution.

Figure 3. Classification of the points in support(µ): Type I points.
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Figure 4. Classification of the points in support(µ): Type II points.

Refining Projections

In this subsection, we study the problem of improving an optimal solution µ∗j−1 for (40)
on level j− 1 ∈ Z to a feasible solution µ̂j for the next level j. Let µ∗j−1 be an optimal solution
for level j− 1. Then we are looking for µ̂j such that:

(1) µ̂j is a feasible solution.

(2) Pj−1µ̂j = µ∗j−1.
(45)

As described in the previous section, the measure µ̂j ∈ L2(R2) can be decomposed in

µ̂j = µ∗j−1 + ν1 + ν2 + ν3 (46)

where

νi(x, y) = (Q(i)
j µ̂j)(x, y)

= ∑
k1

∑
k2

〈µ̂j, Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y).
(47)

From the geometric point of view, the projections νi are formed from differences of
characteristic functions, as we mentioned in Section 2.2. So we have the following result:

Lemma 1. Let j ∈ Z and µ∗j−1 be an optimal solution for (40) at level j− 1. Then for each positive
measure µ̂j ∈ PjL2(R2) such that Pj−1µ̂j = µ∗j−1 and µ̂j = µ∗j−1 + ν1 + ν2 + ν3, it necessarily
holds that

µ∗j−1(A) = 0 implies νi(A) = 0 (48)

for each Lebesgue measurable set A ⊂ R2 and each i = 1, 2, 3. Therefore, the support of µ̂j is
contained in the support of µ∗j−1.

Proof. We only make the proof for the case i = 1, since the other two are very similar.
To simplify the notation, we use the symbols µ− and ν− as measures or functions in the
respective subspace of L2(R2). Since when setting a level j ∈ Z all the measures in question
are constant in pairs of rectangles dividing S(j, k1, k2), as we prove in Section 2.2, then it is
enough to prove that (65) is valid on this rectangles. Let

A1 = A1(j, k′1, k′2)

= [2−jk′1, 2−j(k′1 + 1))× [2−j−12k′2, 2−j−1(2k′2 + 1)).
(49)

and

A2 = A2(j, k′1, k′2)

= [2−jk′1, 2−j(k′1 + 1))× [2−j−12k′2 + 1, 2−j−1(2k′2 + 2)),
(50)
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as in (22). Then for l = 1, 2, we have that

µ̂j(Al) = µ∗j−1(Al) +
3

∑
i=1

νi(Al)

= E[µ∗j−1χAl ] +
3

∑
i=1

E[νiχAl ].

(51)

Now we will calculate each one of the expectations separately. By (17), (18) and (25),
we have that

µ∗j−1(x, y) = ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2(x, y) (52)

and

ν1(x, y) = ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉Ψ(1)
j,k1,k2

(x, y)

= ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉[χA1(j,k1,k2)
(x, y)− χA2(j,k1,k2)

(x, y)].
(53)

Then for l = 1 and by (15), (16) and (22), we have that

E[µ∗j−1χA1 ] = E[χA1 ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2 ]

= 〈µ∗j−1, Φj,k′1,k′2
〉E[χA1 Φj,k′1,k′2

]]

= dE[χA1 ]

= d
1

22j+1

(54)

where d = 〈µ∗j−1, Φj,k′1,k′2
〉 and

E[ν1χA1 ] = E[χA1 ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= 〈ν1, Ψ(1)
j,k′1,k′2

〉EχA1

= cE[χA1 ]

= c
1

22j+1

(55)

where c = 〈ν1, Ψ(1)
j,k′1,k′2

〉. Similarly, but using (23) and (24), we can prove that

E[ν2χA1 ] = 0 (56)

and
E[ν3χA1 ] = 0. (57)

Then

µ̂j(A1) = d
1

22j+1 + c
1

22j+1

= µ∗j−1(A1) + ν(A1)
(58)
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Now, we will make an analogous argument for the case l = 2. Hence,

E[µ∗j−1χA2 ] = E[χA2 ∑
k1

∑
k2

〈µ∗j−1, Φj,k1,k2〉Φj,k1,k2 ]

= 〈µ∗j−1, Φj,k1,k2〉E[χA2 Φj,k′1,k′2
]]

= dE[χA2 ]

= d
1

22j+1

(59)

and

E[ν1χA2 ] = E[χA2 ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= −〈ν1, Ψ(1)
j,k′1,k′2

〉EχA2

= −cE[χA2 ]

= −c
1

22j+1 .

(60)

Thus,

µ̂j(A2) = d
1

22j+1 − c
1

22j+1

= µ∗j−1(A2) + ν(A2)
(61)

and by (54), (55), (59) and (60), we have that

µ∗j−1(A1) = µ∗j−1(A2) (62)

and
ν1(A1) = −ν1(A2). (63)

Therefore, it follows from (58), (61), (62), (63) and the fact that µ̂j is a positive measure,
that

|ν1(A1)| = |ν1(A2)|
≤ |µ∗j−1(A1)|

= |µ∗j−1(A2)|
(64)

From which we conclude that µ∗j−1(A) = 0 implies ν1(A) = 0. Similarly, it can be
shown that µ∗j−1(A) = 0 implies νi(A) = 0 for i = 2, 3; for this, analogous proofs are
carried out, with the difference being that for i = 2, the sets to be considered are B1 and B2
as in (23), whereas C1 ∪ C4 and C2 ∪ C3 as in (24) are the respective sets when i = 3.

We have proved that if it is intended to go back to the preimage of the projection of
the approximation operator P from a level j− 1 to a level j, the support of the level j− 1
delimits that of the j level. Now, we will prove that for every measure µ̂j that satisfies (45)
and (46), it necessarily holds that ν1 = ν2 = 0.

Lemma 2. Let j ∈ Z and µ∗j−1 be an optimal simple solution for (40) at level j − 1. Then
for each feasible solution µ̂j ∈ PjL2(R2) to (40) at level j such that Pj−1µ̂j = µ∗j−1 and µ̂j =

µ∗j−1 + ν1 + ν2 + ν3. It necessarily holds that

ν1 = ν2 = 0. (65)
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Proof. In order to perform this proof, we use the restrictions of the MK problem (40),
which in turn, are related to the marginal measures. Therefore, we will only complete the
proof for one of the projections, since the other is analogous. From the linearity of the
Radon–Nikodym derivative, it follows that

η1
j = Π1µ̂j

= Π(µ∗j−1 + ν1 + ν2 + ν3)

= Πµ∗j−1 + Πν1 + Πν2 + Πν3.

(66)

Let k′ ∈ Z and Ij+1,2k′ = [2−j−12k′, 2−j−1(2k′ + 1)). Thus, by (39) and (66), we have
that

Π1µ̂j(Ij+1,2k′) = η1
j (Ij+1,2k′)

= Π1µ∗j−1(Ij+1,2k′)

= α.

(67)

That is, we are evaluating feasible solutions on rectangles whose height is half the size
of the squares with which they are discretized at the j level of the Haar MRA. Now, we will
develop in detail (66) evaluated on Ij,k′ . Since µ∗j−1 is a simple solution, we call l′ ∈ Z the
only number such that µ+

j−1(S(j, k′, l′)) > 0, where S(j, k1, k2) is defined as in (20). With the
aim of simplifying the notation, we define I = Ij+1,2k′ ×R. By (16) and (25), we have that

Π1ν1(Ij+1,2k′) = νi(I)
= E[χIν1]

= E[χI ∑
k1

∑
k2

〈ν1, Ψ(1)
j,k1,k2

〉(χA1(j,k1,k2)
− χA2(j,k1,k2)

)]

= E[χI ∑
k2

〈ν1, Ψ(1)
j,k′ ,k2
〉(χA1(j,k′ ,k2)

− χA2(j,k′ ,k2)
)]

= E[χI 〈ν1, Ψ(1)
j,k′ ,l′〉(χA1(j,k′ ,l′) − χA2(j,k′ ,l′))]

(68)

By the way I was defined, necessarily in the last equality it must be fulfilled that one
of the terms in the expectation is equal to 0. Hence, it is fulfilled that

Π1ν1(Ij+1,2k′) = 〈ν1, Ψ(1)
j,k′ ,l′〉E[χI ]

=
1

22j+1 〈ν1, Ψ(1)
j,k′ ,l′〉.

(69)

By a similar argument, it can be proved that

Πν2(Ij+1,2k′) = 0 (70)

and
Πν2(Ij+1,2k′) = 0. (71)

Then from (66) to (71), it follows that

α = α +
1

22j+1 〈ν1, Ψ(1)
j,k′ ,l′〉+ 0 + 0. (72)

Hence,
〈ν1, Ψ(1)

j,k′ ,l′〉 = 0. (73)

Therefore, ν1 = 0. In a similar way, we can prove that ν2 = 0.
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Suppose we have a simple optimal solution µ∗j−1 for the MK problem discretized
through the Haar MRA at level j− 1 ∈ Z and that we are interested in refining that solution
to the next level j. By Lemmas 1 and 2, any µ̂j that satisfies (45) has its support contained in
the support of µ∗j−1 and has components ν1 = ν2 = 0. Then the problem of constructing a
feasible solution µ̂j such that it refines µ∗j−1 is reduced to construct

µ̂j(x, y) = µ∗j−1(x, y) + ν3(x, y)

= µ∗j−1(x, y) + ∑
k1

∑
k2

〈µ̂j, Ψ(i)
j,k1,k2

〉Ψ(i)
j,k1,k2

(x, y), (74)

which is equivalent to chosing for each k1, k2 ∈ Z a value ν3
k1,k2

such that

µ̂
j
k1,k2

= µ
∗,j−1
k1,k2

+ ν3
k1,k2

. (75)

By Lemma 1 for each k1, k2 ∈ Z, it is fulfilled that

|ν3
k1,k2
| ≤ µ

∗,j−1
k1,k2

. (76)

Therefore, the choice of ν3
k1,k2

is restricted to a compact collection, and since µ̂j is a
solution of the linear program (40), then

|ν3
k1,k2
| = µ

∗,j−1
k1,k2

. (77)

Thus, the sign of ν3
k1,k2

must be such that it minimizes ν3
k1,k2

cj
k1,k2

. That is,

ν3
k1,k2

cj
k1,k2
≤ 0 (78)

4. Methodological Proposal

In this section, we show through examples a process that builds solutions to the MK
problem with a reduced number of operations. First, we consider the MK problem with
cost function c : [0, 1]× [0, 1]→ R defined by

c(x, y) = 4x2y− xy2 (79)

and homogeneous restrictions ν1, ν2 over [0, 1]. So that the algorithm can be graphically
appreciated, we take a small level of discretization, namely j = 6. Thus, in the Haar MRA
over R2 at level j = 6, the cost function has the form shown in Figure 5, which can be stored
in a vector of size 22j = 22(6) = 212.

Now, we apply the filtering process to the cost function at level j = 6, which results in
four functions

c6(x, y) = c5(x, y) + Ψ(1)(x, y) + Ψ(2)(x, y) + Ψ(3)(x, y); (80)

see Figures 6–9.
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Figure 5. Step 1. Discretization of the cost function to the level j, which is denoted by cj. In particular,
the cost function is c(x, y) = 4x2y− xy2 for lever j = 6.

Step 2. Filtering the original discrete function using the high-pass filter, which yield
three discrete functions denoted by Ψ1, Ψ2 and Ψ3, that functions correspond to Figures 7, 8
and 9, respectively, each describing local changes in the original discrete function. It is
then low-pass filtered to produce the approximate discrete function c5, which is given by
Figure 6.
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Figure 6. c5(x, y).
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Figure 7. Ψ(1)(x, y).
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Figure 8. Ψ(2)(x, y).
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Figure 9. Ψ(3)(x, y).

We then solve the MK problem for the level j− 1 = 5. That is, we find a measure
µ∗j−1 = µ∗5 that is an optimal solution for the MK problem with cost function c5. Such data

can be stored in a vector of size 22j−2 = 210; see Figure 10. For each entry k, the formal
application that plots this vector in a square is defined by k → (k1 + 1, k2 + 1), where
0 ≤ k1, k2 < 2n−1 and k = k1 · 2j−1 + k2.

1 10 20 32
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32

1 10 20 32

1

10
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Figure 10. Step 3. We obtain a solution µ∗5 for MK5 associated with the cost function c5 given in
Figure 6.
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Since the measure µ∗j−1 = µ∗5 is an optimal simple solution for the MK problem, then
we can represent its support in a simple way, as we show below:

support(µ∗j−1) =
⋃

k1,k2

Sk1,k2 (81)

where Sk1,k2 = S(j, k1, k2) is the square in (20). Next, we split each block Sk1,k2 ⊂ support(µ∗j−1)

into four parts as in (24); see Figure 11.

Figure 11. Division of the components of support(µ∗j−1) into four parts.

From the technical point of view, in the discretization at level j− 1 = 5, we have a
grid of 2j−1 × 2j−1 = 32× 32 squares that we call Sk1,k2 and identify with the points (k1, k2).
Thus, we refine to a grid of 64× 64, splitting each square into four, which in the new grid
are determined by points

(2k1 − 1, 2k2), (2k1 − 1, 2k2 − 1), (2k1, 2k2 − 1) and (2k1, 2k2); (82)

see Figure 12.

Figure 12. Refinement of grid from level j− 1 to j of discretization.

As we prove in Lemma 1, any feasible solution µ̂j = µ̂6 that refines µ∗5 has its support
contained in support(µ∗5). Therefore, we must only deal with the region delimited by the
support of µ∗5 . By Lemma 2, in order to construct the solution µ̂6, we only need to determine
the values n3

k1,k2
corresponding to the coefficients of the wavelet part ν3; however, by (77)

and (78), those values are well determined and satisfy that when added with the scaling
part µ∗k1,k2

, the result is a scalar multiple of a characteristic function. For example if the
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square Sk1,k2 has scaling part coefficient µ∗k1,k2
= c, then we choose ν3

k1,k2
= −c. Hence,

by (21) and (25), we have that

µ̂ 6
k1,k2

(x, y) = µ∗k1,k2
(x, y) + ν3

k1,k2
(x, y)

= cχS(x, y)− c[χC1∪C4(x, y)− χC2∪C3(x, y)]

= 2cχC2∪C3(x, y).

(83)

Thus, from an operational point of view, we only need to chose between two options
of supporting each division of square Sk1,k2 , as we illustrate in Figures 13 and 14.

Figure 13. Supports for refinement of the element Sk1,k2 corresponding to the level j : Option I.

Figure 14. Supports for refinement of the element Sk1,k2 corresponding to the level j: Option II.

This coincides with our geometric intuition. Hence, the resulting feasible solution
µ̂6 has its support contained in support(µ∗5), and its weight within each square Sk1,k2 is
presented in a diagonal within that block; see Figure 15. Finally, we can improve µ̂6 by
observing the way the filtering process acts. To do this, we apply the proximity criteria (41)
and split the support of µ̂6 into points of Type I and II. In Figure 16, we identify the points
of Type I and II of solution µ∗5 , whereas in Figure 15, we do the same but for µ̂6.

Intuitively, the division of the support into points of Type I and II allows us to classify
the points so that they have an identity function form and, consequently, that come from
the discretization of a continuous function—points of Type I—and in points that come
from the discretization of a discontinuous function—points of Type II. Thus, the points of
Type I are located in such a way that they generate a desired solution, and therefore it is
not convenient to move them, whereas Type II points are free to be changed as this does
not lead to the destruction of a continuous structure in the solution. As we mentioned in
the previous section, each permutation of rows or columns of one weighted element Sk1,k2
with another Sk′1,k′2

constructs a feasible solution; see (44). Thus, as a heuristic technique
to improve the solution, we check the values 〈c6, µσ

6 〉 associated with each solution µσ
6

obtained by permuting rows or columns of points of Type II of the solution µ̂6. We call µσ∗
6

the solution for which its permutation gives it the best performance. See Figure 17.
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Figure 15. Step 5. Using the solution µ∗5 which is given by Figure 10, the information of the high-pass
components (Figures 7, 8 and 9) and Lemma 1, we obtain a feasible solution for Level 6, which is
denoted by µ̂6.
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Figure 16. Step 4. We classify the points of the support of the solution µ∗5 by proximity criteria as
points of Type I � or Type II � (the measure µ∗5 corresponds to Figure 10).

Finally, we present Table 1 that compare the solutions of the MK problem, in which
MK5 is the value associated with the optimal solution µ∗5 at level of discretization j− 1 = 5,
MK6 is the value associated with an optimal solution µ∗6 at level of discretization j = 6,
and MKσ∗

6 is the value associated with the solution µσ∗
6 obtained by the heuristic method

described in the previous paragraph.
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Figure 17. Step 6. Classification of the points of µ∗5 induces classification of the points in µ̂6 by
contention in the support. Over the points of Type I of the solution µ̂6, we do not move those points.
For the points of Type II, we apply a permutation to the solution over the two points that improve
the solution and repeat the process with the rest of the points.

Table 1. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.24785 0.247738 0.247726

5. Other Examples of This Methodology

We conclude this work with a series of examples in which we apply the proposed
methodology. Each of them is divided into the six-step algorithm introduced in the previous
section and corresponds to a classical example existing in the literature.

5.1. Example with Cost Function c(x, y) = x2y− xy2

Let MK be the MK problem with cost function c(x, y) = x2y − xy2 and uniform
restrictions η1 and η2 over the unitary interval [0, 1]. In order to be more didactic, we
consider the level of discretization j = 6. Next, we present the reduced algorithm.

Step 1. Discretize the cost function at level j—that is, over a grid of 2j × 2j. Figure 18.
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Figure 18. Discretization of the cost function c(x, y) = x2y− xy2 at level j = 6.
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Step 2. Apply the filtering process to the cost function at level j− 1, obtaining the filtered
cost function c5, which is plotted on a grid of 2j−1 × 2j−1. Figure 19.
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1

Figure 19. Filtering of the cost function c at level j− 1 = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the discretized MKj problem. That is,
solve for the cost function c5 and obtain an optimal simple solution µ∗5 . Figure 20.
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Figure 20. MK solution for the filtered function c at level j− 1 = 5.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 21.
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Figure 21. Classification of points of support(µ∗5) into Type I � and Type II �.
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Step 5. Refine the optimal simple solution µ∗j−1 to a feasible solution µ̂j, dividing each
weighted square Sk1,k2 at level j− 1 into four squares at level j (see (82)) and place
mass according to the criteria (83). Figure 22.
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Figure 22. Solution µ̂6 from refinement of µ∗5 .

Step 6. Permute the rows and columns of the points of Type II in support(µ̂j) using (44)
to construct feasible solutions µσ

j and chose the one that has better performance.
Figure 23.
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Figure 23. Final result µσ∗
6 .

The following Table 2 contains the comparison of the proposed methodology with the
two immediate levels of resolution.

Table 2. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

−0.0350952 −0.035141 −0.035141

5.2. Example with Cost Function c(x, y) = xy

Let MK be the MK problem with cost function c(x, y) = xy and uniform restrictions
η1 and η2 over the unitary interval [0, 1]. In order to be more didactic, we consider the level
of discretization j = 6. Next, we present the reduced algorithm.

Step 1. Discretize the cost function at level j—that is, over a grid of 2j × 2j. Figure 24.
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Figure 24. Discretization of the cost function c(x, y) = xy at level j = 6.

Step 2. Apply the filtering process to the cost function at level j− 1, obtaining the filtered
cost function c5, which is plotted on a grid of 2j−1 × 2j−1. Figure 25.
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Figure 25. Apply the filter to the cost function c at level j− 1 = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the discretized MKj problem. That is,
solve for the cost function c5 and obtain an optimal simple solution µ∗5 . Figure 26.
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Figure 26. Solution of the MK for the function c at level j− 1 = 5.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 27.
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Figure 27. In this example there are only Type I points �.

Step 5. Refine the optimal simple solution µ∗j−1 to a feasible solution µ̂j, dividing each
weighted square Sk1,k2 at level j− 1 into four squares at level j (see (82)) and placing
mass according to the criteria (83). Figure 28.
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Figure 28. Solution µ̂6 from refinement of µ∗5 .

Step 6. Permute the rows and columns of the points of Type II in support(µ̂j) using (44)
to construct feasible solutions µσ

j and chose the one that has better performance.
Figure 29.
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Figure 29. Final result µσ∗
6 .
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The following Table 3 contains the comparison of the proposed methodology with the
two immediate levels of resolution.

Table 3. Comparison of the values corresponding to MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.166748 0.166687 0.166687

5.3. Example with Cost Function c(x, y) = (2y− x− 1)2(2y− x)2

We take the MK problem with cost function c(x, y) = (2y− x− 1)2(2y− x)2 and homo-
geneous restrictions over the unitary interval. Again, we consider the level of discretization
j = 6.

Step 1. Discretize the cost function at level j. Figure 30.

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

Figure 30. Discretization of cost function c(x, y) = (2y− x− 1)2(2y− x)2 for level j = 6.

Step 2. Apply the filtering process at level j− 1 to the cost function. Figure 31.
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Figure 31. Filtered cost function for j = 5.

Step 3. Find an optimal simple solution µ∗j−1 for the MKj−1 problem. Figure 32.
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Figure 32. Solution of the MK5 problem.

Step 4. Apply the proximity criteria to the support of µ∗j−1. Figure 33.

Figure 33. In this example, there are only Type II points �.

Step 5. Refine the solution µ∗j−1 to a feasible solution µ̂6 applying the criteria (82) and (83).
Figure 34.

Figure 34. Feasible solution µ̂6 from refinement of µ∗5 .

Step 6. Permute points of Type II of µ̂j using (44) to construct feasible solutions µσ
j and

chose which has better performance. Figure 35.
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Figure 35. Final result µσ∗
6 .

The Table 4 summarizes the results obtained.

Table 4. Comparison of values MK5, MKσ∗
6 and MK6.

MK5 MKσ∗
6 MK6

0.000236571 0.0000600852 0.0000597889

6. Conclusions and Future Work

Note that with the methodology of [3,4,9], the authors obtain a solution of MK j.
For this, they need to resolve a transport problem with 4j variables. We call this methodol-
ogy an exhaustive method. For our methodology, in Step 3, we need to resolve a transport
problem with 4j−1 variables, and the other steps of the methodology are methods of classi-
fication, ordering and filtering; with 2j data for classification and ordering and 4j data for
filtering, it is clear that this method requires fewer operations to resolve transport problems.

In summary, we have the following table comparing the results of solving the examples
more often used in the literature with our methodology versus the exhaustive method
(using all variables).

Cost Function MK6 MKσ
6 Error

xy 0.166687 0.166687
x2y− xy2 −0.035141 −0.035141 1.52588× 10−5

4x2y− xy2 0.247726 0.247738 5.31762× 10−5

(2y− x− 1)2(2y− x)2 0.0000600947 0.0000600947

Cost Function MK7 MKσ
7 Error

xy 0.166672 0.166672
x2y− xy2 −0.0351524 −0.0351524 3.8147× 10−6

4x2y− xy2 0.247695 0.247698 1.24066× 10−5

(2y− x− 1)2(2y− x)2 0.0000600852 0.0000600852

Cost Function MK8 MKσ
8 Error

xy 0.166668 0.166668
x2y− xy2 −0.0351553 −0.0351553 9.53674× 10−7

4x2y− xy2 0.247688 0.247688 3.21631× 10−6

(2y− x− 1)2(2y− x)2

Note that our method always improves the solution of the level j− 1 and for some
examples give an exact solution; we use Mathematica© and basic computer equipment
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for programming this methodology, and maybe we can improve the results with software
focused on numerical calculus and better computer equipment. It is also important to
mention that the methodology presented in this work has some weaknesses. In our
computational experiments, we noticed that if we did not start with a sufficient amount
of information, then the methodology tended to give very distant results. In other words,
if the initial level of discretization was not fine enough, then because the algorithm lowers
the resolution level when executed, such loss of information generates poor performance.
However, when starting with an adequate level of discretization, experimentally it can
be observed that the distribution of the solutions for the discretized problems, as well
as the respective optimal values, have stable behavior with a clear trend. The question
that arises naturally is: “In practice, what are the parameters that determine good or
bad behavior of the algorithm?” Clearly, if the cost function is fixed and we rule out the
possible technical problems associated with programming and computing power, the only
remaining parameter is the initial refinement level at which the algorithm is going to
work—that is, the level j. However, if we reflect more deeply on the reasons why there is a
practical threshold beyond which at a certain level of discretization the algorithm has stable
behavior, we only have as a possible causes the level of information of the cost function
that captures the MR analysis. In other words, if the oscillation of the cost function at a
certain level of resolution is well determined by MR analysis, then the algorithm will have
good performance.

The approach presented in this paper is far from exhaustive and, on the contrary,
opens the possibility for a number of new proposals for approximating solutions to the MK
problem. The above is due to the fact that in the work [9], it was proven that discretization of
the MK problem can be performed from any MR analysis over R2. Therefore, the possibility
of implementing other types of discretions remains open. In principle, as we mentioned in
the previous paragraph, the most natural thing is to expect better performance if the nature
of the cost function and the types of symmetric geometric structures that it induces in space
are studied in order to use an MR analysis that fits this information and therefore has more
efficient performance.
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