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Abstract: In this paper, we propose a characteristic function of the maxmax defensive-equilibrium
representation that maps every TU-game with strategies to a TU-game. This characteristic function
is given by a two-step procedure in which each of any two complementary coalitions successively
selects the equilibrium in a way that maximizes its utility. We then investigate the properties of this
characteristic function and present the relations of the cores under three characteristic functions.
Finally, as applications of our findings, we provide a firm production advertising game, a supply
chain network game, a cost game with strategies, and a Cournot game.
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1. Introduction

After von Neumann and Morgenstern [1] introduced the TU-games associated with
strategies, the model of the TU-game associated with strategies has been widely used to
analyze cooperation in multi-agent decision-making problems. For a class of games that
generate coalition values on strategy profiles similar to biform games, existing literature
has attempted to reduce the initial model to a strategic game to study its values and
solutions. For instance, Ui [2] focused on reducing a TU-game with action choices to a
strategic game where the payoff of each strategy profile is determined by the Shapley
value [3] of the corresponding TU-game. In the same line, Brandenburger and Stuart [4]
proposed the biform game analysis where the value of each coalition depends on the
strategies of all players, in the sense that they reduce a biform game to a strategic game,
where the payoff of each strategy profile is determined by a particular element in the
core [5] of the corresponding TU-game. Following Brandenburger and Stuart [4], the model
of biform games has been widely used in multi-agent decision problems. For instance,
Ryall et al. [6] developed a biform game that allows the analysis of the dynamics of value
appropriation when the topology of a relational network restricts the options available to
actors. Feess et al. [7] applied the Shapley value to calculate the revenue of each firm and
subtract the investment cost to obtain the payoff of each firm; based on these payoffs, they
give the integration among firms using Nash equilibrium, González et al. [8] built novel
three-player biform coalitional games to analyze community energy projects in Chile and
Scotland, where the payoff of each strategy profile is determined using the core with the
confidence index.

In the above studies of the class of games that generate coalition values on strategy
profiles, the Nash equilibria were mainly used as the final solution, and the player coop-
eration occurred only on each strategy profile and was not shown on the set of strategy
profiles. Fiestras-Janeiro et al. [9] referred to this class of games as TU-game with strategies.
They introduced the maxmin procedure to reflect strategic moves between complementary

Axioms 2023, 12, 521. https://doi.org/10.3390/axioms12060521 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12060521
https://doi.org/10.3390/axioms12060521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-8724-6449
https://doi.org/10.3390/axioms12060521
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12060521?type=check_update&version=3


Axioms 2023, 12, 521 2 of 18

coalitions, where each player in a coalition chooses one of the strategies in a set. Then, a
TU-game depends on the chosen strategy profile associated with the coalition. Following
the research route of Fiestras-Janeiro et al. [9], Liu et al. [10] presented the study under the
minimax representation for the TU-games in characteristic function.

In this paper, we introduce a characteristic function of the maxmax defensive-equilibrium
representation into a TU-game with strategies and transform this game into a cooperative
game in characteristic function. We present the Shapley value and core as the solution to
this cooperative game and investigate the properties of the core. This cooperative game
is a new model in which players play defensive strategies in a coalition to obtain the
characteristic function value.

Given a strategic game with TU, von Neumann and Morgenstern formulated a coop-
erative game with the characteristic function of minimax representation which asserts that
a coalition’s value is the maximum sum of utilities that the members of the coalition can
guarantee themselves against the best offensive threat by the complementary coalition [1].
The characteristic function of defensive-equilibrium representation is derived by assuming
that complementary coalitions would play an essentially defensive pair of equilibrium
strategies against each other [11], and the rational-threats representation [12] is derived by
assuming that a coalition S maximizes the difference between its value minus the value of
the complementary coalition −S. In the TU-games with strategies, Fiestras-Janeiro et al. [9]
and Liu et al. [10] respectively proposed the maxmin procedure and minimax representa-
tion to obtain the characteristic function values and transform the TU-game with strategies
into a TU-game.

The most critical aspect of transforming a strategic form game into a cooperative game
is how to determine the characteristic function. In the methods of the maxmin procedure [9]
and minimax representation [10], the strategy choices of the players in the complementary
coalition −S must be against the coalition S (i.e., minimize the earnings of coalition S).
Especially in the 2-person game, the rivalry between these two procedures is shown
between the two players, which is significantly higher than the noncooperative behavior in
the Nash equilibrium, which corresponds to a solution in which each player maximizes
their interests but not confrontation. The characteristic function of defensive-equilibrium
representation corresponds to the idea of Nash equilibrium, which shows the alliance
behavior of the players in coalition S and the noncooperative behavior of the players
in complementary coalition −S. Therefore, we will introduce a defensive-equilibrium
approach to study the TU-game with strategies.

However, it is difficult to determine the characteristic function values by applying
the existing defensive equilibrium. There are two main reasons for this difficulty: First,
in the case where the strategy set is a mixed strategy set or a bounded closed convex set,
the existence condition for a Nash equilibrium is strict, requiring the utility function to
be concave (or quasiconcave) with respect to the multivariate (as shown in literature [13]).
Second, even if the set of strategies is finite, due to the multiplicity of Nash equilibria, it is
still difficult to obtain a defensive equilibrium. These problems are summarized as how
to filter the Nash equilibria, and the methods are mainly refinement and selection. For
example, trembling-hand perfect equilibrium [14] and essential equilibrium [15,16] are
refining methods; focal equilibrium [17] and the selection of risk dominance and payoff
dominance [18] are selecting methods. However, in most cases, it is not possible to refine
or select a Nash equilibrium set into a single point set. In this paper, we will try to select
Nash equilibria from the defensive rationality of coalitions and complementary coalitions.

To select Nash equilibria, we design a two-step procedure. First, the complementary
coalition −S maximizes its utility on the Nash equilibrium set E(S,−S) (i.e., the Nash
equilibrium set between coalitions S and −S), and the Nash equilibrium set corresponding
to this maximized utility is denoted as E−S(S,−S). Second, the coalition S maximizes
its utility on set E−S(S,−S), then this maximum utility is its characteristic function value
ω(X, V)(S). Let us say that the function ω corresponding to ω(X, V)(S) is the characteristic
function of the maxmax defensive-equilibrium representation. The characteristic function ω
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transforms the TU-game with strategies (X, V) into a TU-game (N, V, ω). The values of all
coalitions under characteristic function ω are not lower than the values under the maxmin
procedure and minimax representation. Moreover, this two-step procedure provides a
reference for selecting Nash equilibria in strategic games.

Models of TU-games with strategies have a wide range of practical applications, such
as the aforementioned applications under the biform game analysis. Fiestras-Janeiro et al. [9]
considered a set of agents who have to divide a certain amount of money; they can negotiate
directly or, on the contrary, they can previously take some (costly) actions that will modify
their negotiation power. Any situation of this type can be modeled as a TU-game with
strategies. A reasonable recommendation for the players involved in one such process is
that they negotiate directly, avoiding the costly actions but taking into account their capaci-
ties for changing the negotiation power. This is their main idea regarding TU-games with
strategies: to associate each TU-game with strategies to a new TU-game that appropriately
reflects the bargaining coalitional power of the involved players. In this paper, we present
applications of the TU-games with strategies to a firm production advertising game, a
supply chain network game, a cost game with strategies, and a Cournot game. In these
applications, the bargaining power of any coalition is reflected through the characteristic
function of the maxmax defensive-equilibrium representation.

The remainder of the paper is organized as follows. In Section 2, we recall the TU-
games with strategies, introduce a characteristic function to build a cooperative game
model, and examine the properties of the characteristic function. In Section 3, we present
the Shapley value and core as the solution to the cooperative game and investigate the
properties of the core as applications of these relations, the corresponding examples are
presented. In Section 4, we discuss the existence and properties of the characteristic function.
The paper is concluded in Section 5.

2. Cooperative Game with a Characteristic Function

Let N = {1, · · · , n} be a finite set of players and 2N be the set of subsets (i.e., coalitions)
of N. Denote by |S| the number of players in a nonempty coalition S ∈ 2N . Xi is a finite
pure strategy set of player i ∈ N, X = ∏

i∈N
Xi is the set of finite pure strategy profiles of all

players. For each nonempty coalition S ∈ 2N , let XS = ∏
i∈S

Xi be the set of strategies of S,

xS = {xi : i ∈ S} ∈ XS is a strategy of S. For each i ∈ N and S ⊆ N, denote −S = N\S,
then x = (xS, x−S) ∈ (XS, X−S) = X.

The coalition function V [4,9,10] is a map from X to the set of maps from 2N to the reals.
For each x ∈ X, the value of coalition S ∈ 2N is given by the map V(x) : 2N → R, that is,
V(x)(S) is the value created by coalition S on x, with V(x)(∅) = 0 for any x ∈ X.

A TU-game with strategies [9] involving player set N is a pair (X, V). Denote by SG(N)
the set of TU-games with strategies involving player set N and by SG the set of all TU-games
with strategies involving a finite set of players. A TU-game is a function from 2N to R such
that the value on the empty set is equal to 0. Denote by G(N) the set of TU-games involving
player set N and by G the set of all TU-games involving a finite set of players. A procedure
to transform a TU-game with strategies into a TU-game is a map φ : SG → G that associates
a TU-game φ(X, V) ∈ G(N) with every TU-game with strategies (X, V) ∈ SG(N).

We give the following definition by referring to Myerson [11].

Definition 1. For each TU-game with strategies (X, V) ∈ SG(N), we say that µ is a characteristic
function of defensive-equilibrium representation if, for every pair of complementary coalitions
S,−S ∈ 2N , there exist strategies x∗S ∈ XS and x∗−S ∈ X−S such that

x∗S ∈ arg max
xS∈XS

V(xS, x∗−S)(S),

x∗−S ∈ arg max
x−S∈X−S

V(x∗S, x−S)(−S),

µ(X, V)(S) = V(x∗S, x∗−S)(S), and µ(X, V)(−S) = V(x∗S, x∗−S)(−S).
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In particular, N and ∅ are a pair of complementary coalitions, so µ(X, V)(N) = max
x∈X

V(x)(N).

Obviously, if we consider coalitions S and −S as two single players, then the strategy
profile (x∗S, x∗−S) can be interpreted as a Nash equilibrium between S and −S.

For each pair of complementary coalitions S,−S ∈ 2N , denote by E(S,−S) the set of
Nash equilibria between S and −S. Particularly, E(N, ∅) = arg max

x∈X
V(x)(N) 6= ∅.

Assumption 1. For each (X, V) ∈ SG(N), assume that E(S,−S) 6= ∅ for all S,−S ∈ 2N .

Due to the multiplicity of the Nash equilibria, E(S,−S) is generally not a single-point
set. As mentioned in the introduction, in most cases, existing methods of refinement
and selection for Nash equilibria frequently fail to produce a unique Nash equilibrium,
and hence, it is difficult to confirm the characteristic function value µ(X, V)(S). Following
the idea of the defensive equilibrium, we now select a Nash equilibrium from E(S,−S)
by taking the maximum values of complementary coalitions −S and S, respectively, to
determine the characteristic function value for coalition S.

Firstly, the coalition−S maximizes its value in E(S,−S), and the set of Nash equilibria
corresponding to this maximum value is denoted by

E−S(S,−S) = arg max
x∈E(S,−S)

V(x)(−S).

Secondly, the coalition S selects the Nash equilibria in E−S(S,−S) to maximize its
value; the set of Nash equilibria corresponding to this maximum value is denoted by

E∗S(S,−S) = arg max
x∈E−S(S,−S)

V(x)(S).

In particular, if S = N, then E∗N(N, ∅) = E∅(N, ∅) = E(N, ∅) = arg max
x∈X

V(x)(N).

Definition 2. The characteristic function of the maxmax defensive-equilibrium representation is
the map ω : SG → G given, for all N and (X, V) ∈ SG(N), by

ω(X, V)(S) = V(y∗S, y∗−S)(S), (y
∗
S, y∗−S) ∈ E∗S(S,−S),

for all S ∈ 2N . Specially, for the grand coalition N, ω(X, V)(N) = max
x∈X

V(x)(N).

The characteristic function ω is derived by assuming that complementary coalitions
S and −S would play a maximized essentially defensive pair of equilibrium strategies
against each other.

For each TU-game with strategies (X, V) ∈ SG(N), an n-person cooperative game in
characteristic function is denoted by (N, V, ω), where V is the coalition function and ω is
the characteristic function of the maxmax defensive-equilibrium representation.

For each S ∈ 2N , the characteristic function of the maxmin representation (maxmin
procedure) [9] and the characteristic function of minimax representation [10] are

ψ1(X, V) = max
xS∈XS

min
x−S∈X−S

V(xS, x−S)(S)

and
ψ2(X, V) = min

x−S∈X−S
max

xS∈XS
V(xS, x−S)(S),

respectively. Both ψ1 and ψ2 implicitly present relations involving coalitions S and −S
against each other, which seems to deviate from the idea of cooperation even more than
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from noncooperation, while the characteristic function ω more appropriately expresses the
idea of noncooperation and defense.

Example 1. Given a TU-game with strategies (X, V), with N = {1, 2}, A1 = {U, D}, A2 =
{L, R}. Its coalition function values are given in Table 1.

In Table 1, it is easy to see that there are two Nash equilibria between complementary coalitions
{1} and {2}, i.e., E({1}, {2}) = {(U, L), (D, R)}. Then

E{2}({1}, {2}) = E∗{1}({1}, {2}) = {(D, R)},

it yields ω(X, V)({1}) = 4. Similarly,

E{1}({1}, {2}) = E∗{2}({1}, {2}) = {(U, L)},

thus, ω(X, V)({2}) = 5. Particularly, ω(X, V)({1, 2}) = 18.
In addition, in Table 1, the characteristic function µ cannot be confirmed, and in Table 2,

ψ1(X, V){1} = ψ1(X, V){2} = 0 may be unreasonable, because it is seen that the individual
rationality requirement of player 2 should be higher than that of player 1 when observed from the
whole game pattern.

Table 1. Coalition function values of Example 1.

S {1} {2} {1, 2}
V(U, L) 6 5 18
V(U, R) 0 0 1
V(D, L) 0 0 1
V(D, R) 4 7 15

Table 2. Characteristic function values of Example 1.

S {1} {2} {1, 2}
ω(X, V) 4 5 18
ψ1(X, V) 0 0 18
ψ2(X, V) 4 5 18

Let the general representation of the characteristic function based on the coalition
function V be V . We provide the following properties by referring to Carpente et al. [19]
and Fiestras-Janeiro et al. [9].

Coalition objectivity. For each (X, V) ∈ SG(N), if a coalition S ∈ 2N is such that
V(x)(S) = c for all x ∈ X, then V(X, V)(S) = c.

Let (X, V) ∈ SG(N) . A strategy xS ∈ XS of coalition S ∈ 2N is weakly dominated in
S if there exists a strategy x′S ∈ XS, x′S 6= xS, such that V(x′S, x−S)(S) ≥ V(xS, x−S)(S) for
all x−S ∈ X−S. Moreover, (X−xS , V) denotes the TU-game with strategies that is obtained
from (X, V) by deleting strategy xS.

Irrelevance of weakly dominated strategies. For each (X, V) ∈ SG(N), if strategy xS ∈ XS
is weakly dominated in S, then V(X, V)(S) = V(X−xS , V)(S).

Let (X, V) ∈ SG(N) and S ∈ 2N . A strategy x−S ∈ X−S of coalition −S is a weakly
dominated threat to coalition S if there exists a strategy x′−S ∈ X−S, x′−S 6= x−S, such that
V(xS, x′−S)(S) ≤ V(xS, x−S)(S) for all xS ∈ XS. Furthermore, (X−x−S , V) denotes the
TU-game with strategies that is obtained from (X, V) by deleting strategy x−S.

Irrelevance of weakly dominated threats. For each (X, V) ∈ SG(N) and S ∈ 2N , if strategy
x−S ∈ X−S is a weakly dominated threat to coalition S, then V(X, V)(S) = V(X−x−S , V)(S).

Let (X, V) ∈ SG(N) and ∅ 6= S ⊆ N. Denote by NS the set {[S]} ∪ N\S, i.e., the set
of |N| − |S|+ 1 players in which the coalition S is considered as a single player, and let
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(XS, VS) be the TU-game with strategies that are obtained from (X, V) by considering the
coalition S as a single player.

Merge invariance. Let (X, V) ∈ SG(N) and ∅ 6= S ⊆ N. Then, for each T ⊆ N\S,
V(X, V)(T) = V(XS, VS)(T) and V(X, V)(T ∪ S) = V(XS, VS)(T ∪ {[S]}).

Irrelevance of complementary weakly dominated strategies. Let (X, V) ∈ SG(N) and S ⊆ N,
if strategy x−S ∈ X−S is weakly dominated in −S, then V(X, V)(S) = V(X−x−S , V)(S).

Irrelevance of complementary weakly dominated threats and strategies. Let (X, V) ∈ SG(N)
and S ⊆ N, if strategy x−S ∈ X−S is a weakly dominated threat to coalition S, at the same
time, it is weakly dominated in −S, then V(X, V)(S) = V(X−x−S , V)(S).

Property 1. For each (X, V) ∈ SG(N), the characteristic function of the maxmax defensive-
equilibrium representation ω satisfies the coalition objectivity, the irrelevance of weakly dominated
strategies, the irrelevance of complementary weakly dominated strategies, and merge invariance.

Proof. Let (X, V) ∈ SG(N) and S ∈ 2N be such that V(x)(S) = c, for all x ∈ X. It is clear
that ω(X, V) = c, thus, ω satisfies the coalition objectivity.

If strategy yS ∈ XS is weakly dominated in S, then there exists y′S ∈ XS such that

V(y′S, x−S)(S) ≥ V(yS, x−S)(S)

for all x−S ∈ X−S. Take y∗−S ∈ X−S with (y∗S, y∗−S) ∈ E∗S(S,−S), then

V(y∗S, y∗−S)(S) ≥ V(y′S, y∗−S)(S) ≥ V(yS, y∗−S)(S).

Thus,
ω(X, V)(S) = ω(X−yS , V)(S).

This shows that ω satisfies the irrelevance of weakly dominated strategies.
To check that ω satisfies the irrelevance of complementary weakly dominated strate-

gies, notice that if strategy y−S ∈ X−S is weakly dominated in −S, then there exists
y′−S ∈ X−S such that

V(xS, y′−S)(−S) ≥ V(xS, y−S)(−S)

for all xS ∈ XS. Take y∗S ∈ XS with (y∗S, y∗−S) ∈ E−S(S,−S), then

V(y∗S, y∗−S)(−S) ≥ V(y∗S, y′−S)(−S) ≥ V(y∗S, y−S)(−S).

Then y−S is not implemented by coalition −S, thus, when the coalition S selects
E∗S(S,−S) in E−S(S,−S), it is not related to y−S. Therefore,

ω(X, V)(S) = ω(X−y−S , V)(S).

From the definition of ω, it is clear that ω satisfies the merge invariance. The proof is
completed.

Clearly, the irrelevance of complementary weakly dominated threats and strategies is
a special form of the irrelevance of complementary weakly dominated strategies. By their
definitions, we obtain the following corollary of Property 1.

Corollary 1. For each (X, V) ∈ SG(N), the characteristic function of the maxmax defensive-
equilibrium representation ω satisfies the coalition objectivity, the irrelevance of weakly dominated
strategies, the irrelevance of complementary weakly dominated threats and strategies, and merge
invariance.

3. Solutions of Cooperative Games and Their Relations

Denote the cooperative game corresponding to V as (N, V,V). The utility allocation
u = (u1, · · · , un) ∈ Rn is said to be individual rational if ui ≥ V(X, V)({i}) for all i ∈ N; it
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is said to be collective rational if ∑
i∈N

ui = V(X, V)(N); and it is said to be coalition rational if

∑
i∈S

ui ≥ V(X, V)(x)(S) for all S ∈ 2N .

The Shapley value ϕ(V) ∈ Rn of cooperative game (N, V,V) is given by

ϕi(V) = ∑
S⊆−i

s!(n− s− 1)!
n!

[V(S ∪ {i})− V(S)]

for all i ∈ N.
For any nonempty coalition S ∈ 2N , denoted by 1S ∈ Rn, the characteristic vector of S,

its i−th coordinate is

(1S)i =

{
1,
0,

if i ∈ S,
otherwise.

A map λ : 2N\{∅} → R+ is called a balanced map if ∑
S∈2N\{∅}

λ(S)1S = 1N , and a

cooperative game (N, V,V) is said to be balanced if ∑
S∈2N\{∅}

λ(S)V(X, V)(S) ≤ V(X, V)(N)

for each balanced map λ.
We say that (N, V,V) is balanced if and only if its core C(V) 6= ∅ is

C(V) = {u = (u1, · · · , un) ∈ Rn : ∑
i∈N

ui = V(X, V)(N); ∑
i∈S

ui ≥ V(X, V)(S), ∀S ∈ 2N , S 6= N}.

In Example 1,

C(ω) = C(ψ2) = {(u1, u2) ∈ R2 : 4 ≤ u1 ≤ 13, 5 ≤ u1 ≤ 14},
C(ψ1) = {(u1, u2) ∈ R2 : 0 ≤ u1 ≤ 18, 0 ≤ u1 ≤ 18}.

Example 2 ([20]). Consider the case that a business owner approaches three advertising firms,
each of which has its cable channel to produce and broadcast an advertising program. Each firm
independently decides whether to accept the job offer. The business owner is willing to pay $17 to
each firm for her job. In Table 3, the three advertising firms are players 1, 2, and 3, each one with a
pure strategy set {0, 1}, where 0 or 1 indicates that one is turning down the job or accepting the
job. The three strategies of each strategy profile are, in turn, owned by players 1, 2, and 3. Let D(S)
denote the total cost of creating advertisement artworks for firms in coalition S. Assuming that all
the firms take their assigned jobs, the complete cost schedule for advertisement(s) collaboration costs
are as follows.

Table 3. Coalition function values for creating advertisements art works.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
V(0, 0, 0) 0 0 0 0 0 0 0
V(0, 1, 0) 0 −1 0 −1 0 −1 −1
V(1, 0, 0) 2 0 0 2 2 0 2
V(1, 1, 0) 2 −1 0 4 2 −1 4
V(0, 0, 1) 0 0 −3 0 −3 −3 −3
V(0, 1, 1) 0 −1 −3 −1 −3 2 2
V(1, 0, 1) 2 0 −3 2 3 −3 3
V(1, 1, 1) 2 −1 −3 4 3 2 4.4

D({1}) = 15, D({2}) = 18, D({3}) = 20, D({1, 2}) = 30,
D({1, 3}) = 31, D({2, 3}) = 32, D({1, 2, 3}) = 46.6.
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For each x ∈ X, the value V(x)(S) of coalition S is equal to the income paid by the business to
S minus the cost of S for creating advertisement artworks. For instance,

V((0, 1, 1))({1}) = 0× 17− 0 = 0,
V((0, 1, 1))({2}) = 1× 17− 18 = −1,
V((0, 1, 1))({2, 3}) = 2× 17− 32 = 2.

By Table 3, it is clear that the coalition function values are generated on strategy profiles except
(0, 0, 0), but rather the utilities of all players.

In Brandenburger and Stuart’s [4] biform game analysis for the TU-game with strategies
(X, V), the players play the cooperative game on each strategy profile to determine their utilities.
In our analysis, players have a cooperative willingness to form coalitions to choose strategies.
Coincidentally, this behavior is facilitated by the fact that the utilities of all coalitions are generated
on each profile of strategies. In Table 3, when players 1 and 2 form a coalition {1, 2} with the
rationality of maximizing the coalition value, they observe all strategy profiles and then select a
strategy (1, 1) to maximize its value. In this case, the complementary coalition {3} selects strategy
0 to maximize its value. Thus, the unique Nash equilibrium (1, 1, 0) of coalitions {1, 2} and {3} is
obtained. Therefore,

ω(X, V)({1, 2}) = 4, ω(X, V)({3}) = 0.

Similarly,

ω(X, V)({1}) = 2, ω(X, V)({2}) = 0, ω(X, V)({1, 3}) = 3,

ω(X, V)({2, 3}) = 2, ω(X, V)({1, 2, 3}) = 4.4.

According to these characteristic values, we get

C(ω) = {(u1, u2, u3) ∈ R3 : 2 ≤ u1 ≤ 2.4, 0 ≤ u2 ≤ 1.4, 0 ≤ u3 ≤ 0.4;
3

∑
i=1

ui = 4.4}.

It is easy to check that µ = ω = ψ1 = ψ2; therefore, the cores under these characteristic
functions are the same, and the Shapley values are also the same, i.e.,

ϕ1(µ) = ϕ1(ω) = ϕ1(ψ1) = ϕ1(ψ2) = 2/6× 2 + 1/6× 4 + 1/6× 3 + 2/6× (4.4− 2) = 79/30,

ϕ2(µ) = ϕ2(ω) = ϕ2(ψ1) = ϕ2(ψ2) = 34/30, ϕ3(µ) = ϕ3(ω) = ϕ3(ψ1) = ϕ3(ψ2) = 19/30.

In Example 2, the definition of coalition function determines that µ, ω, ψ1, and ψ2 are
identical. However, in general, they are not identical; see for examples below.

Similar to reference [10], relevant properties of the Shapley value ϕ(V) can be obtained.
In this paper, we mainly give the properties of the core C(V).

It is easy to obtain that if any allocation u = (u1, · · · , un) ∈ Rn satisfies individual ratio-
nality and collective rationality, then ui ∈ [V(X, V)({i}),V(X, V)(N)− ∑

j 6=i
V(X, V)({j})]

(abbreviated as ui ∈ uV [i,−i]) for all i ∈ N. It can be seen that the smaller uV [i,−i] for all
i ∈ N, the smaller the deviation of the cooperative solution.

Property 2. For each (X, V) ∈ SG(N), let V1 and V2 be any two characteristic functions for
(X, V). If V1(X, V)(N) = V2(X, V)(N) and V1(X, V)(S) ≤ V2(X, V)(S) for all S ∈ 2N . Then,
for every i ∈ N,

uV2 [i,−i] ⊆ uV1 [i,−i].

Proof. Since V1(X, V)(S) ≤ V2(X, V)(S) for all S ∈ 2N , then

V1(X, V)({i}) ≤ V2(X, V)({i})



Axioms 2023, 12, 521 9 of 18

for all i ∈ N, and by V1(X, V)(N) = V2(X, V)(N), it follows that

V2(X, V)(N)−∑
j 6=i
V2(X, V)({j}) ≤ V1(X, V)(N)−∑

j 6=i
V1(X, V)({j})

for all i ∈ N. Therefore, for every i ∈ N,

uV2 [i,−i] ⊆ uV1 [i,−i].

The proof is completed.

Property 3. Let (X, V) ∈ SG(N). Then, for every i ∈ N,

uω [i,−i] ⊆ uψ2 [i,−i] ⊆ uψ1 [i,−i].

Proof. By the definition of maps ω and ψ2, we obtain that for every x∗ = (x∗S, x∗−S) ∈
E∗S(S,−S),

ω(X, V)(S) = V(x∗S, x∗−S)(S) = max
xS∈XS

V(xS, x∗−S)(S)

≥ min
x−S∈X−S

max
xS∈XS

V(xS, x−S)(S) = ψ2(X, V)(S)

for all S ⊆ N.
Since for any x = (xS, x−S) ∈ X,

min
x−S∈X−S

V(xS, x−S)(S) ≤ V(xS, x−S)(S) ≤ max
xS∈XS

V(xS, x−S)(S)

for all S ⊆ N, then, for any x−S ∈ X−S,

max
xS∈XS

min
x−S∈X−S

V(xS, x−S)(S) ≤ max
xS∈XS

V(xS, x−S)(S)

for all S ⊆ N, it follows that

max
xS∈XS

min
x−S∈X−S

V(xS, x−S)(S) ≤ min
x−S∈X−S

max
xS∈XS

V(xS, x−S)(S)

for all S ⊆ N, i.e., ψ1(X, V)(S) ≤ ψ2(X, V)(S) for all S ⊆ N.
Thus,

ψ1(X, V)(S) ≤ ψ2(X, V)(S) ≤ ω(X, V)(S)

for all S ⊆ N. Therefore, for every i ∈ N,

uω [i,−i] ⊆ uψ2 [i,−i] ⊆ uψ1 [i,−i]

by Property 2. The proof is completed.

Property 3 shows that the allocation range of cooperative solutions under ω is smaller
compared to ψ1 and ψ2, and, therefore, the deviation of solution coordinates is smaller.

Theorem 1. Let (X, V) ∈ SG(N). Then,

C(ω) ⊆ C(ψ2) ⊆ C(ψ1).

Proof. First, we prove that C(ω) ⊆ C(ψ2). Assume that allocation u = (u1, · · · , un) ∈
C(ω), but u = (u1, · · · , un) /∈ C(ψ2). Then, there exists S ⊆ N with S 6= ∅ such that

∑
i∈S

ui < min
x−S∈X−S

max
xS∈XS

V(xS, x−S)(S),
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by Property 3,
∑
i∈S

ui < min
x−S∈X−S

max
xS∈XS

V(xS, x−S)(S) ≤ ω(X, V)(S),

this is a contradiction since u = (u1, · · · , un) ∈ C(ω). Therefore, C(ω) ⊆ C(ψ2).
Next, we prove that C(ψ2) ⊆ C(ψ1). Assume that allocation u = (u1, · · · , un) ∈ C(ψ2),

but u = (u1, · · · , un) /∈ C(ψ1). Then, there exists S ⊆ N with S 6= ∅ such that

∑
i∈S

ui < max
xS∈XS

min
x−S∈X−S

V(xS, x−S)(S),

by Property 3,

∑
i∈S

ui < max
xS∈XS

min
x−S∈X−S

V(xS, x−S)(S) ≤ min
x−S∈X−S

max
xS∈XS

V(xS, x−S)(S),

which contradicts that u = (u1, · · · , un) ∈ C(ψ2). Therefore, C(ψ2) ⊆ C(ψ1). The proof is
completed.

Example 3 ([21]). In a supply chain network game, there are three members: the manufacturer
(player 1), the seller (player 2), and the user (player 3); the manufacturer produces and sells
the product, the seller sells the product, and the user buys the product. The manufacturer’s
strategy set is {a1, a2}, with a1 and a2 denoting discount and no-discount strategies, respectively,
the seller’s strategy set is {b1, b2}, with b1 and b2 denoting advertising and no-advertising strategies,
respectively, and the user’s strategy set is {c1, c2}, with c1 denoting purchase from the manufacturer
and c2 denoting purchase from the seller. Members of the supply chain can make decentralized
decisions (working alone) and centralized decisions (forming coalitions). The coalition function of
this game is shown in Table 4. The value created by the entire supply chain, the grand coalition,
is related to the purchase volume of users. To maximize the value created by the grand coalition
and the benefit of each member, we consider centralized decision-making among the members and
allocate the benefits through cooperative games.

Table 4. Coalition function values for the supply chain network game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
V(a1, b1, c1) 1 2 3 3 5 5 12
V(a1, b2, c1) 0 2 2 3 5 4 8
V(a2, b1, c1) 1 1 3 3 4 5 10
V(a2, b2, c1) 0 1 3 3 4 4 7
V(a1, b1, c2) 1 2 3 3 3 4 8
V(a1, b2, c2) 1 2 2 3 3 5 9
V(a2, b1, c2) 1 2 3 3 5 4 7
V(a2, b2, c2) 1 2 3 3 5 5 6

In Table 4, due to the multiplicity of Nash equilibria, the characteristic function values
corresponding to characteristic function µ cannot be confirmed. The characteristic function values
corresponding to characteristic functions ω, ψ1, and ψ2 are shown in Table 5, thus,

uω [i,−i] ⊆ uψ2 [i,−i] = uψ1 [i,−i]

for i = 1, 2, 3, and

C(ω) = {(u1, u2, u3) ∈ R3 : 1 ≤ u1 ≤ 7, 2 ≤ u2 ≤ 7, 3 ≤ u3 ≤ 9;
3
∑

i=1
ui = 12} ⊆

C(ψ1) = C(ψ2) = {(u1, u2, u3) ∈ R3 : 0 ≤ u1 ≤ 7, 1 ≤ u2 ≤ 7, 2 ≤ u3 ≤ 9;
3
∑

i=1
ui = 12}.
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Table 5. Characteristic function values for the supply chain network game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ω(X, V) 1 2 3 3 5 5 12
ψ1(X, V) 0 1 2 3 5 5 12
ψ2(X, V) 0 1 2 3 5 5 12

In addition,
ϕ1(ω) = ϕ1(ψ1) = ϕ1(ψ2) = 19/6,
ϕ2(ω) = ϕ2(ψ1) = ϕ2(ψ2) = 22/6,
ϕ3(ω) = ϕ3(ψ1) = ϕ3(ψ2) = 31/6.

Let (X, V) ∈ SG(N). For every x ∈ X, we define a TU-game Vx as

Vx(S) = V(xS, y∗−S)(S), ∀S ∈ 2N , S 6= N,

Vx(N) = ω(X, V)(N),

where y∗−S is given by (y∗S, y∗−S) with (y∗S, y∗−S) ∈ E∗S(S,−S). The core of game Vx is defined
by

C(Vx) = {u = (u1, · · · , un) ∈ Rn : ∑
i∈N

ui = ω(X, V)(N); ∑
i∈S

ui ≥ Vx(S), ∀S ∈ 2N , S 6= N}.

Theorem 2. Let (X, V) ∈ SG(N). Then,

∩
x∈X

C(Vx) = C(ω).

Proof. Let any u ∈ ∩
x∈X

C(Vx), then, for every x ∈ X,

∑
i∈S

ui ≥ Vx(S) = V(xS, x∗−S)(S), ∀S ∈ 2N , S 6= N,

∑
i∈N

ui = Vx(N) = ω(X, V)(N).

Thus, for every (x∗S, x∗−S) ∈ E∗S(S,−S),

∑
i∈S

ui ≥ max
x∈X

Vx(S) = V(x∗S, x∗−S)(S) = ω(X, V)(S), ∀S ∈ 2N , S 6= N,

∑
i∈N

ui = ω(X, V)(N), ∀x ∈ X.

Therefore, we obtain that u ∈ C(ω), i.e., ∩
x∈X

C(Vx) ⊆ C(ω).

Second, we check that C(ω) ⊆ ∩
x∈X

C(Vx). Let any u ∈ C(ω) and (x∗S, x∗−S) ∈
E∗S(S,−S), then,

∑
i∈S

ui ≥ ω(X, V)(S) = V(x∗S, x∗−S)(S), ∀S ∈ 2N , S 6= N,

∑
i∈N

ui = ω(X, V)(N) = Vx(N), ∀x ∈ X.

Then, for every x ∈ X,

∑
i∈S

ui ≥ V(x∗S, x∗−S)(S) ≥ V(xS, x∗−S) = Vx(S), ∀S ∈ 2N , S 6= N,

∑
i∈N

ui = Vx(N).

Therefore, u ∈ ∩
x∈X

C(Vx), i.e., C(ω) ⊆ ∩
x∈X

C(Vx). The proof is completed.
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Example 4. Given a TU-game with strategies (X, V), with N = {1, 2, 3}, A1 = {U, D},
A2 = {L, R}, A3 = {F}. The coalition function values are given in Table 6.

Table 6. Coalition function values of Example 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
V(U, L, F) 2 2 0 5 4 4 5
V(U, R, F) 3 0 0 3 3 3 11
V(D, L, F) 0 3 0 3 3 3 11
V(D, R, F) 2 2 0 8 3 3 12

The corresponding characteristic function values of this game are shown in Table 7; thus, the
core of the cooperative game (N, V, ω) is

C(ω) = {(u1, u2, u3) ∈ R3 : 2 ≤ u1 ≤ 8, 2 ≤ u2 ≤ 8, 0 ≤ u3 ≤ 4;
3

∑
i=1

ui = 12}.

Table 7. Characteristic function values of Example 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
µ(X, V) =
ω(X, V)

2 2 0 8 4 4 12

ψ1(X, V) 2 2 0 8 3 3 12
ψ2(X, V) 2 2 0 8 3 3 12

The corresponding TU-games are shown in Table 8, thus, the cores of these TU-games are

C(V(U,L,F)) = {(u1, u2, u3) ∈ R3 : 2 ≤ u1 ≤ 8, 2 ≤ u2 ≤ 8, 0 ≤ u3 ≤ 7;
3

∑
i=1

ui = 12}.

C(V(U,R,F)) = {(u1, u2, u3) ∈ R3 : 2 ≤ u1 ≤ 9, 0 ≤ u2 ≤ 8, 0 ≤ u3 ≤ 9;
3

∑
i=1

ui = 12}.

C(V(D,L,F)) = {(u1, u2, u3) ∈ R3 : 0 ≤ u1 ≤ 8, 2 ≤ u2 ≤ 9, 0 ≤ u3 ≤ 9;
3

∑
i=1

ui = 12}.

C(V(D,R,F)) = {(u1, u2, u3) ∈ R3 : 0 ≤ u1 ≤ 9, 0 ≤ u2 ≤ 9, 0 ≤ u3 ≤ 4;
3

∑
i=1

ui = 12}.

Table 8. TU-games Vx in Example 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

V(U,L,F) 2 2 0 5 4 4 12
V(U,R,F) 2 0 0 3 4 3 12
V(D,L,F) 0 2 0 3 3 4 12
V(D,R,F) 0 0 0 8 3 3 12

It is easy to get

C(V(U,L,F)) ∩ C(V(U,R,F)) ∩ C(V(D,L,F)) ∩ C(V(D,R,F)) = C(µ)

= {(u1, u2, u3) ∈ R3 : 2 ≤ u1 ≤ 8, 2 ≤ u2 ≤ 8, 0 ≤ u3 ≤ 4;
3

∑
i=1

ui = 12}.
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By Table 7, the characteristic function values under ω are no less than those under ψ1 and ψ2,
for all S ∈ 2N . In addition,

ϕ1(ω) = ϕ1(µ) = 5, ϕ2(ω) = ϕ2(µ) = 5, ϕ3(ω) = ϕ3(µ) = 2,
ϕ1(ψ1) = ϕ2(ψ1) = 31/6, ϕ3(ψ1) = 10/6,
ϕ1(ψ2) = ϕ2(ψ2) = 31/6, ϕ3(ψ2) = 10/6.

Cooperative games about cost are an important aspect of game theory. To study such
cost games, we must correspondingly adjust some definitions and properties of TU-games
with strategies. Thus, in this case,

E−S(S,−S) = arg min
x∈E(S,−S)

V(x)(−S),

E∗S(S,−S) = arg min
x∈E−S(S,−S)

V(x)(S).

For every S ∈ 2N ,

ω(X, V)(S) = V(y∗S, y∗−S)(S)with(y∗S, y∗−S) ∈ E∗S(S,−S)

is the characteristic function of minmin defensive-equilibrium representation for the game
(X, V) ∈ SG(N). In particular, ω(X, V)(N) = min

x∈X
V(x)(N) is the minimum cost created

by the grand coalition N. Correspondingly, the core of the cooperative game (N, V, ω) is

C(ω) = {u = (u1, · · · , un) ∈ Rn : ∑
i∈N

ui = ω(X, V)(N); ∑
i∈S

ui ≤ ω(X, V)(S), ∀S ∈ 2N , S 6= N}.

In addition,

ψ1(X, V) = min
xS∈XS

max
x−S∈X−S

V(xS, x−S)(S),

ψ2(X, V) = max
x−S∈X−S

min
xS∈XS

V(xS, x−S)(S),

the cores under the ψ1 and ψ2 are still represented as C(ψ1) and C(ψ2).

Example 5. Given a TU-cost game with strategies (X, V) [9], with N = {1, 2, 3}, A1 = {U, D},
A2 = {L, R}, A3 = {F}. The coalition function values and characteristic function values are
shown in Table 9 and Table 10, respectively.

Table 9. Coalition function values for the cost game with strategies.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
V(U, L, F) 1 8 2 8 2 8 8
V(U, R, F) 2 9 5 9 5 9 9
V(D, L, F) 5 10 7 10 7 10 10
V(D, R, F) 6 7 9 7 9 9 9

Table 10. Characteristic function values for the cost game with strategies.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
µ(X, V) =
ω(X, V)

1 8 9 7 2 8 8

ψ1(X, V) 2 9 9 7 5 9 8
ψ2(X, V) 2 8 9 7 5 9 8
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Cooperative game (N, V, ω) is balanced since it has a nonempty core, i.e.,

C(ω) = {(u1, u2, u3) ∈ R3 : 1 ≥ u1 ≥ 0, 8 ≥ u2 ≥ 6, 9 ≥ u3 ≥ 1;
3

∑
i=1

ui = 8}.

The cores under ψ1 and ψ2 are

C(ψ1) = {(u1, u2, u3) ∈ R3 : 2 ≥ u1 ≥ −1, 9 ≥ u2 ≥ 3, 9 ≥ u3 ≥ 1;
3

∑
i=1

ui = 8},

C(ψ2) = {(u1, u2, u3) ∈ R3 : 2 ≥ u1 ≥ −1, 8 ≥ u2 ≥ 3, 9 ≥ u3 ≥ 1;
3

∑
i=1

ui = 8}.

There exist negative cost values of player 1 in cores C(ψ1) and C(ψ2), which may lead
players 2 and 3 to oppose the allocation of these two cores. Moreover,

ϕ1(ω) = ϕ1(µ) = −1, ϕ1(ψ1) = −4/6, ϕ1(ψ2) = −3/6,

this makes it highly likely that players 2 and 3 also oppose the allocation under the Shapley values
ϕ(ω), ϕ(µ), ϕ(ψ1), and ϕ(ψ2).

Let V be a coalition function. For any coalitions S1, S2 ∈ 2N with S1 ∩ S2 = ∅.

(1) We say that V is superadditive on x ∈ X if V(x)(S1 ∪ S2) ≥ V(x)(S1) + V(x)(S2) and
V is superadditive on X if it is superadditive for any x ∈ X;

(2) We say that V is subadditive on x ∈ X if V(x)(S1 ∪ S2) ≤ V(x)(S1) + V(x)(S2) and V
is subadditive on X if it is subadditive for any x ∈ X; and

(3) We say that V is additive on x ∈ X if V(x)(S1 ∪ S2) = V(x)(S1) + V(x)(S2) and V is
additive on X if it is additive for any x ∈ X.

If V is additive on X, then the TU-game with strategies (X, V) becomes an n-person
strategic game; correspondingly, the cooperative game (N, V,V) becomes the cooperative
game (N,V). In this case of the additivity of V, characteristic functions ω, ψ1, and ψ2 are
still applicable for the cooperative game (N,V).

Example 6 ([22]). Consider a Cournot game involving firms 1, 2, and 3, all of which produce the
same product. The strategy set of firm 1 is {0, 1}, where strategy 1 means that 1 unit of the product
is produced per day and strategy 0 means that no product is produced, the strategy sets of firms 2
and 3 are both {2, 3}, where strategies 2 or 3 means that 2 or 3 units of the product are produced per
day. The market price per unit of product is

p = 8− (q1 + q2 + q3),

where qi is the output of the firm i, determined by its strategies, for i = 1, 2, 3. The daily revenue
of firm i is pqi, for i = 1, 2, 3. It is easy to obtain the coalition function of this game, as shown in
Table 11, where three strategies of each strategy profile are, in turn, owned by firms 1, 2, and 3.

Table 11. Coalition function for the Cournot game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
V(0, 2, 2) 0 8 8 8 8 16 16
V(0, 3, 2) 0 9 6 9 6 15 15
V(1, 2, 2) 3 6 6 9 9 12 15
V(1, 3, 2) 2 6 4 8 6 10 12
V(0, 2, 3) 0 6 9 6 9 15 15
V(0, 3, 3) 0 6 6 6 6 12 12
V(1, 2, 3) 2 4 6 6 8 10 12
V(1, 3, 3) 1 3 3 4 4 6 7
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From Table 11, the coalition function V is additive on X. The characteristic function value
under µ cannot be confirmed due to the multiplicity of Nash equilibrium of complementary coali-
tions. The characteristic functions ω, ψ1, and ψ2 are shown in Table 12. Since ψ1(X, V)(S) ≤
ψ2(X, V)(S) ≤ ω(X, V)(S) for all S ⊆ N, then, for i = 1, 2, 3,

[ω(X, V)({i}), 16−∑
j 6=i

ω(X, V)({j})]

⊆[V2(X, V)({i}), 16−∑
j 6=i
V2(X, V)({j})]

⊆[V1(X, V)({i}), 16−∑
j 6=i
V1(X, V)({j})],

i.e.,
uω [i,−i] ⊆ uV2 [i,−i] ⊆ uV1 [i,−i],

which satisfies Property 3. The cores and their relation is

C(ω) = {(u1, u2, u3) ∈ R3 : 3 ≤ u1 ≤ 4, 6 ≤ u2 ≤ 10, 6 ≤ u3 ≤ 10;
3

∑
i=1

ui = 16}

⊆C(ψ2) = {(u1, u2, u3) ∈ R3 : 1 ≤ u1 ≤ 4, 4 ≤ u2 ≤ 10, 4 ≤ u3 ≤ 10;
3

∑
i=1

ui = 16}

⊆C(ψ1) = {(u1, u2, u3) ∈ R3 : 1 ≤ u1 ≤ 4, 3 ≤ u2 ≤ 10, 3 ≤ u3 ≤ 10;
3

∑
i=1

ui = 16},

which satisfies Theorem 1. Moreover, the Shapley values under ω, ψ1, and ψ2 are

ϕ1(ω) = 14/6, ϕ2(ω) = ϕ3(ω) = 41/6,
ϕ1(ψ1) = 16/6, ϕ2(ψ1) = ϕ3(ψ1) = 40/6,
ϕ1(ψ2) = 14/6, ϕ2(ψ2) = ϕ3(ψ2) = 41/6.

Table 12. Characteristic functions for the Cournot game.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
ω(X, V) 3 6 6 6 6 12 16
ψ1(X, V) 1 3 3 6 6 12 16
ψ2(X, V) 1 4 4 6 6 12 16

4. Discussion

Clearly, in the case of finitely pure strategies, the Nash equilibrium between com-
plementary coalitions may not exist. We now present a simple result on the existence
of the Nash equilibrium. For each (X, V) ∈ SG(N), suppose Xi is a mixed strategy set
corresponding to the pure strategy set of player i ∈ N.

Assumption 2. Let (X, V) ∈ SG(N). Referring to the extension of Nash [23] to the payoff
functions, we assume that coalition function V(xS, x−S)(S) is linear on XS for all xS ∈ XS and all
nonempty coalition S ∈ 2N .

Theorem 3. If (X, V) ∈ SG(N) satisfies Assumption 2, then for every pair of complementary
coalitions S and −S, there exist strategies x∗S ∈ XS and x∗−S ∈ X−S such that

x∗S ∈ arg max
xS∈XS

V(xS, x∗−S)(S),

x∗−S ∈ arg max
x−S∈X−S

V(x∗S, x−S)(−S),

µ(X, V)(S) = V(x∗S, x∗−S)(S), and µ(−S) = V(x∗S, x∗−S)(−S).
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In particular, µ(X, V)(N) = max
x∈X

V(x)(N).

Proof. For every pair of complementary coalitions S,−S ∈ 2N , we consider coalitions S
and −S as two single players. By Theorem 1 of Nash [23] and Assumption 2, there exist
coalition strategies x∗S ∈ XS and x∗−S ∈ X−S such that

x∗S ∈ arg max
xS∈XS

V(xS, x∗−S)(S),

x∗−S ∈ arg max
x−S∈X−S

V(x∗S, x−S)(−S),

µ(X, V)(S) = V(x∗S, x∗−S)(S), and µ(−S) = V(x∗S, x∗−S)(−S).

Since X is a bounded closed convex set, and V(x)(N) is a continuous function on X
by Assumption 2, there exists x∗ ∈ X such that V(x∗)(N) is the maximum value on X.
Therefore, µ(X, V)(N) = max

x∈X
V(x)(N) = V(x∗)(N).

In the case of Theorem 3, the infinity of the mixed strategies makes it extremely difficult
to refine Nash equilibria. Therefore, it is also difficult to obtain characteristic functions ω,
ψ1, and ψ2.

In this paper, we select the Nash equilibrium by taking the maxmax behavior between
complementary coalitions S and −S, which is consistent with the noncooperative behavior
implied by Nash equilibrium. If the complementary coalitions S and −S choose the Nash
equilibrium from the adversarial point of view, then the maxmin procedure or minimax
representation can be applied.

Notice that our notion of the maxmax defensive-equilibrium representation is different
from the maxmax procedure

max
xS∈XS

max
x−S∈X−S

V(xS, x−S)(S).

Under the maxmax procedure, the core is likely to be an empty set, and the Shapley
value may not be applicable as it may result in unreasonable allocation.

5. Conclusions

Similar to Fiestras-Janeiro et al. [9], studying the TU-game with strategies from the
cooperative direction, we transform the TU-game with strategies into a cooperative game
in characteristic function and investigate the properties of the core. We derive three
main results.

First, to solve the problem that the characteristic function of defensive-equilibrium
representation [11] cannot be confirmed due to the multiplicity of Nash equilibria, we
establish a characteristic function of the maxmax defensive-equilibrium representation
ω, which guarantees that each coalition S gets a characteristic function value. Unlike the
fierce rivalry of ψ1 and ψ2, ω reflects the maximum defensive selection strategy of the
complementary coalitions S and −S. Meanwhile, we provide the characteristic function
and core for the cost game with strategies and give an example where ω is more reasonable
than ψ1 and ψ2. Second, we characterize the properties of the general characteristic function
based on the coalition function and check that ω satisfies four properties. Third, under the
characteristic functions ω, ψ1, and ψ2, we present the range of of the allocation coordinate
ui, study the relation among cores, and get that the core under ω is the minimum allocation
set. We also show the relation among the cores on all strategy profiles and the core under ω.

Regarding the application of the characteristic function ω, we summarize it as three
points: First, the highest individual rationality under ω is obtained by comparing ω, ψ1,
and ψ2. This means that the allocation solution under ω is narrowed, which is beneficial
to obtain a cooperative solution with a smaller deviation in practical problems. Second,
the n-person strategic form game with TU is a special form of the TU-game with strategies
under the additivity of the coalition function. Therefore, the characteristic function ω can be
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used to obtain the cooperative solution of the n-person strategic form game with TU. Third,
the method of selecting Nash equilibria given by ω can provide an interesting reference for
selecting Nash equilibria in n-person strategic form games.

This paper leads us to consider some important questions for future research. One
of the problems is to study other characteristic functions based on the Nash equilibria
of complementary coalitions. Another issue is to investigate the relation between the
cooperative solution under characteristic function ω and the biform game Nash equilibrium
solutions. Still, another issue is to further enrich the application of the cooperative solution
under characteristic function ω in practical problems such as supply chains.
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