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Abstract: In the present study, two effective methods, the Exp-function method and He’s frequency
formulation, are employed to investigate the dynamic behaviors of the (3+1)-dimensional Boiti–Leon–
Manna–Pempinelli equation, which is used widely to describe the incompressible fluid. A variety of
the wave structures, including the dark wave, bright-dark wave and periodic wave solutions, are
successfully constructed. Compared with the results attained by the methods, the obtained solutions
are all new and have not been presented in the other literature. The diverse wave structures of
the solutions are presented through numerical results in the form of three-dimensional plots and
two-dimensional curves. It reveals that the proposed methods are powerful and straightforward,
which are expected to be helpful for the study of travelling-wave theory in fluid.
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1. Introduction

Exploration of the exact solutions of the partial differential equations (PDEs) has
obtained wide attention from scientists and mathematicians. Until now, some effective
approaches thus far are: the auxiliary equation mapping method [1,2], Wang’s Bäcklund
transformation based method [3,4], the modified extended direct algebraic method [5,6],
Sardar subequation method [7,8], variational method [9,10], trial equation method [11,12],
logarithmic transformation [13] and so on. As is common knowledge, the fluid, as a phase
of matter including liquid, gas and plasma, is considered to be one of the most common
substances in nature. Significant research on fluids has provided an important guide for
the design of related industries. Additionally, there are many famous partial–differential
equations available to model fluid characteristics. In this paper, we consider the famous
(3+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation, which is provided
by [14,15]:

ψyt + ψzt + ψxxxy + ψxxxz − 3ψx
(
ψxy + ψxz

)
− 3ψxx

(
ψy + ψz

)
= 0 (1)

where ψ = ψ(x, y, z, t) is a well-known function that is used widely in the liquid engen-
dering and incompressible liquid. Additionally, many scholars have made outstanding
contributions to the solution of Equation (1). MelikeKaplan used the transformed rational
function to construct different types of analytical solutions [16]. In [17], Mohamed R. Ali
et al, obtained the lump solutions and mixed solution involving lump waves and solitons
by the bilinear method and symbolic computation. Tang et al. found the periodic wave
solutions for Equation (1) via the extended homoclinic test approach [18]. Additionally, the
double-periodic soliton solutions are constructed by Liu in [19]. The sine Gordon expansion
method and the extended tanh function method are used to seek the new soliton solutions
in [20]. Mohammad Najafi et al. studied the problem via the semi-inverse method [21].
The Hirota’s bilinear algorithm is applied to seek the lump solutions by Ahmad M.Alenezi
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in [22]. Considering the importance of Equation (1) in the field of fluids, and being encour-
aged by recent research results, we aim to construct abundant exact solutions of Equation (1)
by the Exp-function method (EFM) and He’s frequency formulation (HFF). The structure of
this paper is as follows. In Section 2, we will provide a brief introduction to the EFM and
HFF. In Section 3, the EFM and HFF are used to find the exact solutions and the behaviors
of the different solutions are presented by the three-dimensional and two-dimensional
contours. The physical explanation of the different solutions are provided in Section 4. The
conclusion is presented in Section 5.

2. The Two Methods

Considering the general nonlinear FDEs as:

F
(
u, ux, uy, uz, ut, . . .

)
= 0 (2)

Introducing the following transformation:

u(x, y, z, t) = U(ξ), ξ = ωx + my + kz + vt (3)

where ω, m, k, v are all non-zero constant. using Equation (3), the nonlinear PDE of
Equation (2) can be reduced into the ODE as:

F
(
U, Uξ , Uξξ , Uξξξ , . . .

)
= 0 (4)

2.1. The EFM

The EFM is a powerful tool to construct the abundant traveling wave solutions of the
studied equation. In this section, we will provide a brief introduction to the EFM [23–27].
Its primary steps are presented as follows:

Assuming the solution of Equation (4) with the form as:

U(ξ) =

u
∑

i=−p
ai exp(iξ)

s
∑

j=−g
bj exp(jξ)

(5)

where u, p, s, g are positive integers that can be determined later, ai, bj are unknown
constants.

Taking Equation (5) into Equation (4) and balancing the linear term of highest and
lowest orders, respectively, we can determine the u, p, s, g.

Then, substituting the obtained results into Equation (4), setting the coefficients of
exp(iξ) to be zero, we can determine the coefficients ai and bj. With this, we can obtain the
exact solutions of Equation (2) via Equation (3).

2.2. The HFF

The HFF [28–30], which was first proposed by Chinese mathematician Ji-Huan He, is
a powerful tool to seek the periodic solution.

Considering Equation (4) with the form as:

U′′ + f (U) = 0 (6)

In Equation (6), f (U) is a function of U. Here, the periodic solution of Equation (6)
can be assumed as:

U(ξ) = M cos(Ωξ), Ω > 0 (7)
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where Ω represents angular frequency. In the view of He’s frequency formulation [31,32],
the amplitude–frequency relationship of Equation (7) can be determined via one step,
which is:

Ω2 =
d f (U)

dU

∣∣∣∣
U= M

2

(8)

With this, we can obtain the periodic wave solution of Equation (1).

3. Applications

In order to obtain the abundant solutions, the following transformation is introduced:

ψ(x, y, z, t) = Ψ(ξ), ξ = ωx + my + kz + vt + ξ0 (9)

In Equation (9), ω, m, k and v are non-zero real numbers, and there is m + k 6= 0. With
the help of Equation (9), Equation (1) becomes an ordinary differential equation, which is:

(m + k)vΨ′′ + ω3(m + k)Ψ(4) − 6ω2(m + k)Ψ′Ψ′′ = 0 (10)

Additionally, there are Ψ′ = dΨ
dξ , Ψ = d2Ψ

dξ2 and Ψ(4) = d4Ψ
dξ4 .

Integrating Equation (10) once, with respect to ξ, and setting the integral constant to
be zero, yields:

(m + k)vΨ′ + ω3(m + k)Ψ(3) − 3ω2(m + k)
(
Ψ′
)2

= 0 (11)

which is:
vΨ′ + ω3Ψ(3) − 3ω2(Ψ′)2

= 0 (12)

3.1. Application of the EFM

Based on the EFM, we assume the solution of Equation (12) with the form as:

Ψ(ξ) =

c
∑

i=−u
ai exp(iξ)

g
∑

j=−s
bj exp(jξ)

(13)

which can be expressed as:

Ψ(ξ) =
ac exp(cξ) + . . . + a−u exp(−uξ)

bg exp(gξ) + . . . + b−s exp(−sξ)
(14)

Putting Equation (14) into Equation (12) and balancing the linear term of highest order
Ψ(3) and

(
Ψ′
)2 in Equation (12) with the highest order nonlinear term, we obtain:

Ψ(3) =
p1 exp[(3g + c)ξ] + . . .

p2 exp(4gξ) + . . .
(15)

(
Ψ′
)2

=
p3 exp[(2g + 2c)ξ] + . . .

p4 exp(4gξ) + . . .
(16)

By balancing the highest order of Exp-function in Equations (15) and (16), it yields:

3g + c = 2g + 2c (17)

which leads to:
g = c (18)
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In the same way, we balance the linear term of lowest order in Equation (12), there is:

Ψ(3) =
. . . + q1 exp[−(3s + u)ξ]

. . . + q2 exp(−4sξ)
(19)

(
Ψ′
)2

=
. . . + q3 exp[−(2s + 2u)ξ]

. . . + q4 exp(−4sξ)
(20)

Balancing the lowest order of Exp-function in Equations (19) and (20), there is:

−3s− u = −2s− 2u (21)

which results in:
u = s (22)

For simplicity, we set g = c = 1, u = s = 1 and b1 = 1, Equation (14) can be written as:

Ψ(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)

exp(ξ) + b0 + b−1 exp(−ξ)
(23)

Taking Equation (23) into Equation (12), we can obtain the following form:[
M3 exp(3ξ) + M2 exp(2ξ) + M1 exp(ξ) + M0 + M−1 exp(−ξ) + M−2 exp(−2ξ)
+M−3 exp(−3ξ)

]
[exp(ξ) + b0 + b−1 exp(−ξ)]4

= 0 (24)

where

M3 = −ω3a0 − va0 + ω3a1b0 + va1b0
M2 = −8ω3a−1 − 2va−1 − 3ω2a2

0 + 8ω3a1b−1 + 2va1b−1 + 4ω3a0b0 − 2va0b0 + 6ω2a0a1b0
−4ω3a1b2

0 + 2va1b2
0 − 3ω2a2

1b2
0

M1 = −12ω2a−1a0 + 23ω3a0b−1 − va0b−1 + 12ω2a0a1b−1 − 5ω3a−1b0 − 5va−1b0 + 12ω2a−1a1b0
−18ω3a1b−1b0 + 6va1b0b−1 − 12ω2a2

1b−1b0 −ω3a0b2
0 − va0b2

0 + ω3a1b3
0 + va1b3

0
M0 = −12ω2a2

−1 + 32ω3a−1b−1 − 4va−1b−1 + 6ω2a2
0b−1 + 24ω2a−1a1b−1 − 32ω3a1b2

−1 + 4va−1b2
−1

−12ω2a2
1b2
−1 − 6ω2a−1a0b0 − 6ω2a0a1b0b−1 + 4ω3a−1b2

0 − 4va−1b2
0

+6ω2a−1a1b2
0 + 4ω3a1b−1b2

0 + 4va1b−1b2
0

M−1 = 12ω2a−1a0b−1 − 23ω3a0b2
−1 + va0b2

−1 − 12ω2a0a1b2
−1 − 12ω2a2

−1b0 + 18ω3a−1b0b−1 − 6va−1b−1b0
−12ω2a−1a1b−1b0 + 5ω3a1b0b2

−1 + 5va1b2
−1b0 + ω3a0b−1b2

0 + va0b−1b2
0 −ω3a1b3

0 − va−1b3
0

M−2 = −8ω3a−1b2
−1 − 2va−1b2

−1 − 3ω2a2
0b2
−1 + 8ω3a1b3

−1 + 2va1b3
−1 + 6ω2a−1a0b−1b0 − 4ω3a0b2

−1b0
+2va0b2

−1b0 − 3ω2a2
−1b2

0 + 4ω3a−1b−1b2
0 − 2va−1b−1b2

0
M−3 = ω3a0b3

−1 + va0b3
−1 −ω3a−1b2

−1b0 − va−1b2
−1b0

Letting the coefficients of exp(iξ) to be zero, we obtain:
M3 = 0, M2 = 0, M1 = 0
M0 = 0
M−1 = 0, M−2 = 0, M−3 = 0

Solving the above systems, we obtain the following three families:
Family 1

Set 1: a1 = a1, a0 = ωb0 + a1b0 +
√

ω2b2
0 − 4ω2b−1, a−1 = (2ω + a1)b−1, b0 = b0,

b−1 = b−1, v = −ω3, ω = ω.
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Therefore, we can get the first exact traveling wave solution (dark-wave solution
Form 1) as:

ψ1(x, y, t, z) =

[
a1 exp

(
ωx + my + kz−ω3t + ξ0

)
+ ωb0 + a1b0 +

√
ω2b2

0 − 4ω2b−1

+(2ω + a1)b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ]
[

exp
(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (25)

Here, a1, b0, b−1 and ω are free parameters. If we select m = 1, k = 1, ξ0 = 0, the
behavior of solution ψ1(x, y, z, t) is plotted in Figure 1.

Axioms 2023, 12, x FOR PEER REVIEW 6 of 13 
 

Here, 1a , 0b , 1b  and   are free parameters. If we select 1m , 1k , 00 
, the behavior of solution  tzyx ,,,1  is plo ed in Figure 1. 

 

Figure 1. The 3D plot and 2D curve of the solution  tzyx ,,,1  for 1 , 21 a , 10 b , 

11 b  when 1z , 1t . 

Set 2: 11 aa   , 1
22

0
2

0100 4  bbbaba   ,   111 2   baa   , 00 bb   , 

11   bb , 3v ,   . 
Furthermore, we can obtain the second exact traveling solution (bright-dark wave 

solution) as: 

 

 
   

 
 





































0
3

1

00
3

0
3

11

1
22

0
2

0100
3

1

2

exp
exp
exp2

4exp

,,,










tkzmyxb
btkzmyx

tkzmyxba

bbbabtkzmyxa

ztyx , (26)

where 1a  , 0b  , 1b   and    are free parameters. By selecting 1m  , 1k  , 00   , 
the propagation of solution  tzyx ,,,1  is described in Figure 2. 

 

Figure 2. The 3D plot and 2D curve of the solution  tzyx ,,,2  for 1 , 21 a , 10 b , 

11 b  when 1z , 1t . 

Family 2 
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when z = 1, t = 1.

Set 2: a1 = a1, a0 = ωb0 + a1b0 −
√

ω2b2
0 − 4ω2b−1, a−1 = (2ω + a1)b−1, b0 = b0,

b−1 = b−1, v = −ω3, ω = ω.
Furthermore, we can obtain the second exact traveling solution (bright-dark wave

solution) as:

ψ2(x, y, t, z) =

[
a1 exp

(
ωx + my + kz−ω3t + ξ0

)
+ ωb0 + a1b0 −

√
ω2b2

0 − 4ω2b−1

+(2ω + a1)b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ]
[

exp
(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (26)

where a1, b0, b−1 and ω are free parameters. By selecting m = 1, k = 1, ξ0 = 0, the
propagation of solution ψ1(x, y, z, t) is described in Figure 2.
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Set 3: a1 =
a0b0−ωb2

0−
√

ω2b4
0−4ω2b−1b2

0
b2

0
, a0 = a0, a−1 = ωb−1 +

a0b−1
b0
−

ωb−1

√
−ω2b2

0(4b−1−b2
0)

b2
0

,

b0 = b0, b−1 = b−1, v = −ω3, ω = ω.
Next, we can obtain the third exact traveling wave solution (dark-solitary wave

solution Form 2):

ψ3(x, y, t, z) =

 a0b0−ωb2
0−
√

ω2b4
0−4ω2b−1b2

0

b2
0

exp
(
ωxα + myβ + kzγ −ω3tγ + ξ0

)
+ a0

+

(
ωb−1 +

a0b−1
b0
−

b−1

√
−ω2b2

0(4b−1−b2
0)

b2
0

)
exp

(
−ωx−my− kz + ω3t− ξ0

)


[
exp

(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (27)

where a0, b0, b−1 and ω are free parameters. The performance of the solution ψ3(x, y, z, t) is
presented in Figure 3 for m = 1, k = 1, ξ0 = 0.
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tion) as: 

Figure 3. The 3D plot and 2D curve of the solution ψ3(x, y, z, t) for ω = 1, a0 = 1, b0 = 2, b−1 = −1
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Set 4: a1 =
a0b0−ωb2

0+
√

ω2b4
0−4ω2b−1b2

0
b2

0
, a0 = a0, a−1 = ωb−1 +

a0b−1
b0

+
b−1

√
−ω2b2

0(4b−1−b2
0)

b2
0

,

b0 = b0, b−1 = b−1, v = −ω3, ω = ω.
Then, we can obtain the fourth exact traveling wave solution (bright-dark wave

solution) as:

ψ4(x, y, t, z) =

 a0b0−ωb2
0+
√

ω2b4
0−4ω2b−1b2

0

b2
0

exp
(
ωx + my + kz−ω3t + ξ0

)
+ a0

+

(
ωb−1 +

a0b−1
b0

+
b−1

√
−ω2b2

0(4b−1−b2
0)

b2
0

)
exp

(
−ωx−my− kz + ω3t− ξ0

)


[
exp

(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (28)

where a0, b0, b−1 and ω are free parameters. We plot the behavior of the solution ψ4(x, y, z, t)
in Figure 4 with m = 1, k = 1, ξ0 = 0.
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Family 3

Set 5: a1 = a−1−2ωb−1
b−1

, a0 =
a−1b−1b0−ωb2

−1b0−
√

ω2b4
−1b2
−1−4ω2b5

−1

b2
−1

, a−1 = a−1, b0 = b0,

b−1 = b−1, v = −ω3, ω = ω.
Next, we can get the fifth exact traveling wave solution (kinky bright-dark solitary

wave solution Form 1) as:

ψ5(x, y, t, z) =

 (
a−1−2ωb−1

b−1

)
exp

(
ωx + my + kz−ω3t + ξ0

)
+

a−1b−1b0−ωb2
−1b0−

√
ω2b4

−1b2
−1−4ω2b5

−1

b2
−1

+a−1 exp
(
−ωx−my− kz + ω3t− ξ0

)


[
exp

(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (29)

Here, the a−1, b0, b−1 and ω are free parameters. The solution ψ5(x, y, z, t) is presented
in Figure 5 by using m = 1, k = 1, ξ0 = 0.
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Set 6: , a0 =
a−1b−1b0−ωb2

−1b0+
√

ω2b4
−1b2
−1−4ω2b5

−1

b2
−1

, a−1 = a−1, b0 = b0, b−1 = b−1, v =

−ω3, ω = ω.
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Finally, we can get the sixth exact traveling wave solution (bright-dark wave solution)
as

ψ6(x, y, t, z) =

 (
a−1−2ωb−1

b−1

)
exp

(
ωx + my + kz−ω3t + ξ0

)
+

a−1b−1b0−ωb2
−1b0+

√
ω2b4

−1b2
−1−4ω2b5

−1

b2
−1

+a−1 exp
(
−ωx−my− kz + ω3t− ξ0

)


[
exp

(
ωx + my + kz−ω3t + ξ0

)
+ b0

+b−1 exp
(
−ωx−my− kz + ω3t− ξ0

) ] (30)

where a−1, b0, b−1 and ω are free parameters. In this case, the contour of solution
ψ6(x, y, z, t) is illustrated in Figure 6 by selecting m = 1, k = 1, ξ0 = 0.
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3.2. Application of the HFF

In the view of Equation (12), we cannot solve it directly by the HFF. Here, we can
make a transformation as:

= = ψ′ (31)

So Equation (12) becomes:

ω3=′′ − 3ω2=2 + v= = 0 (32)

Which is
=′′ − 3

ω
=2 +

v
ω3= = 0 (33)

From which, we obtain

f (=) = − 3
ω
=2 +

v
ω3= (34)

The periodic solution of Equation (32) is supposed with the form as:

=(ξ) = Λ cos(Ωξ), Ω > 0 (35)

Based on the HFF, the amplitude frequency relationship can be easily determined as:

Ω2 =
d f (=)

d=

∣∣∣∣
== Λ

2

=
1
ω

( v
ω2 − 3Λ

)
(36)
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With this, the periodic solution of Equation (32) can be obtained as:

=(ξ) = Λ cos

(√
1
ω

( v
ω2 − 3Λ

)
ξ

)
(37)

In the view of Equation (31), we obtain:

ψ(ξ) =
Λ√

1
ω

(
v

ω2 − 3Λ
) sin

(√
1
ω

( v
ω2 − 3Λ

)
ξ

)
(38)

Thus, the periodic wave solution of Equation (1) can be obtained as:
Set 7:

ψ7(x, y, z, t) =
Λ√

1
ω

(
v

ω2 − 3Λ
) sin

[√
1
ω

( v
ω2 − 3Λ

)
(ωx + my + kz + vt + ξ0)

]
(39)

By using Λ = 1, ω = 1
2 , m = 1

2 , k = 1, v = 1, ξ0 = 0, the performances of Equation (39)
are described in Figure 7.
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Figure 7. The 3D plot and 2D curve of the solution ψ7(x, y, z, t) when z = 1, t = 1.

4. Physical Explanation

This section provides the physical explanation of the results in Section 3. Figure 1
describes the contours of the solution ψ1(x, y, z, t) in the region −8 ≤ x ≤ 8, −8 ≤ y ≤ 8
for z = 1, t = 1. It can be seen that the wave is the dark-solitary wave. The behaviors
of ψ2(x, y, z, t) are presented in Figure 2 through the three-dimensional contour and two-
dimensional curve, where we can discover that the wave contour is the bright-dark wave.
Figure 3 depicts the solution of ψ3(x, y, z, t) in the domain −8 ≤ x ≤ 8, −8 ≤ y ≤ 8 at
z = 1, t = 0. By comparing Figure 3 with Figure 1, Figure 3 is similar with Figure 1, which
is also the dark-solitary wave. We describe the performances of ψ4(x, y, z, t) in Figure 4
for z = 1, t = 0 in the interval −8 ≤ x ≤ 8, −8 ≤ y ≤ 8, which is the bright-dark
wave in Figure 2. Figures 5 and 6 illustrate the solutions ψ5(x, y, z, t) and ψ6(x, y, z, t),
respectively. By comparing them with Figures 2 and 4, we find that although Figures 5
and 6 are somewhat similar to Figures 2 and 4, they are still the bright-dark solitary wave.
The behaviors of the solution ψ7(x, y, z, t) are plotted in Figure 7. It can be observed that
the wave contour is a perfect periodic wave.
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5. Conclusions and Future Recommendation

The (3+1)-dimensional BLMP equation that describes the incompressible fluid is inves-
tigated in this study. Two effective techniques, namely the EFM and HFF, are successfully
applied to construct the abundant traveling wave solutions. Seven sets of the traveling
wave solutions like the bright-dark wave, dark wave and periodic wave solutions are ob-
tained. As we've seen from [14–22], the results disclosed in this work are all new, which can
extend the study of the exact solutions of the (3+1)-dimensional BLMP equation. Finally, the
solutions are all illustrated through the three-dimensional contours and two-dimensional
curves. The results show that the proposed methods are concise and effective, which, in
turn, are expected to be helpful for the study of nonlinear equations arising in physics.

Fractal and Fractional calculus has seen many advancements over the past years,
and we have found that many classical models in current physics are being analyzed via
this calculus [33–39]. Applying the Fractal and Fractional calculus to Equation (1) and
extracting the exact solutions are the focus of future research.
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PDEs partial differential equations
EFM Exp-function method
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