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Abstract: The beta regression model (BRM) is used when the dependent variable may take continuous
values and be bounded in the interval (0, 1), such as rates, proportions, percentages and fractions.
Generally, the parameters of the BRM are estimated by the method of maximum likelihood estimation
(MLE). However, the MLE does not offer accurate and reliable estimates when the explanatory
variables in the BRM are correlated. To solve this problem, the ridge and Liu estimators for the BRM
were proposed by different authors. In the current study, the James Stein Estimator (JSE) for the
BRM is proposed. The matrix mean squared error (MSE) and the scalar MSE properties are derived
and then compared to the available ridge estimator, Liu estimator and MLE. The performance of the
proposed estimator is evaluated by conducting a simulation experiment and analyzing two real-life
applications. The MSE of the estimators is considered as a performance evaluation criterion. The
findings of the simulation experiment and applications indicate the superiority of the suggested
estimator over the competitive estimators for estimating the parameters of the BRM.

Keywords: beta regression; Stein estimator; multicollinearity; numerical results; Liu estimator;
simulation
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1. Introduction

Ferrari and Cribari-Neto [1] have introduced the beta regression model (BRM), which
allows the response variable to be a continuous value in the range (0, 1), such as rates,
proportions and percentages. The BRM is used in the fields of economics and medicine [2].
There are some assumptions for estimating model parameters for the linear and generalized
linear models. One of them is that explanatory variables should be uncorrelated, but in
practice, this assumption is rarely fulfilled and is called multicollinearity. Frisch [3] was
the first to indicate the seriousness of this problem and its consequences on regression
estimation. The presence of multicollinearity can increase the standard error of the coef-
ficients, widen the confidence interval, increase the variances of the coefficients and may
give the wrong signs to the model coefficients [4]. In order to check for the presence of
multicollinearity, different measures have been proposed by different researchers. These
include using the condition index, using the variance inflation factor and others [5].

When there is an issue of multicollinearity in linear models, the ordinary least squares
(OLS) method performs poorly. Many authors have proposed various alternative methods,
such as the Stein estimator [6], principal components estimator [7], the ordinary ridge
regression estimator (ORRE) [8] and some others to address the problem of multicollinearity.
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The most popular of these biased estimation methods is ridge regression, in which the
biasing parameter k is used to control the bias of regression coefficients. Many authors have
discussed various methods for k in order to get the optimal value of k, for which the MSE of
the ridge estimator should be the smallest [8–18]. In addition to linear regression models,
the ridge estimator was also developed for some other models, see, for example, [19–22].

Liu [23] has proposed another estimator, known as the Liu estimator (LE), which com-
bines the advantages of the Stein estimator and the ORRE. Qasim et al. [24] have suggested
new Liu shrinkage parameters for the linear regression model. However, some studies have
been done on generalized linear models for controlling the effect of multicollinearity, in-
cluding the logistic ridge estimator [14,25], Poisson ridge regression estimator [20], Poisson
Liu regression estimator [26], negative binomial ridge and Liu estimator [21] and gamma
ridge regression estimator [22,27]. Further, Qasim et al. [24] have proposed the LE for the
gamma regression and Stein [6] has suggested an estimator, the JSE, for dealing with multi-
collinearity in the linear regression model. Few researchers have worked on this method.
Literature has shown that the JSE is not a better estimator than other biased estimators.

In the literature, the JSE for the logistic regression model was given by [28], which
showed that for some situations, the JSE performed better than other biased estimators.
Amin et al. [27] have worked on the JSE for the Poisson regression model and showed that
the JSE has a better performance than the other considered biased estimators. Recently,
Akram et al. [29] have studied the JSE for the inverse Gaussian regression model.

In the BRM, when the explanatory variables are correlated, then it is not possible to use
the maximum likelihood estimator (MLE) for the estimation of the unknown parameters.
Three studies are available in the literature to deal with the multicollinearity problems
in the BRM. Qasim et al. [30] have proposed some beta ridge regression estimators. The
LE was developed by [31] for the BRM. Abonazel et al. [2] have suggested some ridge
regression estimators for the BRM. However, to date, no one has considered the JSE for the
BRM in dealing with multicollinearity. Therefore, in this study, we are adapting the JSE
for the BRM. This study also focuses on making a comparison between the JSE and other
existing estimators for the BRM based on the mean squared error (MSE) criterion, as the
literature has shown that the JSE has different performances for different models.

2. Methodology

Suppose Y is a continuous random variable, which follows a beta distribution with
parameters a, b, with the probability density function given by

f (y; a, b) =
Γ(a + b)
Γ(a)Γ(b)

ya−1(1− y)b−1; 0 < y < 1, (1)

where Γ (.) represents the gamma function and a and b > 0. The expected value of Y is
E(Y)= a

a+b and the variance of Y is Var(Y) = ab
(a+b)2(a+b+1)

.

Ferrari and Cribari-Neto [1] have offered another parameterization of Equation (1)
by supposing that µ = a

a+b , δ = a + b, a = µδ and b = δ − δµ. The new formulation of
Equation (1) is given as follows:

f (y; µ, δ) =
Γ(δ)

Γ(µδ)Γ(δ− δµ)
yµδ−1(1− y)(δ−δµ−1); 0 < y < 1, (2)

where µ denotes the mean of the dependent variable and δ is known as the precision parameter.
The expected value of the re-parameterization of Y is E(Y) = µ and Var(Y) = µ(1 −

µ)/(1 + φ), where φ is the dispersion parameter (φ = δ−1).
By transforming Equation (2) to estimate the model parameters via MLE, the log-

likelihood function is given as follows:

l(β) = ∑n
i=1 li(µi,δ) = ∑n

i=1[log Γ(δ)− log Γ(µiδ)− log Γ((1− µi )δ) + (δµi − 1)log yi + (δ− µiδ− 1)log(1− yi)
]
. (3)
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Let the unbiased estimator of β be β̂. The score function can be computed as:

S(β) = δXtT(y∗ − µ∗), (4)

where y∗ = log y
1−y , µ∗ = ψ(µδ) − ψ((1− µ)δ), X is a design matrix with order n × q,

T = diag
[

1
g′(µ1)

, . . . , 1
g′(µn)

]
, ψ is the digamma function and g(·) is the logit link function.

Let ηi = g(µi) = log
(

µi
1−µi

)
= xt

i β, where xi is the i-th row of the data matrix, β

represents the q× 1 vector of regression coefficients with intercept and q = p + 1 are the
explanatory variables. As Equation (4) is non-linear in β, it needs an iterative reweighted
method. According to Abonazel and Taha [2], using the iterative method, β can be com-
puted as

βr+1 = βr +
{

Iββ
r

}−1
S(βr), (5)

where r = 0, 1, 2, . . . , represents the iterations that are repeated until convergence and Iββ
r

is the information matrix of β. At the final iteration [2], Equation (5) can be written as

β̂ML = (S)−1XtZv, (6)

where S = XtZX, Z = diag(z1, z2, . . . , zn), v = ηZ−1T(y∗ − µ∗) and zi =
δ(ψ′(µiδ)−ψ′((1−µi)δ))

g′2(µi)
.

The matrix MSE (MMSE) and MSE can be calculated by assuming α = ξt β̂ML and
Λ = diag

(
λ1, λ2, . . . , λq

)
, which correspond to ξSξt, where ξ represents the orthogonal

matrix, whose columns contain the eigenvectors of S; that is ξ = ξ1, . . . , ξq and λ1 > λ2 >
· · · > λq > 0 are the eigenvalues of the matrix S, while αj, j = 1, 2, . . . , q is the j-th element
of ξt β̂ML. Then, the covariance and MMSE of the β̂ML is defined as

Cov
(

β̂ML
)
= φ̂(S)−1,

MMSE
(

β̂ML
)
= φ̂ξΛ

−1
ξt.

(7)

The scalar MSE of the MLE can be obtained by the following equation

MSE
(

β̂ML
)
= E

(
β̂ML − β

)t(
β̂ML − β

)
= φ̂

[
tr
(

ξΛ−1ξt
)]

= φ̂∑q
j=1

1
λj

, (8)

where λj represents the j-th eigenvalues of the S matrix.

2.1. The Beta Ridge Regression Estimator

When explanatory variables are correlated, then the matrix becomes ill-conditioned,
which makes eigenvalues very small, and the MLE of the BRM becomes inflated. The issue
of multicollinearity makes the results unreliable as it increases the variances and confidence
intervals of the BRM estimates, which leads to wrong inferences. To solve the issue of
multicollinearity, Abonazel and Taha [2] introduced the use of a ridge estimator for the
BRM and, later on, the beta ridge regression estimator (BRRE) was developed by Qasim
et al. [30]. The BRRE is the extension of the Hoerl and Kennard [9] estimator and is defined
as follows:

β̂BRRE = Qk β̂ML, (9)

where Qk =
(
S + kIq

)−1S, k is the biasing parameter that is greater than 0, whereas Iq

is an identity matrix of order q × q. β̂BRRE = β̂ML, if k→ 0 . The bias and covariance of
Equation (9) are obtained using the following formula:

Bias
(

β̂BRRE
)
= kξΛ−1

k β, (10)

Cov
(

β̂BRRE
)
= φ̂ξΛ−1

k ΛΛ−1
k ξt, (11)
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MMSE
(

β̂BRRE
)
= Qk

(
XtZX

)−1R
t

k + Bias
(

β̂BRRE
)

Bias
(

β̂BRRE
)t

= φ̂ξΛ−1
k ΛΛ−1

k ξt + k
2
ξΛ−1

k ββtΛ−1
k ξt,

(12)

where Λk = diag(λ 1 + k, λ2 + k, . . . , λq + k
)

, Λ = diag(λ 1, λ2, . . . , λq
)
= ξ(S)ξt and ξ is

the orthogonal matrix whose columns are the eigenvectors of S. Finally, the scalar MSE of
the BRRE can be estimated by applying trace on Equation (12), which may be defined as

MSE
(

β̂BRRE
)
= tr

{
MMSE

(
β̂BRRE

)}
= φ̂∑

q
j=1

λj

(λ j+k
)2 +k2∑

q
j=1

α2
j

(λ j+k
)2 , (13)

where α = ξt β̂ML and k is a biasing parameter that is always greater than 0.

2.2. The Beta Liu Estimator

Different kinds of shrinkage parameters have been proposed by different authors for
estimating model parameters when the explanatory variables are correlated. The ridge
regression estimator (RRE) was proposed by Hoerl and Kennard [9] for the linear regression
model. Liu [23] has introduced an alternative RRE to solve the problem of multicollinearity
with different biasing parameters. Karlsson et al. [31] have introduced the LE for the BRM
called the beta Liu estimator (BLE), which is defined as follows:

β̂BLE = Ld β̂ML, (14)

where Ld = (S + I)−1(S + dI) and d is the biasing parameter of the BLE that is restricted
to attain the value in the interval [0, 1]. The Bias

(
β̂BLE

)
and Cov

(
β̂BLE

)
of Equation (14),

respectively, are given as
Bias

(
β̂BLE

)
= ξ(d− 1)Λ−1

I β (15)

and
Cov

(
β̂BLE

)
= φ̂ξΛ−1

I ΛdΛ−1ΛdΛ−1
I ξt. (16)

In this context, the MMSE and scalar MSE of the BLE can be obtained as shown below:

MMSE
(

β̂BLE
)
= φ̂Ld(S)

−1Lt
d + Bias

(
β̂BLE

)
Bias

(
β̂BLE

)t

= φ̂ξΛ−1
I ΛdΛ−1ΛdΛ−1

I ξt + (d− 1)2ξΛ−1
I ββtΛ−1

I ξt,
(17)

MSE
(

β̂BLE
)
= tr

{
MMSE

(
β̂BLE

)}
= φ̂∑q

j=1

(λj + d)2

λj(λj + 1)2 + (d− 1)2∑q
j=1

α2
j

(λj + 1)2 , (18)

where ΛI = diag(λ 1 + I, λ2 + I, . . . , λq + I
)

, Λd = diag(λ 1 + d, λ2 + d, . . . , λq + d
)
.

2.3. The JSE for the BRM

To solve the problem of ill-conditioned explanatory variables, another estimation
method was proposed by Stein [6], called the JSE. This current study considers this estimator
for the BRM, which is named the beta JSE (BJSE), and it is assumed that the BJSE will
provides the better estimates than the BRRE and the BLE. The suggested estimator is
defined as shown below:

β̂BJSE = cβ̂ML, (19)

where 0 < c < 1 and β̂ML is the unbiased estimate of β. If c = 1, then β̂BJSE = β̂ML. For
selecting the value of c, we took into account the work of Stein [6], which is as follows

c =
(β̂t

ML β̂ML)

(β̂t
ML β̂ML + trace(S)−1)

. (20)
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The bias of the β̂BJSE may be computed as

Bias
(

β̂BJSE
)
= E

(
β̂BJSE

)
− β. (21)

Using Equation (20) in Equation (21), we obtained

Bias
(

β̂BJSE
)
= E

 (
β̂t

ML β̂ML
)(

β̂t
ML β̂ML + trace

(
S)−1

) β̂ML

− β. (22)

We simplified Equation (22) and developed the following expression

Bias
(

β̂BJSE
)
= −

(
trace(S)−1

βtβ + trace(S)−1

)
β. (23)

The MMSE of the β̂BJSE by using Equation (19) was obtained as

MMSE
(

β̂BJSE
)
= Cov

(
β̂BJSE

)
+ Bias

(
β̂BJSE

)
Bias

(
β̂BJSE

)t

= φ̂c
(

S)−1ct + bBJSE
tbBJSE

(24)

where bBJSE = Bias
(

β̂BJSE
)
.

For obtaining the scalar MSE of the BJSE, after applying the trace operator, we found
the following:

MSE
(

β̂BJSE
)

=

(
(β̂t

ML β̂ML)(
β̂t

ML β̂ML+trace(S)−1
)
)t(

trace(S)−1
)(

(β̂t
ML β̂ML)(

β̂t
ML β̂ML+trace(S)−1

)
)

+

(
− trace(S)−1(

βt β+trace(S)−1
) β

)t(
− trace(S)−1(

βt β+trace(S)−1
) β

)
.

(25)

On simplification, it was easy to obtain the following equation:

MSE
(

β̂BJSE
)
= φ̂∑q

j=1

α4
j λj

(α 2
j λj + 1

)2 + ∑q
j=1

α2
j

(α 2
j λj

2 + 1
) . (26)

2.4. Theoretical Comparison among the BRM’s Estimators

Lemma 1. Let G be a positive definite (p.d) matrix, α is a vector of non-zero constants and h may
be a positive constant. Then hG− ααt > 0, if, and only if, αt Mα < c [32].

2.4.1. The MLE versus the BJSE

Theorem 1. Under the BRM, consider bBJSE = Bias
(

β̂BJSE
)
. Then,

MSE
(

β̂ML
)
−MSE

(
β̂BJSE

)
> 0

Proof. The difference between scalar MSE functions of the MLE and the BJSE is given as

MSE
(

β̂ML
)
−MSE

(
β̂BJSE

)
= φ̂ξdiag

 1
λj
−

α4
j λj(

α2
j λj + 1

)2


q

j=1

ξt − bt
BJSEbBJSE (27)
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= φ̂ξdiag


(

α2
j λj + 1

)2
− α4

j λj

λj

(
α2

j λj + 1
)2


q

j=1

ξt − bt
BJSEbBJSE. (28)

Further, Equation (28) can also be written as

MSE
(

β̂ML
)
−MSE

(
β̂BJSE

)
= φ̂ξdiag


1 + 2α2

j λj

λj

(
α2

j λj + 1
)2


q

j=1

ξt − bt
BJSEbBJSE. (29)

Equation (29) is a p.d if
(

α2
j λj + 1

)2
− α4

j λj > 0 or equivalently
(

1 + 2α2
j λj

)
> 0.

Thus, it is proved that BJSE dominates the MLE in the sense of scalar MSE for the BRM
for all j = 1, 2, . . . ..q. �

2.4.2. The BRRE versus the BJSE

Theorem 2. Under the BRM, consider k > 0 and bBRRE = Bias
(

β̂BRRE
)

and bBJSE =

Bias
(

β̂BJSE
)
. Then MSE

(
β̂BRRE

)
−MSE

(
β̂BJSE

)
> 0.

Proof. The difference between scalar MSE functions of the BRRE and the BJSE is given by

MSE
(

β̂BRRE
)
−MSE

(
β̂BJSE

)
= φ̂ξdiag

{
λj

(λ j+k
)2 −

α4
j λj(

α2
j λj+1

)2

}q

j=1

ξt + bt
BRREbBRRE − bt

BJSEbBJSE

= φ̂ξdiag

{
λj

(
α2

j λj+1
)2
−α4

j λj (λ j+k
)2

(λ j+k
)2(

α2
j λj+1

)2

}q

j=1

ξt + bt
BRREbBRRE − bt

BJSEbBJSE.

(30)

After simplifying the above expression, we obtained

MSE
(

β̂BRRE
)
−MSE

(
β̂BJSE

)
= φ̂ξdiag

{
λj+2α2

j λj
2−α4

j λjk2−2α4
j λj

2k

(λ j+k
)2(

α2
j λj+1

)2

}q

j=1

ξt + bt
BRREbBRRE

−bt
BJSEbBJSE.

(31)

Equation (31) is a p.d if (λ j + 2α2
j λj

2 − α4
j λjk2 − 2α4

j λj
2
)
> 0. By simplifying Equation (31),

we observed that λj

(
1 + 2α2

j λj

)
− α4

j λjk
(
k + 2λj

)
> 0. Thus for k > 0, the proof is ended.

�

2.4.3. The BLE versus the BJSE

Theorem 3. Under the BRM, consider 0 < d < 1 and bBLE = Bias
(

β̂BLE
)
andbBJSE =

Bias
(

β̂BJSE
)
. Then MSE

(
β̂BLE

)
−MSE

(
β̂BJSE

)
> 0.

The dissimilarity between scalar MSE functions of the BLE and the BJSE can be
obtained as follows:
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MSE
(

β̂BLE
)
−MSE

(
β̂BJSE

)
= φ̂ξdiag

{
(λ j+d

)2

λj(λj+1)
2 −

α4
j λj(

α2
j λj+1

)2

}q

j=1

ξt + bt
BLEbBLE − bt

BJSEbBJSE

= φ̂ξdiag

{
(λ j+d

)2(
α2

j λj+1
)
−α4

j λj(λj+1)
2

λj(λj+1)
2(

α2
j λj+1

)2

}q

j=1

ξt + bt
BLEbBLE − bt

BJSEbBJSE.

(32)

Equation (32) is a p.d., if (λj + d)2(α2
j λj + 1)− α4

j λj(λj + 1)2 > 0. Thus, for 0 < d < 1
the proof is complete.

2.4.4. Computation of the Biasing Parameters

The calculation of the appropriate value of biasing parameter was necessary for
obtaining better estimates of the BRM. The most desirable values of k, d and c are derived
for the considered estimators. The optimum value for the k was selected by considering the
work of Hoerl and Kennard [9] as

k =
φ̂

∑
q
j=1 α2

j
. (33)

We consider the following optimum value of d for the BLE

d =
α2

max − φ̂
φ̂

λmax
+ α2

max

. (34)

The Stein parameter c was selected by considering the work of Stein [6] as

c = min

 α2
j λj

φ̂ + α
2
j λj

. (35)

3. Simulation Study

This section presents a numerical evaluation of the proposed estimator. A simula-
tion experiment was performed to examine the performance of the BJSE with different
simulation conditions and also to compare the BJSE with the MLE, the BRRE and the BLE.

3.1. Simulation Layout

In the simulation design, the response variable was generated from a beta distribution
using the logit link function as the following equation:

log
(

µi
1− µi

)
=
(

β0 + β1xi1 + β2xi2 + · · ·+ βpxip
)−1, i = 1, . . . , n; j =, . . . , q, (36)

where xij represents the correlated independent variables and β j is the true parameters
vector of the BRM. The true parameters should be selected such that ∑

q
j=1 β2

j = 1, and the
correlated explanatory variables are generated by the following formula

xij =
(

1− ρ2
) 1

2 zij + ρzi(j+1), i = 1, . . . , n; j =, . . . , q, (37)

where ρ2 is the degree of correlation among regressors and zij are the independent stan-
dard normal pseudo-random variables. The performance of the suggested estimator was
examined by varying different factors, such as degree of correlation, number of regressors,
sample size and precision parameter. In our experiment, we considered four different
values of degree of correlation ρ, which were 0.80, 0.90, 0.95 and 0.99. The sample sizes that
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we considered were n = 25, 50, 100 and 200. The number of regressors p also varied—these
were 4, 8, and 16. Three different values of precision parameter φ were taken into consider-
ation, namely 0.5, 2, and 4. We replicated the generated data 1000 times for the different
combinations of n, ρ, p and φ. To evaluate the performance of the suggested estimator, the
MSE was used as the evaluation criterion, which is defined as follows:

MSE
(

β̂
)
=

∑R
i=1 (β̂i − β)

t
(β̂i − β)

R
, (38)

where (β̂i − β) can be defined as the difference between the estimated and true value
of parameter vectors of the suggested and other estimators at the i-th replication and
R indicates the replication numbers. All the computational work was performed on R
program language with the help of the betareg R package.

3.2. Simulation Results Discussion

In this section, we will discuss the results of the simulation study under different
factors, such as multicollinearity, sample size, dispersion and the number of explanatory
variables. The estimated MSEs of the MLE, BRRE, BLE and BJSE are given in Tables 1–9.
The general summary of the simulation study result is given in the following points.

Table 1. MSE values when p = 4 and φ = 0.5.

n ρ MLE BRRE BLE BJSE

25 0.80 7.4720 5.2695 4.3458 0.3620
0.90 13.8808 9.4073 7.2598 0.6329
0.95 27.9617 18.8364 13.8743 1.3023
0.99 132.5772 88.1338 60.7300 6.5650

50 0.80 6.7380 4.9260 4.1176 0.4236
0.90 13.2774 9.5429 7.7423 0.7180
0.95 25.2382 17.9623 14.0631 1.3564
0.99 120.9114 85.1745 63.8230 6.1307

100 0.80 6.2525 4.6966 3.9740 0.3585
0.90 10.9847 8.0504 6.6582 0.6836
0.95 20.0590 14.4570 11.7781 1.3142
0.99 97.8141 70.2476 56.4144 5.1157

200 0.80 5.7034 4.2754 3.6733 0.2895
0.90 9.9486 7.2555 6.0527 0.5565
0.95 18.2090 13.2011 10.9296 1.1866
0.99 84.7205 60.3296 48.4312 6.4092

Table 2. MSE values when p = 4 and φ = 2.

n ρ MLE BRRE BLE BJSE

25 0.80 6.4627 1.3987 1.1296 0.0133
0.90 10.7622 1.8489 1.2480 0.0176
0.95 18.9248 2.5871 1.4515 0.0309
0.99 80.5334 6.9978 2.8172 0.0558

50 0.80 5.3949 1.3988 1.1867 0.0102
0.90 8.3746 1.7093 1.2997 0.0114
0.95 15.8659 2.4445 1.5502 0.0171
0.99 72.1370 7.6020 3.5494 0.0754

100 0.80 4.7050 1.3869 1.1943 0.0105
0.90 7.2863 1.6856 1.3161 0.0127
0.95 13.4238 2.3021 1.5348 0.0232
0.99 62.8020 6.6832 3.3142 0.0614

200 0.80 4.6520 1.4179 1.2159 0.0097
0.90 7.4753 1.7021 1.3140 0.0132
0.95 13.1924 2.2385 1.5303 0.0163
0.99 59.9683 6.3953 3.1602 0.0421
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Table 3. MSE values when p = 4 and φ = 4.

n ρ MLE BRRE BLE BJSE

25 0.80 6.2490 1.5284 1.8145 0.0064
0.90 9.4013 1.7942 1.8423 0.0068
0.95 15.5545 2.0603 1.8816 0.0069
0.99 70.1703 3.0807 2.0481 0.0166

50 0.80 5.6431 1.9438 2.0962 0.0066
0.90 8.2453 2.1329 2.1448 0.0066
0.95 13.5659 2.3679 2.1994 0.0070
0.99 53.3069 2.8795 2.2477 0.0113

100 0.80 5.1760 2.1259 2.2223 0.0064
0.90 7.3100 2.2707 2.2698 0.0067
0.95 11.3598 2.3785 2.2594 0.0067
0.99 45.4312 2.8511 2.3588 0.0095

200 0.80 5.0151 2.2288 2.2571 0.0067
0.90 7.3051 2.3307 2.3098 0.0066
0.95 11.3282 2.4420 2.3336 0.0073
0.99 45.0837 2.8612 2.4236 0.0104

Table 4. MSE values when p = 8 and φ = 0.5.

n ρ MLE BRRE BLE BJSE

25 0.80 14.4602 10.2698 7.0766 0.1385
0.90 27.5441 19.2596 12.0479 0.2453
0.95 54.3278 38.3086 23.2843 0.4821
0.99 267.7602 189.9188 103.5674 2.4785

50 0.80 12.0083 9.5397 7.1170 0.1480
0.90 21.7311 17.1241 12.1802 0.2245
0.95 46.5936 36.8466 25.6372 0.5748
0.99 229.2447 181.7785 120.6328 2.7580

100 0.80 9.4963 7.9802 6.2299 0.1224
0.90 18.5056 15.5946 11.9021 0.2080
0.95 36.4193 30.3996 22.0716 0.4994
0.99 171.0047 143.1465 101.6485 2.2256

200 0.80 7.8956 6.6087 5.1605 0.0876
0.90 15.1933 12.7549 9.8112 0.1711
0.95 28.6629 24.1113 18.3379 0.3373
0.99 140.9234 118.2390 87.3198 1.6646

Table 5. MSE values when p = 8 and φ = 2.

n ρ MLE BRRE BLE BJSE

25 0.80 7.9364 1.6766 0.9151 0.0063
0.90 14.2907 2.4639 0.9736 0.0068
0.95 26.0463 3.8414 0.9782 0.0073
0.99 122.6603 16.0591 1.7971 0.0138

50 0.80 7.6179 1.8736 1.1142 0.0068
0.90 12.8157 2.5630 1.1970 0.0072
0.95 26.0388 4.5593 1.5642 0.0070
0.99 121.9319 18.8122 3.9769 0.0139

100 0.80 6.9840 1.9318 1.1872 0.0068
0.90 13.5102 3.0154 1.4046 0.0072
0.95 24.7111 4.9733 1.8341 0.0088
0.99 115.6346 19.3958 5.0523 0.0134

200 0.80 6.4306 1.9172 1.2011 0.0067
0.90 11.5315 2.8416 1.4470 0.0071
0.95 21.5192 4.7065 1.9236 0.0073
0.99 101.4062 18.2504 5.1877 0.0130
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Table 6. MSE values when p = 8 and φ = 4.

n ρ MLE BRRE BLE BJSE

25 0.80 13.2816 2.3022 1.7579 0.0060
0.90 25.0109 2.8321 1.7549 0.0061
0.95 47.8323 3.5103 1.7259 0.0061
0.99 242.7295 8.8577 1.8665 0.0083

50 0.80 8.9790 2.3142 2.0626 0.0060
0.90 16.4034 2.5588 2.0357 0.0060
0.95 30.5502 3.0320 2.0670 0.0060
0.99 132.2195 5.2522 2.1638 0.0068

100 0.80 7.5304 2.3190 2.1842 0.0060
0.90 11.8247 2.4652 2.2112 0.0060
0.95 23.2899 2.7410 2.2456 0.0061
0.99 101.3828 4.0067 2.3584 0.0062

200 0.80 6.0690 2.3196 2.2345 0.0060
0.90 9.6305 2.5019 2.2806 0.0061
0.95 16.4462 2.6550 2.3043 0.0061
0.99 70.2664 4.0088 2.5135 0.0062

Table 7. MSE values when p = 16 and φ = 0.5.

n ρ MLE BRRE BLE BJSE

25 0.80 43.4944 20.1412 6.2921 0.0219
0.90 68.9946 30.5975 8.1108 0.0368
0.95 122.1327 54.1582 12.0353 0.0627
0.99 512.1863 227.8365 34.4323 0.3919

50 0.80 11.5400 9.5442 5.6648 0.0206
0.90 20.7754 17.2050 9.1853 0.0325
0.95 36.8046 30.2893 14.3016 0.0435
0.99 185.5982 153.1086 58.5106 0.2491

100 0.80 8.1218 7.3256 5.4739 0.0168
0.90 14.4091 12.9940 9.3324 0.0298
0.95 25.7923 23.2135 15.8513 0.0437
0.99 127.09 114.0686 70.6642 0.1653

200 0.80 7.8645 7.2567 5.7357 0.0133
0.90 14.0656 12.9589 9.9166 0.0248
0.95 25.9437 23.8470 17.5901 0.0406
0.99 138.5874 127.3191 90.0634 0.2117

Table 8. MSE values when p = 16 and φ = 2.

n ρ MLE BRRE BLE BJSE

25 0.80 21.1242 3.4145 0.6161 0.0059
0.90 40.7154 6.3938 0.5819 0.0059
0.95 78.2061 11.5353 0.5017 0.0060
0.99 407.9165 57.3339 0.4968 0.0062

50 0.80 9.9701 3.1735 1.0571 0.0060
0.90 19.6400 5.3931 1.0852 0.0060
0.95 36.6894 9.9315 1.2121 0.0064
0.99 180.6976 45.1333 2.8547 0.0064

100 0.80 7.7951 3.0197 1.2312 0.0060
0.90 13.6867 4.8287 1.4071 0.0060
0.95 25.4187 8.4758 1.6711 0.0061
0.99 125.8874 38.7256 4.3898 0.0066

200 0.80 7.1972 2.9197 1.2672 0.0060
0.90 13.6888 5.0768 1.6303 0.0060
0.95 25.7351 8.8829 2.1168 0.0061
0.99 123.1280 41.1498 6.9120 0.0066
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Table 9. MSE values when p = 16 and φ = 4.

n ρ MLE BRRE BLE BJSE

25 0.80 40.3836 1.8424 1.1611 0.00587
0.90 69.3023 2.2815 1.0925 0.00587
0.95 129.7419 2.7962 1.0744 0.00586
0.99 597.6512 7.0223 1.1204 0.00586

50 0.80 9.2863 2.2942 1.8401 0.00588
0.90 14.6709 2.6118 1.8407 0.00588
0.95 26.0316 3.0045 1.8312 0.00588
0.99 111.4912 6.6920 1.8686 0.00589

100 0.80 6.1727 2.4344 2.1374 0.00589
0.90 9.1661 2.5938 2.1182 0.00590
0.95 15.8667 3.0121 2.1030 0.00590
0.99 60.4369 5.7592 2.1862 0.00590

200 0.80 6.2040 2.5333 2.2356 0.00589
0.90 9.6210 2.7732 2.2366 0.00590
0.95 15.6217 3.1793 2.2388 0.00590
0.99 67.9239 6.8229 2.3653 0.00590

1. The first factor that affected the MSEs of the BRM estimate was multicollinearity, which
had a direct effect on the estimators’ performance. This was indicated by the fact that
as we increased the level of multicollinearity, the MSEs of the considered estimators
were increasing. On comparing the performance of the BJSE under multicollinearity,
it was observed that the increase in MSE of the BJSE was too small as compared to
the MSEs of the MLE, BRRE and BLE. These results show that the performance of the
proposed estimator was better than the available estimators.

2. The second factor that affected the performance of the BRM estimators was the sample
size. From the simulation results, we found that the estimated MSEs of the considered
estimators decreased with the increase in sample size. For all considered sample sizes,
the performance of the BJSE was better as compared to other BRM’s estimators.

3. The number of explanatory variables also affected the simulation results of the BRM’s
estimators. Simulation results show that there was a direct relationship between the
MSEs of the estimators and the number of explanatory variables. This indicated that
the number of explanatory variables increased the MSEs of the BRM’s estimators. This
increase in the MSE of the BJSE was very small as compared to other biased estimators.
Again, BJSE showed an efficient and more consistent performance as compared to
other biased estimators for dealing with the issue of multicollinearity for larger p
and precision.

4. The last factor affecting the performance of the biased estimators is the dispersion pa-
rameter. As the dispersion parameter increased, the MSEs of the estimators decreased
because the dispersion parameter is the reciprocal of the precision parameter.

4. Empirical Applications

In the following section, we analyzed two real-life applications to evaluate the perfor-
mance of the suggested estimator. We used the MSE as evaluation criterion to demonstrate
the performance of the proposed estimator.

4.1. Application 1: Heat-Treating Test Data

This dataset consists of the result of the pitch carbon analysis test and was taken from
Montgomery and Runger [33]. There are 32 observations in the dataset, where pitch is the
response variable and there are five independent variables. These variables are explained
as follows: y = pitch, which represents a brand’s introduction to the client’s heart, implying
that the amount of vibrations produced controls the sound quality. The explanatory
variables can be defined as the x1 = furnace temperature, x2 = carbon concentration (soak
time), x3 = carburizing cycle (soak pct), x4 = carbon concentration (Diff time), x5 = duration
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of the defuse time (Diff pct). The response variable is continuous and in the form of a ratio,
so the appropriate model for modeling such a variable is the BRM. In this study, we propose
the BJSE for estimating the model parameters when multicollinearity exists among the
regressors. However, for comparing the performance of the new proposed estimator, we
also estimated the model parameters of the MLE, the BRRE and the BLE. The coefficients
of the MLE, the BRRE, the BLE and the BJSE were calculated using Equations (6), (9), (14)
and (19), whereas the MSEs of these estimators are obtained from Equations (8), (13), (18)
and (26), respectively. Table 10 shows the coefficients and MSEs of the MLE, the BRRE,
the BLE and the BJSE. As shown in Table 10, it is observed that the MLE gained a high
value of MSE, which proves that MLE is not an appropriate method of estimation in the
case of high but imperfect multicollinearity. The other estimators indicating smaller values
of the MSEs as compared to the MLE. Among these estimators, the proposed estimator,
the BJSE, achieved a lower MSE, which indicates its superiority to the other estimators.
Therefore, it is possible to say that the suggested estimator is the best option for estimating
BRM parameters in the presence of multicollinearity.

Table 10. Estimated coefficients and MSEs of the MLE, the BRRE, the BLE and the BJSE for heat-
treating test data.

β̂ML β̂BRRE β̂BLE β̂BJSE

Intercept −8.4172 −0.0021 −0.0102 −1.4020
x1 0.0023 −0.0026 −0.0025 0.0004
x2 0.0500 0.0634 0.0686 0.0083
x3 0.5213 0.0087 −0.0192 0.0868
x4 0.4528 0.5091 0.4068 0.0754
x5 −0.2220 −0.0485 −0.1349 −0.0370

MSE 1813.3358 29.6055 3.6792 0.4215

4.2. Application 2: Body Fat Data

In this section, we looked at another real-world application (body fat) to demonstrate
the superiority of the proposed estimator, BJSE. Johnson [34] used this dataset for predicting
body fat and he found that the distribution of this dataset is non-linear in nature. It was also
used by Bailey [35] to predict body fat based on age and several skinfold measurements.
This dataset consists of n = 252 observations, with one response and 14 independent
variables. The response variable, y, is the percentage of body fat, and the independent
variables include density determined from underwater weighing (x1), age (x2), weight (x3),
height (x4), neck circumference (x5), chest circumference (x6), abdomen circumference
(x7), hip circumference (x8), thigh circumference (x9), knee circumference (x10), ankle
circumference (x11), biceps extended circumference (x12), forearm circumference (x13) and
wrist circumference (x14). Given that the body fat data are in the form of a percentage,
we used BRM for the evaluation of the impact of these factors on the response variable y.
Table 11 consists of the estimated coefficients and MSEs of the MLE, the BRRE, the BLE and
the BJSE. From Table 11, we observed that BJSE had the minimum MSE as compared to
other estimators, which indicates its superiority over the other estimators. Table 11 also
indicates that the MLE gained a high value of MSE, which proves that the MLE becomes
unstable in the case of high but imperfect multicollinearity. The other estimators showed
the minimum values of MSE, but among all the estimators, the proposed estimator BJSE
achieved a lower MSE, which indicates its superiority to the other estimators. Therefore,
based on simulation results and example findings, we conclude that our proposed estimator
is the best option for estimating the BRM parameters when multicollinearity exists among
the explanatory variables.
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Table 11. Estimated coefficients and MSEs of MLE, BRRE, BLE and BJSE for Body Fat Data.

β̂ML β̂BRRE β̂BLE β̂BJSE

Intercept 30.6659 −0.0013 28.4802 2.0444
x1 −30.6599 −0.0023 −28.5600 −2.0440
x2 0.0018 0.0055 0.0020 0.0001
x3 0.0005 0.0043 0.0005 0.0000
x4 0.0048 −0.0132 0.0038 0.0003
x5 −0.0040 −0.0515 −0.0069 −0.0003
x6 −0.0010 −0.0159 −0.0018 −0.0001
x7 −0.0036 0.0689 0.0014 −0.0002
x8 −0.0056 −0.0442 −0.0079 −0.0004
x9 0.0087 0.0212 0.0097 0.0006
x10 0.0058 −0.0064 0.0052 0.0004
x11 −0.0074 0.0024 −0.0066 −0.0005
x12 0.0047 0.0207 0.0059 0.0003
x13 −0.0025 0.0270 −0.0005 −0.0002
x14 0.0085 −0.1368 −0.0008 0.0006

MSE 119.4920 106.9982 103.4527 0.2352

5. Limitations of the Proposed Model

The BRM has a limitation that it is suitable for the response variable that lies between
zero and one, but it is not suitable when the response variables take the values of zero or
one. Like other biased estimators (ridge and LE), the JSE is also based on its shrinkage
parameter (c). In the current study, we focused only on one Stein parameter. As in the
literature, various biasing parameters are proposed for the ridge estimator and the LE.
Similarly, one can consider several Stein parameters to find out the optimum values for the
JSE in reducing the effect of multicollinearity in the BRM.

6. Conclusions

The BRM is an appropriate model to use for predicting the response variable when
it is in the form of ratios or proportions and follows the beta distribution. Sometimes,
the explanatory variables of the model are linearly correlated and this is known as multi-
collinearity. In the case of multicollinearity, using the MLE method of estimating model
parameters becomes unreliable. To address this, alternative methods, such as ridge, Liu
and other estimation methods have been considered. The current study addressed the issue
of multicollinearity by proposing the use of the JSE for the BRM. Furthermore, we derived
its mathematical properties and compared its performance theoretically with the available
methods (MLE, BRRE and BLE) in terms of MSE. A simulation experiment was conducted
by varying different factors to evaluate the efficiency of the proposed estimator over other
estimators. Two real-life applications were also analyzed to illustrate the findings of the
simulation experiment. From the results of the simulation, it was observed that for all the
scenarios, the suggested estimator outperformed its competitive estimators in the context
of smaller MSE. Moreover, the findings of both applications revealed the efficiency of the
proposed estimator over other considered estimators. This whole study gives evidence
that, in the case of severe multicollinearity, biased estimation methods performed well.
Results of both the simulation study and empirical applications provide evidence that the
JSE is superior to other estimators due to its smaller MSE as compared to other considered
estimators. Hence, based on the findings of the simulation experiment and real-life applica-
tions, we recommend practitioners utilize the BJSE for estimating BRM parameters due to
its better results in the presence of multicollinearity.
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