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Abstract: We investigate some new aspects of the nonlinear interaction between a three-level Ξ-type
atom and bimodal field. The photon-assisted atomic phase damping, detuning parameter, Kerr
nonlinearity and the time-dependent coupling have been considered. The general solution has been
obtained by using the Schrődinger equation when the atom and the field are initially prepared in the
excited state and coherent state, respectively. The atomic population inversion and concurrence are
discussed. It is shown that the time-dependent coupling parameter and the detuning parameter can
be considered as quantum controller parameters of the atomic population inversion and quantum
entanglement in the considered model.
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inversion; concurrence
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1. Introduction

One of the most famous models in quantum optics is the Jaynes–Cummings model
(JCM) [1], which includes a single two-level atom interacting with a single near-resonant
quantized cavity mode of the electromagnetic field. It plays a fundamental rule in quantum
optics due to the experimental realization of the nonclassical effects. It is experimentally
realizable and has undergone many theoretical studies [2].

Several modifications and generalizations have been made to the JCM in many dif-
ferent directions. For example, multi-photon transition, multi-level atoms, intensity-
dependent coupling, multi-atoms interaction, multi-mode fields, Stark shift and Kerr
nonlinearity have been studied in recent decades [3–13].

A lot of researches are focused on studying multi-level atomic systems in different
areas of quantum optics. One of the interesting examples of the generalized JCM is a
system of three-level atom different configurations (Λ, V, and Ξ) and one- or two-mode
fields [3,4,14,15]. Many studies has been conducted on the atom-field entanglement and
geometric phase in such systems [3,4,13,16]. A lot of studies have investigated a three-level
atom in motion which interacts with a single-mode field in an optical cavity in an intensity-
dependent coupling regime [17]. Dynamics of entropy and nonclassical properties of
the state of a Λ-type three-level atom interacting with a single-mode cavity field with
intensity-dependent coupling in a Kerr medium have been studied in [18].

The damping is a well-known phenomenon in quantum information processing.
Several papers have studied the damping effects on entanglement and some nonclassical
properties. Several studies have investigated the phase damping in the JCM [19–21] and
its influence in quantum properties of the multi-quanta two-mode JCM [22]. The time-
dependent interaction between a three-level Λ-type atom two-mode electromagnetic field
in a Kerr-like medium, where the field and the atom are suffering decay rates, has been
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studied [23]. In addition, the time-dependent interaction between two Λ-type three-level
atoms and a single-mode cavity field has been discussed [24] when the damping parameter
is taken into account. In recent years, much attention has been focused on the properties of
multi-atoms and multi-level atomic systems when time-dependent coupling with the field
is considered [23–29]. More recently, the entanglement and entropy squeezing for moving
two two-level atoms interacting with a radiation field have been investigated in [30].

In this paper, we extend the investigations in [31] to study the dynamics of a three-level
Ξ-type atom interacting with a two-mode coherent field. Furthermore, the field and the
atom are assumed to be coupled with modulated coupling parameter, which depends
explicitly on time. In order to discuss the dynamics of the present system, we will find
the solution of the wave function in the Schrődinger picture under certain approximation
similar to that of the Rotating-Wave Approximation (RWA) at any time t > 0. This is
performed in the next section where we also derive the reduced density matrix of the atom.
In Section 3, we employ our results to calculate the atomic population inversion and the
dynamical properties for different regimes. We devote Section 4 to the discussion of the
degree of entanglement, where we use the definition of concurrence. Finally, we give our
conclusions in Section 5.

2. Physical Model

The considered model is a time-dependent regime that consists of a moving three-level
(Ξ-type) atom with the energy levels ω1 > ω2 > ω3, which interacts with a two-mode field
of frequency Ωj in an optical cavity surrounded by Kerr nonlinearity in the presence of
detuning parameters. The transitions |1〉 ←→ |2〉 and |2〉 ←→ |3〉 are allowed, while the
transition |1〉 ←→ |3〉 is forbidden, as shown in Figure 1. The interaction Hamiltonian in the
Rotating-Wave Approximation (RWA) of the introduced physical system [31,32] (} = 1):

ĤI = f1(t)(âei∆1tσ̂12 + â†e−i∆1tσ̂21) + f2(t)(b̂ e−i∆2tσ̂23 + b̂† ei∆2tσ̂32) (1)

+χ1 â†2 â2 + χ2 b†2 b̂2 − i
2

γ1n̂1(σ̂11 + σ̂22)−
i
2

γ2n̂2(σ̂22 + σ̂33),

Here, the operator σ̂ij = |i〉〈j| is the atomic raising or lowering operator, the operators
â†, b̂† are the field creation operators of the field mode, and the operators â, b̂ are the field
annihilation operators of the field mode. Meanwhile, fi(t), i = 1, 2, are the atom-field
coupling parameters, χj is the third-order nonlinearity of the Kerr medium, and γi, i = 1, 2,
represent the photon-assisted atomic phase damping parameters, which are positive and
real. The detuning parameters ∆1, ∆2 are given by

∆1 = ω1 −ω2 −Ω1, (2)

∆2 = Ω2 − (ω2 −ω3),

Ωj, j = 1, 2 is the frequency of the field mode. We consider f1(t) = f2(t) = f (t) =

λj cos(µt) =
λj
2 (e

iµt + e−iµt), where, λj, µ, j = 1, 2 are arbitrary constants. As one can see,
there are two exponential terms in the Hamiltonian: one contains rapidly oscillating terms
e±i(∆j+µ)t, and the other contains slowly varying terms e±i(∆j−µ)t. In this case, if we neglect
the rapidly varying terms compared with the slowly varying terms, then the interaction
Hamiltonian can be rewritten in the following manner

ĤI =
λ1

2
(âeiδ1tσ̂12 + â†e−iδ1tσ̂21) +

λ2

2
(b̂e−iδ2tσ̂23 + b̂†eiδ2tσ̂32) (3)

+χ1 â†2 â2 + χ2b̂†2b̂2 − i
2

γ1n̂1(σ̂11 + σ̂22)−
i
2

γ2n̂2(σ̂22 + σ̂33)

where
δ1 = ∆1 − µ, δ2 = ∆2 − µ. (4)
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Figure 1. Schematic diagram of a three-level Ξ-type atom interacting with a two-mode field.

We assume that the wave function of the atom field at any time t > 0 can be expressed as

|Ψ(t)〉 =
∞

∑
n1,n2=0

[G1(n1, n2, t)|1, n1, n2〉+ G2(n1 + 1, n2, t)|2, n1 + 1, n2〉 (5)

+G3(n1 + 1, n2 + 1, t)|3, n1 + 1, n2 + 1〉]

To reach this goal, suppose that the atom-field initial state is

|Ψ(0)〉 =
∞

∑
n1,n2=0

qn1 qn2 |1, n1, n2〉 (6)

where qni = e−|αi |2/2 α
ni
i√
ni !

, |αi|2 = n̄i is the initial mean photon number for the mode. Now,

by substituting |Ψ(t)〉 from Equation (5) and ĤI from Equation (3) in the time-dependent
Schrődinger equation i ∂

∂t |Ψ(t)〉 = ĤI |Ψ(t)〉, one may arrive at the following coupled
differential equations for the atomic probability amplitudes

i
d
dt

 G1
G2
G3

 =

 ᾱ1 v1eiδ1t 0
v1e−iδ1t ᾱ2 v2e−iδ2t

0 v2eiδ2t ᾱ3

 G1
G2
G3

. (7)

where

ᾱ1 = χ1(n1)(n1 − 1) + χ2(n2)[(n2 − 1),

ᾱ2 = χ1(n1)(n1 + 1) + χ2(n2)(n2 − 1), (8)

ᾱ3 = χ1(n1)(n1 + 1) + χ2(n2)(n2 + 1),

v1 =
λ1

2

√
n1 + 1, v2 =

λ2

2

√
n2 + 1.
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The solution of Equation (7) is given as follows

G1 =
3

∑
j=1

Bje
iξ jt,

G2 = − 1
v1

3

∑
j=1

Bj(ᾱ1 + ξ j)e
i(ξ j−δ1)t, (9)

G3 =
1

v1v2

3

∑
j=1

Bj[(ξ j + ᾱ2 − δ1)(ᾱ2 + ξ j)− v2
1]e

i(ξ j−δ1+δ2)t,

By applying these initial conditions for the atom and field and using (9), the Bj
coefficients read as

Bj =
[(Γ3 + ξk + ξl)ᾱ1 + ξkξl − Γ4]qn1 qn2

ξ jk ξ jl
, j 6= k = 1, 2, (10)

where ξ jk = ξ j− ξk, ξ j, j = 1, 2, are the roots of the following third-order algebraic equation

ξ3 + h1ξ2 + h2ξ + h3 = 0, (11)

where

h1 = Γ1 + Γ3 + ᾱ3, h2 = Γ1Γ3 + Γ4 + ᾱ3Γ3 −V2
2 ,

h3 = Γ1Γ4 + ᾱ3Γ4 − ᾱ1V2
2 , Γ1 = δ2 − δ1, (12)

Γ2 = ᾱ2 − δ1, Γ3 = δ1 + Γ2, Γ4 = ᾱ1Γ2 −V2
1 .

The three roots of the third-order Equation (11) are given in the following form [33]

ξm = −1
3

h1 +
2
3

√
h2

1 − 3h2 cos(Φ +
2
3
(m− 1)π), m = 1, 2, 3,

Φ =
1
3

arccos[
9h1h2 − 2h3

1 − 27h3

2(h2
1 − 3h2)2/3

]. (13)

At any time t > 0, the reduced density matrix of the atom describing the system is
given by:

$̂(t) =

 $11(t) $12(t) $13(t)
$21(t) $22(t) $23(t)
$31(t) $32(t) $33(t)

, (14)

where

$11(t) =
∞

∑
n1,n2=0

G1(n1, n2, t)G∗1 (n1, n2, t),

$22(t) =
∞

∑
n1,n2=0

G2(n1 + 1, n2, t)G∗2 (n1 + 1, n2, t), (15)

$33(t) =
∞

∑
n1,n2=0

G3(n1 + 1, n2 + 1, t)G∗3 (n1 + 1, n2 + 1, t), ...,

$il(t) = $∗li(t).

In the next sections, for simplisity, we consider the constants λi = λ have been taken
to be real, and the interaction time is the scaled time τ = λt.
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3. Atomic Population Inversion

In fact, we can obtain information about the behavior of the atom–field interaction
through the collapse and revival phenomenon. So, we shall study the dynamics of an
important quantity, namely atomic population inversion. The atomic inversion is defined
as the difference between the exited state |1〉 and the ground state |3〉 which may be written
as follows [3]

W(t) = $11(t)− $33(t). (16)

Now, we shall study the behavior of the atomic population inversion in the time-
dependent case for n̄1 = n̄2 = 10 . This will be completed on the basis of the previous
calculations. We examine the influence of the time-dependent coupling parameter, detuning
parameters, and Kerr medium on the behavior of the atomic population inversion in the
absence or presence of the photon-assisted atomic phase damping parameter. The temporal
evolution atomic population inversion has been given in Figures 2–4 versus scaled time
τ = λt. The left plot for γ1 = γ1 = 0 and the right plot for γ1 = γ1 = 0.0005. In
Figure 2a,b, we have considered the time-dependent coupling parameter µ/λ = 0 in the
absence of the detuning parameters and Kerr-medium (∆1/λ = ∆2/λ = χ1 = χ2 = 0).
The behavior of the atomic population inversion in Figure 2a exhibits the collapse and
revival phenomena. The number of oscillations in Figure 2b is less than that in Figure 2a.
Also, in Figure 2b, the effect of the photon assisted atomic phase damping parameter
leads to decreasing the amplitude of oscillations as time develops and the mean value
of oscillations become zero in the time evolution process. In Figure 2c,d in which the
value of the time-dependent coupling parameter µ/λ = 3Pi, the behavior of the atomic
population inversion in Figure 2c is changed compared with Figure 2a. The collapse
intervals is elongated. In Figure 2e, when µ/λ = 10Pi, we observe that the behavior of the
atomic population inversion has started only with a short period of revivals followed by a
long time-interval of collapse compared with the previous cases. This means that we can
consider the time-dependent coupling as a quantum control parameter. The effect of the
detunning parameters on the atomic population inversion in the absence or presence of
the photon assisted atomic phase damping parameter and in the absence of both of the
time-dependent coupling parameter and Kerr medium (µ/λ = χ1 = χ2 = 0) appeared in
Figure 3. In Figure 3a, when ∆1/λ = ∆2/λ = 7, γ1 = γ1 = 0, we have along intervals of
collapses compared with that in Figure 2a. In addition, in Figure 3b, the effect of the photon-
assisted atomic phase damping parameter leads to decreasing the amplitude of oscillations
as time develops, and the mean value of oscillations becomes zero in the time evolution
process. By the increase of the value of the detuning parameter, the collapse interval is
elongated, so we can con consider the detuning parameter as a quantum control parameter
(see Figure 3c–f). The behavior of the atomic population inversion in Figure 3e,f is similar
to that in Figure 2e,f (∆1/λ = ∆3/λ = 25). To discuss the influence of the Kerr medium on
the atomic population inversion in the absence or presence of the photon-assisted atomic
phase damping parameter as well as in the absence of both of the time-dependent coupling
parameter and detuning parameters (µ/λ = ∆1/λ = ∆2/λ = 0), we have plotted Figure 4.
For a small value of Kerr medium parameter (χ1 = χ2 = 0.01), the behavior of W(τ) in
Figure 4a is changed compared to the behavior of W(τ) in Figures 2a and 3a; the amplitude
of oscillations is decreased. By the increase of the value of Kerr medium, the behavior of
W(τ) changes. The mean value of oscillations is shifted upward. For a great value of Kerr
medium, the behavior of the atomic population inversion is completely changed compared
with the previous cases. We have the greatest negative mean value of oscillations and the
maximum value of fluctuations approaches one (see Figure 4e). This means that the energy
increases in the atomic system. The photon-assisted atomic phase damping parameter
leads to destroying the amplitude of oscillations as time develops (see Figure 4b,d,f).
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Figure 2. Evolution of the atomic population inversion W(τ) of a three-level Ξ-type atom interacting
with a two-mode coherent field for the parameters n1 = n2 = 10, ∆1 = ∆2 = 0, χ1 = χ2 = 0 and
for: (a) µ/λ = 0, γ1 = γ2 = 0, (b) µ/λ = 0, γ1 = γ2 = 0.0005, (c) µ/λ = 3Pi, γ1 = γ2 = 0, (d)
µ/λ = 3Pi, γ1 = γ2 = 0.0005, (e) µ/λ = 10Pi, γ1 = γ2 = 0, (f) µ/λ = 10Pi, γ1 = γ2 = 0.0005.
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Figure 3. The same as in Fig. 2 but for the parameters n1 = n2 = 10, µ/λ = 0, χ1 = χ2 = 0 and for:
(a) ∆1/λ = ∆2/λ = 7, γ1 = γ2 = 0, (b) ∆1/λ = ∆2/λ = 7, γ1 = γ2 = 0.0005, (c) ∆1/λ = ∆2/λ =

17, γ1 = γ2 = 0, (d) ∆1/λ = ∆2/λ = 17, γ1 = γ2 = 0.0005, (e) ∆1/λ = ∆2/λ = 25, γ1 = γ2 = 0,
(f) ∆1/λ = ∆2/λ = 25, γ1 = γ2 = 0.0005.
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Figure 4. The same as in Fig. 2 but for the parameters n1 = n2 = 10, µ/λ = 0, ∆1 = ∆2 = 0
and for: (a) χ1 = χ2 = 0.01, γ1 = γ2 = 0, (b) χ1 = χ2 = 0.01, γ1 = γ2 = 0.0004, (c) χ1 =

χ2 = 0.2, γ1 = γ2 = 0, (d) χ1 = χ2 = 0.2, γ1 = γ2 = 0.0004, (e) χ1 = χ2 = 0.5, γ1 = γ2 = 0,
(f) χ1 = χ2 = 0.5, γ1 = γ2 = 0.0004.

4. Concurrence

The concurrence is presented by Wootters and Hill [34,35] as a proper measure of
the entanglement of any state of two qubits, pure or mixed. For a pure state |Ψ(t)〉 on
(K × L)-dimensional Hilbert space M = MK ⊗ ML, the concurrence can be defined as
follows [14,36].

C(t) =
√

2[|〈Ψ(t)|Ψ(t)〉|2 − Tr($2
L(t))],

where $L(t)= TrK(|Ψ(t)〉〈Ψ(t)|) is the reduced density operator of the subsystem with
dimension L and TrK is the partial trace over MK. It is remarkable to mention that the
concurrence fluctuates between

√
2(L− 1) for a maximally entangled state and 0 for a

separable state. Herein, we calculate the concurrence to obtain the degree of entanglement
(DEM) between the atom and the field. Using Equation (14), we can rewrite concurrence in
the following form

C(t) =

√√√√2
i 6=j

∑
i,j−1,2,...9

[$ii(t)$jj(t)− $ij(t)$ji(t)].
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Now, we are going to study the evolution of the concurrence C(τ) versus the scaled
time τ = λt for the same parameters that we used in Figures 2–4. An illustration of the
time evolution of the concurrence for γ1 = γ1 = 0 (left plot), γ1 = γ1 = 0.001 (right plot)
and for n̄1 = n̄2 = 10 is shown in Figures 5–7. In Figure 5a, when all parameters are zero,
we note that C(τ) starts from zero; then, it is followed by a sequence of fluctuations in the
oscillation. This means that this system begins in a disentangled state; then, it develops
into a mixed state (t > 0). It is clear that in Figure 5c,e, the time-dependent coupling
parameter plays a dramatic role in the degree of entanglement: the maximum value of
C(τ) decreased and the periodic behavior appeared. In addition, the time interval of the
period is elongated as the value of µ/λ increases. In Figure 5b,d,f, we observed that the
photon-assisted atomic phase damping parameter (γ1 = γ1 = 0.001) leads to a decrease in
the degree of entanglement between the atom and the field and finally vanishes as the time
develops (i.e., no entanglement).

Figure 5. Evolution of the concurrence C(τ) of a three-level Ξ-type atom interacting with a two-
mode coherent field for the parameters n1 = n2 = 10, ∆1 = ∆2 = 0, χ1 = χ2 = 0 and for:
(a) µ/λ = 0, γ1 = γ2 = 0, (b) µ/λ = 0, γ1 = γ2 = 0.001, (c) µ/λ = 5Pi, γ1 = γ2 = 0,
(d) µ/λ = 5Pi, γ1 = γ2 = 0.001, (e) µ/λ = 10Pi, γ1 = γ2 = 0, (f) µ/λ = 10Pi, γ1 = γ2 = 0.001.
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Figure 6. The same as in Fig. 5 but for the parameters n1 = n2 = 10, µ/λ = 0, χ1 = χ2 = 0 and for:
(a) ∆1/λ = ∆2/λ = 10, γ1 = γ2 = 0, (b) ∆1/λ = ∆2/λ = 10, γ1 = γ2 = 0.001, (c) ∆1/λ = ∆2/λ =

15, γ1 = γ2 = 0, (d) ∆1/λ = ∆2/λ = 15, γ1 = γ2 = 0.001, (e) ∆1/λ = ∆2/λ = 25, γ1 = γ2 = 0,
(f) ∆1/λ = ∆2/λ = 25, γ1 = γ2 = 0.001.
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Figure 7. The same as in Fig. 5 but for the parameters n1 = n2 = 10, µ/λ = 0, ∆1 = ∆2 = 0 and
for: (a) χ1 = χ2 = 0.01, γ1 = γ2 = 0, (b) χ1 = χ2 = 0.01, γ1 = γ2 = 0.001, (c) χ1 = χ2 = 0.1, γ1 =

γ2 = 0, (d) χ1 = χ2 = 0.1, γ1 = γ2 = 0.001, (e) χ1 = χ2 = 0.5, γ1 = γ2 = 0, (f) χ1 = χ2 = 0.5,
γ1 = γ2 = 0.001.

To explore the effect of the detuning parametes ∆1/λ, ∆2/λ on C(τ) in the absence or
presence of the photon-assisted atomic phase damping parameter and in the absence of
both of the time-dependent coupling parameter and Kerr medium (µ/λ = χ1 = χ2 = 0),
we have plotted Figure 6. In Figure 6a, when ∆1/λ = ∆2/λ = 10, γ1 = γ1 = 0, we
observed that the maximum value of C(τ) decreased compared with Figure 5a. In addition,
the periodic behavior appeared in Figure 6a. As the detuning parameter increases, the time
interval of the period is elongated (see Figure 6c,e). The effect of the detuning parameter in
the presence of the photon-assisted atomic phase damping parameter leads to a decrease
in the degree of entanglement between the atom and the field as the time develops (see
Figure 6b,d,f). To visualize the influence of the Kerr medium on the concurrence C(τ) in
the absence or presence of the photon-assisted atomic phase damping parameter and in
the absence of both of the time-dependent coupling parameter and detuning parameters
(µ/λ = ∆1/λ = ∆2/λ = 0), we have plotted Figure 7. We notice that when χ1/λ =
χ2/λ = 0.01, γ1 = γ1 = 0, the nonlinear interaction of the Kerr medium with the field
modes leads to increasing the maximum value of the concurrence with the decreasing of
the amplitude of oscillations (see Figure 7a). By the increase of the nonlinear interaction of
the Kerr medium with field modes, the maximum value of the concurrence decreases, and
then, the degree of entanglement between the atom and the field decreases (see Figure 7c,e).
In addition, we observed that when χ1/λ = χ2/λ = 0.5, γ1 = γ1 = 0, many oscillations
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have appeared. The effect of Kerr medium in the presence of the photon-assisted atomic
phase damping parameter leads to a decrease in the degree of entanglement between the
atom and the field in the time evolution process (see Figure 7b,d,f).

5. Conclusions

In summary, we have examined the interaction of a three-level Ξ-type atom with a two-
mode field taking into account new parameters such as the photon-assisted atomic phase
damping parameter, Kerr medium and the detuning parameter. Furthermore, the coupling
parameter is modulated to be time-dependent. Under the Rotating-Wave Approximation
(RWA), the exact solution of the model is obtained for the state vector of the whole system.
The influence of the photon-assisted atomic phase damping parameter, the time-dependent
coupling parameter, detuning parameter and Kerr nonlinearity on the atomic population
inversion and the concurrence have been studied. It is shown that the atomic population
inversion has the quantum collapse–revival behavior, and the time-dependent coupling
parameter and detuning parameter can be considered as quantum control parameters. The
concurrence of a three-level atomic system has been introduced, and its time evolution has
been studied, providing the ability to explore the degree of entanglement of the available
systems in the absence or presence of the photon-assisted atomic phase damping parameter.
Finally, we can deduce that the presence of the time-dependent coupling parameter, detun-
ing parameter, Kerr nonlinearity and the photon-assisted atomic phase damping parameter
leads to noticeable effects in the quantum entanglement of the considered systems.
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